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ABSTRACT. In convex programming, the basic constraint qualification is a necessary
and sufficient constraint qualification for the optimality condition. In this paper, we give
characterizations of the basic constraint qualification at each feasible solution. By using
the result, we give an alternative method for checking up the basic constraint qualification
at every feasible point without subdifferentials and normal cones.
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1. INTRODUCTION
In this paper, we consider the following convex programming problem:

(P) { minimize f(x),
subject to  g;(x) <0 for each i € I,

where X is a locally convex Hausdorff topological vector space, I is an arbitrary
index set, f is an extended real-valued convex function on X, and g; is an extended
real-valued convex function on X for each i € I. Constraint qualifications are essen-
tial in mathematical programming, see [1, 2, 3, 4, 5, 8,9, 10, 11, 12, 13, 14, 15] and
references therein. In particular, they ensure the existence of Lagrange multipliers
or zero duality gap between (P) and its Lagrangian dual problem. These results
have played a critical role in the development of convex programming. Additionally,
constraint qualifications for the following optimality condition have been studied by
many researchers:

E = R(f) such that 0 € 0f(zg) + Z X:0g; (o),
el
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where R{) = {\ e R! | Vi € I,\; > 0,{i € I | \; # 0} : finite}. One of the best-
known constraint qualification for the optimality condition is the Slater constraint
qualification. It is easy to check whether the Slater constraint qualification holds
or not. However, the Slater constraint qualification is often not satisfied for many
problems arising in applications. The lack of a constraint qualification can cause
both theoretical and numerical difficulties in applications. Recently, it was shown
that the basic constraint qualification (BCQ), which was introduced in [3], is a
necessary and sufficient constraint qualification for the optimality condition by Li,
Ng and Pong, see [8]. To check the BCQ at a feasible point, however, we have to
calculate the subdifferential of all g; and the normal cone of the feasible set at the
point. In this point of view, checking up the BCQ at every feasible points is not so
easy.

The purpose of this paper is to give characterizations of the basic constraint
qualification at each feasible point, and to give an alternative method to checking
up the BCQ at every feasible points. The paper is organized as follows. In section
2, we describe our notation and present preliminary results. In section 3, we give
characterizations of the basic constraint qualification at each feasible point, and we
give an alternative method for checking up the BCQ at every feasible points. Also
we remark that alternative results which are generalizations of Farkas’ Lemma are
given. In section 4, we explain the usefulness of our result obtained in this paper.

2. PRELIMINARIES

In this section, we describe our notation and present preliminary results. Let X
be a locally convex Hausdorff topological vector space over the real-field R, let X*
be the continuous dual space of X, and let (v, z) denote the value of a functional
v € X* at x € X. For a subset A* of X*, we denote the weak*-closure, the conical
hull and the convex hull of A by clA*, coneA* and coA*, respectively. Let f be
a function from X to R U {+o00}. The effective domain of f, denoted by domf is
defined by

domf ={zx € X | f(z) < +o0},
and the epigraph of f, denoted by epif is defined by
epif = {(z,r) € X xR | z € domf, f(z) < r}.

The function f is said to be convex, proper and lower semicontinuous (lsc) if epif
is a convex set, nonempty set and closed set, respectively. When f is a proper Isc
convex function, the conjugate function of f, f* : X* — RU{+o0}, is defined by

[7(w) =sup{(v,z) — f(z) |z € X}.
The subdifferential of f at x € X, denoted by df(x), is defined by
Of(x) ={ve X" | f(z) + (v,y —x) < fy),Vy € X}

For nonempty convex set A C X, the indicator function 4 : X — R U {+o0} is
defined by
0 zxzeA,
0alr) = { +oo z ¢ A
For any = € A, the normal cone of A at x, denoted by N4(x), is defined by

Ny(z)={ve X" | (v,y—=x) <0,Vy € A}.
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For proper lsc convex functions g, h : X — RU {+o0}, the infimal convolution of
g with h, denoted by g @ h, is defined by

(& h)@) = inf_{glw) +hlw2)}.

x

It is well known that if domg N domh # ), then
(g@h)"=¢g"+h"and (g+ h)* =cl(g" ®h"). (2.1)

The closure operation in the second equation is superfluous if one of g and h is
continuous at some a € domg N domh. Then,

epi(g + h)* = epig” + epih* and (2.2)
d(g + h)(z) = 9g(x) + Oh(x), for each x € domg N dombh, (2.3)

see [2].

We denote by RSFI) the space of generalized finite sequences (\;);c; such that
Ai € Ry = {t € R| ¢ >0} for each ¢ € I, and with only finitely many A; different
from zero. Let g; be an extended real-valued proper Isc convex function on X for

eachi € I, and let A\ € RSFI). Assume that each g; is continuous at least at one point
of ;c; domg;, and 0 x oo = 0. Then

) . > Niepigi > i >0,

epi Aigi el EL (2.4)
(; {0} xRy > Ai=0,
i€l
GZ Aigi(z) = Z Xi0gi(z),Vx € ﬂ domyg;. (2.5)
icl i€l iel

Definition 2.1. Let I be an arbitrary index set, g; an extended real-valued proper
Isc convex function on X foreachi e I, S ={r € X | gi(z) <0,Vie I},and Z € S.
The family {g; | ¢ € I'} is said to satisfy the basic constraint qualification (BCQ) at
z if
Ng(Z) = coneco U 09:(Z),
1€I1(T)
where I(Z) = {i € I | g;(Z) = 0}.
We introduce the following previous result of the BCQ.

Theorem 2.1. [3] Let I be an arbitrary indez set, g; an extended real-valued proper
Isc convex function on X for eachi € I, S ={x € X | gi(z) < 0,Vi € I}, and
Z € S. Then the following statements are equivalent:
(i) the family {g; | i € I} satisfies the BCQ at T,
(ii) for each real-valued convex function f, T is a minimizer of f in S if and
only if there exist a finite subset J C I(Z) and (X\;);es € R, such that

0€0f(x)+ Y Nidgi(2).

icJ

By Theorem 2.1, the BCQ is said to be a necessary and sufficient constraint
qualification for the optimality condition.

The following results, a set containment characterization and Fenchel duality,
are used in our main theorem.
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Theorem 2.2. [6] Let I be an arbitrary indez set, g; an extended real-valued proper
Isc convex function on X for each i € I, v € X*, and a € R. Assume that
S={xeX|g(x) <0,Vie I} is nonempty.
Then the following statements are equivalent:
(i) {x € X |gi(x) <0,Viel} C{ze X |(v,2) <a},
(ii) (v,a) € clconeco U epig; .
iel

Theorem 2.3. [7] Let f and g be extended real-valued proper lsc convex functions
on X such that domf Ndomg # @. If epif* + epig* is w*-closed, then

inf {f(z) + g(2)} = max{~f"(~v) g ()}

3. MAIN RESULT
Throughout this section, we consider the following convex inequality system:
{gi(x) <0fiel}

where [ is an arbitrary index set, and ¢; an extended real-valued proper lsc convex
function on X for each i € I. Let S = {z € X | g;(z) <0,Vi € I}, and assume that
each g; is continuous at least at one point of (), ; domg;. We show the following
theorem as our main result.

iel

Theorem 3.1. Let z € S = {x € X | gi(x) < 0 Vi € I}. Then the following
statements are equivalent:
(i) the family {g; | i € I} satisfies the BCQ at T,
(ii) for each real-valued convex function f, T is a minimizer of f in S if and
only if there exist a finite subset J C I1(Z) and (X\;)ics € R, such that

0€0f(x)+ Y \idgi(2),
ieJ

(iii) the following inclusion holds:

{v

(iv) for each extended real-valued proper lsc convex function f with epif*+epid
is w*-closed, exactly one of the following two statements is true:

. flz) < f(z),
(a) there exists © € X such that { gi(2) <0, for eachic I,

(v, (v,Z)) € clconeco U epigf} - {v

el

(v, (v,Z)) € coneco U epigf} ,

el

(b) there exists A € ]Rg_l) such that
f(x)+ Z \igi(x) > f(Z) for each x € X,

iel
Xigi(T) =0 for each i € I,
(v) for each v € X*, exactly one of the following two statements is true:

: (v,2) < (v,7),
(a) there exists x € X such that { gi(x) < 0 for cachic I,

(b) there exists A € Rg) such that
(v,2) + Y Xigi(x) > (v, &), for each x € X,

el

Xigi(Z) =0 for each i € I.
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Proof. By Theorem 2.1, (i) and (ii) are equivalent.
We show that (ii) implies (iii). Assume that the statement (ii) holds, and let
v € X* satisfying (v, (v, 7)) € cleconeco | J,.; epig;. Then, by Theorem 2.2,
{reX|g(z)<0,Viel} C{zeX|(v,z) < (v,T)}.
This shows that Z is a global minimizer of —v in S. By the statement (ii), there
exist a finite subset J C I(Z) and (\;);cs € Ry, such that

0€d(—v)(@) + > Nidgi(x
ieJ

that is, v € >, ; Mi0g;(Z). For each i € J C I(z), we show that w € dg;() if and
only if (w, (w,Z)) € epigy. Actually,
vy € X, 9i(y) 2 9:(T) + (w,y — T)
Yy € X, gi(y) = (w,y — T)
Yy € X, (w,2) = (w,y) = gi(y)
(w,z) = g; (w)
(w, (w, Z)) € epig; .

w € Jg;(T) >
>

1reey

Hence,
(v, (v,T)) € Z Aiepig; C coneco U epig; .
ieJ icl

Next, we prove that (iii) implies (iv). Assume that (iii) holds, and let f be an
extended real-valued proper Isc convex function with epif* + epidg is w*-closed. It
is clear that (a) and (b) in (iv) do not hold simultaneously. If (a) does not hold,
then for each x € S, f(z) > f(Z), that is, Z is a global minimizer of f in S. By
Theorem 2.3,

f(@) = min f(z) = min{f(z) + ds(2)} = max{—f"(-v) - d5(v)},

vEX*
that is, there exists vy € X* such that f(Z) = —f*(—vo) — d%(vo). Hence,
f@) = —f"(=vo) —d5(vo)

= (=vo) — Sup{<vo, z) = 0s(x)}

= —f"(—v) + mf( Vg, Z)

< —f(=vo) + (=0, T)

< —({(=v0, @) = f(%)) + (—vo, T)

= f(@).

This shows that f(Z) 4+ f*(—vo) = (—vo, Z), that is, —vy € f(Z). Additionally, we
can see that inf,cg (—vg, x) = (—vo, Z), hence we have

{reX|g(z)<0,Viel} C{zxe X | (vy,z) < {vy,T)}.
By Theorem 2.2 and the statement (iii),

(vo, (vo, T)) € coneco U epig; .
iel
Hence, there exist A € RS_I) and (a;,b;) € epig] for each ¢ € I such that

UO; U07 § )\ az; z

el



104 J. NONLINEAR ANAL. OPTIM. VOL. 11(2) (2020)

For each i € T and z € X, (ai,m> — gi(z) < b;. Therefore,

’00, Z A’Lgl UOa > .

el
Since —vg € 9f(Z), for each z € X,

f(@) + (—vo,x — ) < f().

)+ Y Nigi(x) > f(z).
iel
Since T € S, we can check easily that A\;g;(Z) = 0 for each i € I, hence (b) of (iv)
holds.
It is clear that (iv) implies (v).
Finally, we prove that (v) implies (i). Assume that (v) holds. At first, we show
the following inclusion:

This shows that

Ng(Z) D coneco U 9g;(T)
i€l(z)
Actually, let ¢ € I(Z) and v € 0g;(Z), then for each z € S,
(v,2 =) = gi(7) + (v, — T) < gi(x) <0.

This shows that v € Ng(Z), that is, dg;(Z) C Ng(Z). Since Ng(Z) is a convex cone,
the above inclusion holds. Next, we show the following inclusion:

Ng(Z) C coneco U 0g;(T).
i€l(z)
Let v € Ng(Z), then, Z is a global minimizer of —v in S. Hence, the statement (a)

in (v) for —v does not hold. By the statement (b) in (v), there exists A € Ril) such
that for each z € X,
<_U’ J;> + Z /\igi(l‘) > <_U’ 'f> )
iel
and \;g;(7) = 0 for each i € I. This shows that (3_,.; Aigi)*(v) < (v,Z). Since

Doicr Nigi(Z) + (D ier Migi)*(v) < (v, Z), we can see that v € (3, c; Nigi)(Z). By
the equation (2.5) and the complementarity condition,

ve (Z )\ng> Z Ai0g;(Z) C coneco U 0g;(T).

el i€l 1€I(Z)

This shows that (i) holds. This completes the proof. O

Remark 3.1. By (iii) in Theorem 3.1, an alternative method for checking up the
BCQ at every feasible points is given. The method requires a convex cone depents
on constraint functions and feasible points, but does not require any subdifferentials
and any normal cones, see examples in Section 4.

Remark 3.2. By using Theorem 3.1, we can show Farkas’ Lemma. Let A =
(ai;) € R™™ and b € R™. Put X = R", I = {1,...,m}, ¢; = (a;,-) where
a; = (ai1,...,a;)7,i€l,and 2 =0€ S = {x € R" | g;(x) <0 Vi € I}. Then, we
can see that the statement (iii) of Theorem 3.1 always holds, that is,

m
{v € R"™ | (v,0) € clconeco U epigf} - {v eR”

i=1

m
(v,0) € coneco U epig:‘} .

=1
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The proof is given as follows: at first, we can see that

coneco G epig; = {i Ai(aq, Bi)

i=1 i=1

Ai > 072/\1 > 0,6 > 0} U {(0,0)}
=1

and

clconeco U epig; = {Z Ai(ag, B;)

i=1 i=1
hold. When (v,0) = > | Xi(a;, 8;) € cleoneco |, epig} for some non-negative \;
and (3;, it is clear that \;3; = 0 for all 4 € I. If all \; are O then v = 0, otherwise
S, A > 0. Therefore (v,0) € coneco|J]~, epig; holds. From Theorem 3.1, the
statement (v) holds. When v = —b, exactly one of the following two statements is

true:
(a) there exists € R™ such that (b,z) > 0 and Az <0,
(b) there exists y = (y1,...,Ym) € R such that ATy =b.

This is a variation of Farkas’ Lemma. From this observation, each (iv) and (v) of
Theorem 3.1 can be considered as a kind of alternative results.

Ai > 0,8 20}

4. EXAMPLES AND APPLICATIONS

In this section, we explain the usefulness of our results by some examples and
applications. At first, we give three examples and we check up the BCQ at every
feasible by using the given alternative method.

Example 4.1. Let g1 : R — R be a function as follows:

%xQ -z x € (—00,0],

g1(x) = 0 x € (0,1),
Lz —1)2 z€[l,+o0).
Then S = [0,1], and we can calculate the Fenchel conjugate of g1 as follows:
Lo+ 1) ve (—o0,1],
g9 (v) = 0 v € (—1,0),
102 +v v e 0, +00).

Furthermore,
(—00,0] =0,
{veR| (v,vx) € clconeco epigi } = {0} x € (0,1),
[0,400) = =1,
and
. wv | (=00,0] z=0,
{v € R | (v,vx) € coneco epig; } = { {0} e (0,1]

By Theorem 3.1, the BCQ holds at every point of [0, 1), however the BCQ does not
hold at 1. By Figure 4.1, it is easy to check whether the BCQ holds or not at every
feasible point.

Example 4.2. Let g5 : R2 — R be a function as follows:

g2(21,22) = g(x1) + g(22),
where
(t+1)? te(—o0,—1],
g(t): 0 te (_1’1)a
(t—1)2 te[l,+o0).

(SIS

(SIS
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cone co epi g g7

FIGURE 1.

cone co epi g5

FIGURE 2.

Then7 S = [_17 1]2v g;(Uh’UQ) = %U% =+ |r01‘ + %U% =+ |r02‘7
coneco epigy = {(v1,v2,7) € R | Jor| + [vz] <} U{(0,0,0)},

and
clconeco epigy = {(v1,v2,7) € R® | Jvg| + |vo| < 7).

Hence, the BCQ holds at every point in the interior of S, however the BCQ does
not hold at every point in the boundary of S by using Theorem 3.1. See Figure 4.2.

Example 4.3. Let g3 : R® — R be a function as follows:

93(2) = 5 ({wo0,2) = | w0, 2) D + 5 (o, ) + | (o, )],
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where vg, wy € R™ \ {0} and (vg, wp) = 0. Then,
S={zeR"|gs(x) <0} ={svg+twy|s>0,¢t<0}

and
g5(v) = %(@0&))2 + 0 svp+two|s<0,t€(0,1]} (V)-
Hence,
coneco epigi = {(svg +twg,r) € R" | r > 0,5 € (—00,0],t € [0, +00)}
U{(two, ) € R"™ | r > 0,t € [0, +00)},
and

clconeco epigs = {(svg + twg,r) € R™™ | > 0,5 € (—00,0],t € [0,400)}.

Therefore, the BCQ holds at every point in the union of the interior of S and
{Awvg | A > 0}, however the BCQ does not hold at every point in {twq | t € (—o0, 0]},
by using Theorem 3.1.

When n < 2, as we saw in Example 4.1 and Example 4.2, it is possible to check up
the BCQ on the feasible solution S by illustrating coneco | J;.; epig;. When n > 3,
it is not easy to illustrate coneco | J;; epig; in general, but Example 4.3 is a special
case in which the BCQ can be checked up without illustrating coneco |, epig;.
When every g; are sublinear, the BCQ can also be checked up without illustrating
coneco  J;.; epigf, by using just dg;(0), see the following result:

Theorem 4.1. Let I be an index set, g; be a real-valued sublinear function on X
foreachi €I, S ={x € X | gi(x) <0,Vi € I}, and T € S. Then the following
statements are equivalent:

(i) {g: | ¢ € I} satisfies the BCQ at T,

(ii) the following inclusion holds:
{v | (v, {v,&)) € clconeco U epidag, 0y} € {v | (v, (v,T)) € coneco U epidag, (0) }-
iel iel
Proof. Since g; is sublinear, we have
9i = 00g,(0)-
By Theorem 3.1, (i) and (ii) are equivalent. O

Example 4.4. Let g4 : R — R be a function as follows:

9a(x) = ||z[| + (vo, @) ,
where vg € R™ with |lvg]] = 1 and n > 2. Then, g4 is a sublinear function, and
S ={z € R"| gs(x) <0} = {tvy | ¢ < 0} and the interior of S is empty. We can
calculate the subdifferential of g4 at 0 as follows:
994(0) = {v € R" | lu —wo| < 1}.
Additionally, for each T € S,
{v € R" | (v,{(v,Z)) € coneco epidyy, 0y} = {(0,0)}
and
{v e R" | (v,{v,Z)) € cleconeco epidygy, (o)} = {tvo | t < 0}.
Therefore, by Theorem 4.1, the BCQ does not hold at every points in S.

Furthermore, we give the following sufficient condition of the BCQ for a sublinear
inequality system:
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Theorem 4.2. Let I be an index set, g; be a real-valued sublinear function on X
foreachi€ I, S={x e X|g(z) <0,Vie I}, and assume that S is nonempty.
If coneco | J, . ; 09:(0) is w*-closed, then {g; | i € I} satisfy the BCQ at every points
in S.

el

Proof. Let z € S and let v € X* with (v, (v, 7)) € cleconecoJ,;; epidag, ). We may
assume that v # 0, because (0,0) € conecoJ;c; epidyg, o). Then there exists a net
{(va, Ba) | € D} C conecolJ;; epidag, (o) such that

(Vas Ba) — (v, (v, 7)).

Additionally, for each a € D, there exists \* € ]RSFI) and (zf,7f") € epidyg, oy for
each ¢ € I such that

(’Uouﬁoz) = Z)‘?(a"z‘a’V?)'
iel
Since epidyg, 0y = 09:(0) x [0,400) for each i € I, v, € conecolJ;.; 99:(0) and
Ba € [0,+00). This shows that v € clconeco|J;.; dg:(0) and (v, ) € [0,+00). By

0g;(0). Hence there exist A € R(f) and v; € 9¢g;(0)

v = Z )\ﬂ)i

el
J ( ) 0<<§ : _>
8g;(0)\Vi) = - ),
9:(0)\Vi iI)‘i

Vi, , L Ployp i .
' Zie[ Ai 90

(v, (v, T)) € coneco U epidag, (0)-
i€l
By Theorem 4.2, {g; | i € I} satisfies the BCQ at Z. This completes the proof. [

the assumption, v € coneco
for each i € I such that

iel

For each i € I,

that is

Therefore

Example 4.5. Let g5 : R® — R be a function as follows:

g5(x) = [ (vo, ) |,
where vy € R™\ {0}. Then, S = {z € R™ | (vo, z) = 0}, dg5(0) = {tvg | t € [-1,1]},
and
coneco 0g5(0) = {tvo | t € R}.

Since coneco dgs5(0) is closed, the BCQ holds at every points in .S by Theorem 4.2.

5. CONCLUSION

In this paper, we have studied the basic constraint qualification as a sufficient
condition for the optimality condition. In Theorem 3.1, we have given equiva-
lent conditions of the BCQ at each feasible solution. Especially, we have given an
alternative method for checking up the BCQ at every feasible points without subd-
ifferentials and normal cones at feasible solutions, although the BCQ was defined by
using the subdifferentials and the normal cones. We have explained the usefulness
of the method to check up the BCQ by using examples in Section 4, and we have
applied the main theorem for a sublinear inequality system in Theorem 4.1 and
Theorem 4.2.
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