I. Inchan et al., J. Nonlinear Anal. Optim. Vol. 12(1) (2021), 29-36

Journal of Nonlinear Analysis and Optimization Volume 12(1) (2021) http://www.math.sci.nu.ac.th

ISSN: 1906-9685

J. Nonlinear Anal. Optim.

COMMON FIXED POINT THEOREMS FOR SOME CONTRACTIVE CONDITION WITH φ -MAPPING IN COMPLEX VALUED B-METRIC SPACES

ISSARA INCHAN, KANJANA GAJAI, TADCHAI YUYING, SAARD YOUYEN AND WARINSINEE CHANTAKUN*

Department of Mathematics and Computer, Uttaradit Rajabhat University

ABSTRACT. In this paper, by using the concept of φ -mappings introduced by Mohanta and Maitra [8], we can prove the existence and the uniqueness of common fixed points for some generalized contractive mappings in complex-valued b-metric spaces. Our results extend and improve the results of Tripathi and Dubey [12] and many others.

KEYWORDS:common fixed point, complex-valued metric space, complex valued b-metric space.

AMS Subject Classification: :46C05, 47D03, 47H09, 47H10, 47H20.

1. Introduction

The concept of a metric space was introduced by Frechet in 1906 [7]. Many mathematicians studied the existence and the uniqueness of fixed points by using the Banach contraction principle. The principle was also proved in some generalized metric spaces, see [5].

Fixed point theorems in metric spaces have been studied extensively by many researchers as in [13, 6] and [11]. In 1989, Bakhtin [3] introduced the notion of b-metric spaces. After that, many researchers extended fixed point theorems from metric spaces to b-metric spaces, for example in [1, 2]

In 2011, A. Azam, B. Fisher and M. Khan [2] introduced the notion of complex valued metric spaces and established sufficient conditions for the existence of common fixed points of a pair of mappings satisfying a contractive condition. A complex valued metric space is a generalization of the classical metric space. Bhatt et al. [4] have proved a common fixed point theorem for weakly compatible mappings in a complex valued metric space. In 2013, Mohanta and Maitra [8], introduced the concept of common fixed points with φ -mapping in complex valued metric spaces, In 2017, Zada et. al. [14], proved common fixed point theorems in complex valued metric spaces with (E.A) and (CLR) properties.

 $^{^{}st}$ Corresponding author.

The aim of this paper is to introduce some contractive conditions of two mappings by using the concept of φ -mappings and prove the existence and the uniqueness of common fixed points in complex valued b-metric spaces. Therefore, our results are comprehensive the results of [8] and [12].

2. Preliminaries

In this section, we present some definitions and lemmas for using in section 3, and define the definition of b-metric space in the complex plane.

Definition 2.1. Let X be a nonempty set. A function $d: X \times X \to [0, \infty)$ is called a metric if for $x, y, z \in X$ the following conditions are satisfied.

```
(i) d(x,y) = 0 if and only if x = y;
```

- $(ii) \ d(x,y) = d(y,x);$
- $(iii) \ d(x,z) \le d(x,y) + d(y,z).$

The pair (X, d) is called a metric space, and d is called a metric on X.

Next, we suppose the definition of b-metric space, this space is generalized than metric spaces.

Definition 2.2. [3] Let X be a nonempty set and $s \geq 1$ be a given real number. A function $d: X \times X \to [0, \infty)$ is called a b-metric if for all $x, y, z \in X$ the following conditions are satisfied.

```
(i) d(x,y) = 0 if and only if x = y;
```

- (ii) d(x,y) = d(y,x);
- $(iii) \ d(x,z) \le s[d(x,y) + d(y,z)].$

The pair (X, d) is called a b-metric space. The number $s \geq 1$ is called the coefficient of (X, d).

The following is some example for b-metric spaces.

Example 2.3. [3] Let (X,d) be a metric space. The function $\rho(x,y)$ is defined by $\rho(x,y) = (d(x,y))^2$. Then (X,ρ) is a b-metric space with coefficient s=2. This can be seen from the nonnegativity property and triangle inequality of metric to prove the property (iii).

There is a completeness property in real number but on order relation is not welll-defined in complex numbers. Before giving the definition of complex valued metric spaces and complex-valued b-metric spaces, we define partial order in complex numbers (see [9]). Let \mathbb{C} be the set of complex numbers and $z_1, z_2 \in \mathbb{C}$. Define partial order relation \leq on \mathbb{C} as follows;

```
z_1 \leq z_2 if and only if Re(z_1) \leq Re(z_2) and Im(z_1) \leq Im(z_2).
```

This means that we would have $z_1 \leq z_2$ if and only if one of the following conditions holds:

- (i) $Re(z_1) = Re(z_2)$ and $Im(z_1) = Im(z_2)$,
- (ii) $Re(z_1) < Re(z_2)$ and $Im(z_1) = Im(z_2)$,
- (iii) $Re(z_1) = Re(z_2)$ and $Im(z_1) < Im(z_2)$,
- (iv) $Re(z_1) < Re(z_2)$ and $Im(z_1) < Im(z_2)$.

If one of the conditions (ii), (iii), and (iv) holds, then we write $z_1 \prec z_2$. From the above partial order relation we have the following remark.

Remark 2.4. We can easily check the following:

- (i) If $a, b \in \mathbb{R}, 0 \le a \le b$ and $z_1 \le z_2$ then $az_1 \le bz_2, \forall z_1, z_2 \in \mathbb{C}$.
- (ii) If $0 \le z_1 \le z_2$ then $|z_1| < |z_2|$.
- (iii) If $z_1 \leq z_2$ and $z_2 < z_3$ then $z_1 < z_3$.
- (iv) If $z \in \mathbb{C}$, for $a, b \in \mathbb{R}$ and $a \leq b$, then $az \leq bz$.

A b-metric on a b-metric sapee is a funcion having real value. Based on the definition of partial order on complex number, real-valued b-metric can be generalized into complex-valued b-metric as follows.

Definition 2.5. [2] Let X be a nonempty set. A function $d: X \times X \to \mathbb{C}$ is called a complex valued metric on X if for all $x, y, z \in \mathbb{C}$, the following conditions are satisfied:

- (i) $0 \le d(x, y)$ and d(x, y) = 0 if and only if x = y,
- (ii) d(x,y) = d(y,x),
- (iii) $d(x,z) \leq d(x,y) + d(y,z)$.

Then d is called a complex valued metric on X and (X, d) is called a complex valued metric space.

Next, we give the definition of complex valued b-metric space.

Definition 2.6. [11] Let X be a nonempty set and let $s \geq 1$ be a given real number. A function $d: X \times X \to \mathbb{C}$ is called a complex valued b-metric on X if, for all $x, y, z \in \mathbb{C}$, the following conditions are satisfied:

- (i) $0 \le d(x, y)$ and d(x, y) = 0 if and only if x = y,
- (ii) d(x,y) = d(y,x),
- $(iii) \ d(x,z) \preccurlyeq s[d(x,y) + d(y,z)].$

The pair (X,d) is called a complex valued b-metric space. We see that if s=1 then (X,d) is complex valued metric space which is defined in Definition 2.5. The following example is some example of complex valued b-metric space.

Example 2.7. [11] Let $X = \mathbb{C}$. Define the mapping $d : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ by $d(x,y) = |x-y|^2 + i|x-y|^2$ for all $x,y \in X$. Then (\mathbb{C},d) is complex valued b-metriic space with s=2.

Definition 2.8. [10] Let (X, d) be a complex valued b-metric space.

(i) A point $x \in X$ is called interior point of set $A \subseteq X$ if there exists $0 \prec r \in \mathbb{C}$ such that

$$B(x,r) = \{ y \in Y : d(x,y) \prec r \} \subseteq A.$$

- $(ii) \ \text{A point } x \in X \text{ is called limit point of a set } A \text{ if for every } 0 \prec r \in \mathbb{C}, B(x,r) \cap (A-x) \neq \emptyset$
 - (iii) A subset $A \subseteq X$ is open if each element of A is an interior point of A.
 - (iv) A subset $A \subseteq X$ is closed if each limit point of A is contained in A.

Definition 2.9. [10] Let (X, d) be complex valued b-metric space, $\{x_n\}$ be a sequence in X and $x \in X$.

- (i) The sequence $\{x_n\}$ is converges to $x \in X$ if for every $0 \prec r \in \mathbb{C}$ there exists $N \in \mathbb{N}$ such that for all $n \geq N, d(x_n, x) \prec r$. Thus x is the limit of (x_n) and we write $\lim_{n \to \infty} x_n = x$ or $x_n \to x$ as $n \to \infty$.
- (ii) The sequence $\{x_n\}$ is said to be a Cauchy sequence if for ever $0 \prec r \in \mathbb{C}$ there exists $N \in \mathbb{N}$ such that for all n > N, $d(x_n, x_{n+m}) \prec r$, where $m \in \mathbb{N}$.
- (iii) If for every Cauchy sequence in X is convergent, then (X,d) is said to be a complete complex valued b-metric space.

Definition 2.10. [8] Let $P = \{z \in \mathbb{C} : re(z) \ge 0 \text{ and } Im(z) \ge 0\}$. A nondecreasing mapping $\varphi : P \to P$ is called a φ -mapping if

- (i) $\varphi(0) = 0$ and $0 \prec \varphi(z) \prec z$ for $z \in P \{0\}$;
- (ii) $\varphi(z) \prec z$ for every $z \succ 0$;
- (iii) $\lim_{n\to\infty} \varphi^n(z) = 0$ for every $z \in P \{0\}$.

Lemma 2.11. [10] Let (X, d) be a complex valued b-metric space and let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ converges to x if and only if $|d(x_n, x)| \to 0$ as $n \to \infty$.

Lemma 2.12. [10] Let (X, d) be a complex valued b-metric space and let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ is a Cauchy sequence if and only if $|d(x_n, x_{n+m})| \to 0$ as $n \to \infty$, where $m \in \mathbb{N}$.

3. Main Results

In this section, we define some contraction by using a φ -mapping, and prove the existence and uniqueness of common fixed point theorem in a complete complex valued b-metric space.

Theorem 3.1. Let (X,d) be a complete complex valued b-metric space and the mappings $S,T:X\to X$ are self mappings satisfying the condition

$$d(Sx, Ty) \leq \varphi[\lambda \frac{d(x, Sx)d(x, Ty) + d(y, Ty)d(y, Sx)}{d(x, Ty) + d(y, Sx)} + \mu d(x, y)]$$
(3.1)

for all $x, y \in X$, where $d(x, Ty) + d(y, Sx) \neq 0$ and λ, μ are nonnegative reals with the condition $\lambda + \mu < 1$. If φ is continuous then S and T has a unique common fixed point.

Proof. Let $x_0 \in X$ be an arbitrary point. We define

$$x_{2n+1} = Sx_{2n}$$
 and
 $x_{2n+2} = Tx_{2n+1}, n = 0, 1, 2, 3, ...$

By equations (3.1) and (3.2), we consider

$$d(x_{2n+1}, x_{2n+2}) = d(Sx_{2n}, Tx_{2n+1})$$

$$\leq \varphi[\lambda \frac{d(x_{2n}, Sx_{2n})d(x_{2n}, Tx_{2n+1}) + d(x_{2n+1}, Tx_{2n+1})d(x_{2n+1}, Sx_{2n})}{d(x_{2n}, Tx_{2n+1}) + d(x_{2n+1}, Sx_{2n})}$$

$$+ \mu d(x_{2n}, x_{2n+1})]$$

$$\leq \varphi[\lambda \frac{d(x_{2n}, x_{2n+1})d(x_{2n}, x_{2n+2}) + d(x_{2n+1}, x_{2n+2})d(x_{2n+1}, x_{2n+1})}{d(x_{2n}, x_{2n+2}) + d(x_{2n+1}, x_{2n+1})}$$

$$+ \mu d(x_{2n}, x_{2n+1})].$$

$$(3.2)$$

From $\lambda + \mu < 1$ and (3.2), we have

$$d(x_{2n+1}, x_{2n+2}) = \varphi[\lambda \frac{d(x_{2n}, x_{2n+1})d(x_{2n}, x_{2n+2})}{d(x_{2n}, x_{2n+2})} + \mu d(x_{2n}, x_{2n+1})]$$

$$\leq \varphi[\lambda d(x_{2n}, x_{2n+1}) + \mu d(x_{2n}, x_{2n+1})]$$

$$= \varphi[(\lambda + \mu)d(x_{2n}, x_{2n+1})]$$

$$\leq \varphi[d(x_{2n}, x_{2n+1})].$$

Similarly, we have

$$d(x_{2n}, x_{2n+1}) = \varphi[\lambda \frac{d(x_{2n-1}, x_{2n})d(x_{2n-1}, x_{2n+1})}{d(x_{2n-1}, x_{2n+1})} + \mu d(x_{2n-1}, x_{2n})]$$

$$\leq \varphi[\lambda d(x_{2n-1}, x_{2n}) + \mu d(x_{2n-1}, x_{2n})]$$

$$= \varphi[(\lambda + \mu)d(x_{2n-1}, x_{2n})]$$

$$\leq \varphi[d(x_{2n-1}, x_{2n})].$$

By mathematical induction, implies that

$$d(x_{2n+1}, x_{2n+2}) \leq \varphi(\varphi(\varphi(\cdots \varphi(d(x_0, x_1)))))$$

$$= \varphi^{2n+1} d(x_0, x_1). \tag{3.3}$$

From (3.3) and Definition 2.10, we conclude that

$$d(x_{n+1}, x_{n+2}) \leq \varphi^{n+1} d(x_0, x_1)$$
 (3.4)

So, for m > n and Definition 2.6, we consider

$$d(x_{n}, x_{n+m}) \leq s[d(x_{n}, x_{n+1}) + d(x_{n+1}, x_{n+m})]$$

$$\leq sd(x_{n}, x_{n+1}) + sd(x_{n+1}, x_{n+m})$$

$$\leq sd(x_{n}, x_{n+1}) + s[s(d(x_{n+1}, x_{n+2}) + d(x_{n+2}, x_{n+m}))]$$

$$\leq sd(x_{n}, x_{n+1}) + s^{2}(d(x_{n+1}, x_{n+2}) + s^{2}d(x_{n+2}, x_{n+m})$$

$$\leq sd(x_{n}, x_{n+1}) + s^{2}(d(x_{n+1}, x_{n+2}) + s^{2}d(x_{n+2}, x_{n+m})$$

$$+s^{n+m-1}d(x_{n+m-2},x_{n+m-1}) + \dots + s^{m}d(x_{n+m-1},x_{n+m})$$

$$\leq sd(x_{n},x_{n+1}) + s^{2}(d(x_{n+1},x_{n+2}) + s^{3}d(x_{n+2},x_{n+3}) + s^{3}d(x_{n+3},x_{n+m})$$

$$+ \dots + s^{n+m-1}d(x_{n+m-2},x_{n+m-1}) + s^{m}d(x_{n+m-1},x_{n+m})$$

$$\leq s\varphi^{n}d(x_{0},x_{1}) + s^{2}\varphi^{n+1}(d(x_{0},x_{1}) + s^{3}d(x_{0},x_{1}) + s^{3}\varphi^{n+2}d(x_{0},x_{1})$$

$$+ \dots + s^{n+m-1}\varphi^{n+m-2}d(x_{0},x_{1})s^{m}\varphi^{n+m-1}d(x_{0},x_{1})$$

$$= [s\varphi^{n} + s^{2}\varphi^{n+1} + s^{3} + s^{3}\varphi^{n+2} + s^{n+m-1}\varphi^{n+m-2} + s^{m}\varphi^{n+m-1}]d(x_{0},x_{1}).$$
(3.5)

From remark 2.4 (ii), we have

$$|d(x_n, x_{n+m})| \leq [s\varphi^n + s^2\varphi^{n+1} + s^3 + s^3\varphi^{n+2} + \dots + s^{n+m-1}\varphi^{n+m-2} + s^m\varphi^{n+m-1}]|d(x_0, x_1)|.$$
(3.6)

From (3.4), (3.6) and Taking $n \to \infty$, it follows that $|d(x_n, x_{n+m})| \to \infty$.

By Lemma 2.12, implies that $\{x_n\}$ is a cauchy sequence in X. Since X is complete, there exists $u \in X$ such that $x_n \to u$. Now, we show that u is a fixed point of T and S. Consider,

$$d(Su, x_{2n+2}) = d(Su, Tx_{2n+1})$$

$$\leq \varphi(\lambda \frac{d(u, Su)d(u, Tx_{2n+1}) + d(x_{2n+1}, Tx_{2n+1})d(x_{2n+1}, Su)}{d(u, Tx_{2n+1}) + d(x_{2n+1}, Su)} + \mu d(u, x_{2n+1}))$$

$$\leq \varphi(\lambda \frac{d(u, Su)d(u, x_{2n+2}) + d(x_{2n+1}, x_{2n+2})d(x_{2n+1}, Su)}{d(u, x_{2n+2}) + d(x_{2n+1}, Su)} + \mu d(u, x_{2n+1})).$$

$$(3.7)$$

From φ is a continuous, (3.7), $x_n \to u$ as $n \to \infty$ and Definition 2.6 (1), we have

$$d(Su, u) = \lim_{n \to \infty} d(Su, x_{2n+1})$$

$$\leq \lim_{n \to \infty} \varphi(\lambda \frac{d(u, Su)d(u, x_{2n+2}) + d(x_{2n+1}, x_{2n+2})d(x_{2n+1}, Su)}{d(u, x_{2n+2}) + d(x_{2n+1}, Su)} + \mu d(u, x_{2n+1}))$$

$$= \varphi(\lim_{n \to \infty} (\lambda \frac{d(u, Su)d(u, x_{2n+2}) + d(x_{2n+1}, x_{2n+2})d(x_{2n+1}, Su)}{d(u, x_{2n+2}) + d(x_{2n+1}, Su)} + \mu d(u, x_{2n+1})))$$

$$= \varphi(\lambda \frac{d(u, Su)d(u, u) + d(u, u)d(u, Su)}{d(u, u) + d(u, Su)} + \mu d(u, u))$$

$$= \varphi(0) = 0.$$

$$(3.8)$$

Thus u = Su. Hence u is a fixed point of S. Next, we show that u is a fixed point of T. Consider,

$$d(x_{2n+1}, Tu) = d(Sx_{2n}, Tu)$$

$$\leq \varphi(\lambda \frac{d(x_{2n}, Sx_{2n})d(x_{2n}, Tu) + d(u, Tu)d(u, Sx_{2n})}{d(x_{2n}, Tu) + d(u, Sx_{2n})} + \mu d(x_{2n}, u))$$

$$= \varphi(\lambda \frac{d(x_{2n}, x_{2n+1})d(x_{2n}, Tu) + d(u, Tu)d(u, x_{2n+1})}{d(x_{2n}, Tu) + d(u, x_{2n+1})} + \mu d(x_{2n}, u)).$$
(3.9)

From φ is a continuous, (3.9), $x_n \to u$ as $n \to \infty$ and Definition 2.6 (1), we have

$$d(u, Tu) = \lim_{n \to \infty} d(x_{2n+1}, Tu)$$

$$\leq \lim_{n \to \infty} \varphi(\lambda \frac{d(x_{2n}, x_{2n+1})d(x_{2n}, Tu) + d(u, Tu)d(u, x_{2n+1})}{d(x_{2n}, Tu) + d(u, x_{2n+1})} + \mu d(x_{2n}, u))$$

$$= \varphi(\lim_{n \to \infty} (\lambda \frac{d(x_{2n}, x_{2n+1})d(x_{2n}, Tu) + d(u, Tu)d(u, x_{2n+1})}{d(x_{2n}, Tu) + d(u, x_{2n+1})} + \mu d(x_{2n}, u)))$$

$$= \varphi(\lambda \frac{d(u, u)d(u, Tu) + d(u, Tu)d(u, u)}{d(u, Tu) + d(u, u)} + \mu d(u, u))$$

$$= \varphi(0) = 0.$$
(3.10)

Thus u = Tu. Hence u is a fixed point of T. Therefore, u is a common fixed point of S and T. Finally, we prove the uniqueness of common fixed point of S and T. Suppose that v is a common fixed point of S and T. So Sv = v = Tv. Now, we show that u = v. Assume that $u \neq v$, we consider

$$d(u,v) = d(Su,Tv)$$

$$\leq \varphi(\lambda \frac{d(u,Su)d(u,Tv) + d(v,Tv)d(v,Su)}{d(u,Tv) + d(v,Su)} + \mu d(u,v))$$

$$= \varphi(\lambda \frac{d(u,u)d(u,v) + d(v,v)d(v,u)}{d(u,v) + d(v,u)} + \mu d(u,v))$$

$$= \varphi(\mu d(u,v)).$$
(3.11)

Since $\mu < 1$, we have $\mu d(u, v) < d(u, v)$. By Definition 2.10 (2) and φ is a nondecreasing, we have

$$d(u,v) \leq \varphi(\mu d(u,v)) \leq \varphi(d(u,v)) \leq d(u,v). \tag{3.12}$$

From remark 2.4 (ii), taking absolute value of both side, we have

$$|d(u,v)| < |d(u,v)|.$$

It is a contradiction. We can conclude that u=v. Therefore u is a uniqueness common fixed point of S and T.

From Theorem 3.1, we have the parallel result with the result of Dubey et. al [12] as following.

Corollary 3.2. Let (X,d) be a complete complex valued b-metric space and the mappings $S,T:X\to X$ satisfy the condition

$$d(Sx, Ty) \leq \lambda \frac{d(x, Sx)d(x, Ty) + d(y, Ty)d(y, Sx)}{d(x, Ty) + d(y, Sx)} + \mu d(x, y)$$
(3.13)

for all $x, y \in X$, where $d(x, Ty) + d(y, Sx) \neq 0$ and λ, μ are nonnegative reals with $\lambda + \mu < 1$. If either S or T is continuous and the pair (S, T) is compatible, then S and T has a unique common fixed point.

Proof. If $\varphi = I$ is an identity mapping, then (3.1) reduces to (3.13) and suppose one of S and T is continuous and the pair (S, T) is compatible, then S and T has a unique common fixed point. This completes the proof.

Theorem 3.3. Let (X,d) be a complete complex valued b-metric space and the mappings $S,T:X\to X$ are self mappings satisfying the condition

$$d(S^{n}x, T^{n}y) \preccurlyeq \varphi[\lambda \frac{d(x, S^{n}x)d(x, T^{n}y) + d(y, T^{n}y)d(y, S^{n}x)}{d(x, T^{n}y) + d(y, S^{n}x)} + \mu d(x, y)]$$
 (3.14)

for all $x, y \in X$, $n \ge 1$, where $d(x, Ty) + d(y, Sx) \ne 0$ and λ, μ are nonnegative reals with the condition $\lambda + \mu < 1$. If φ is continuous then S and T has a unique common fixed point.

Proof. Suppose $A = S^n$ and $B = T^n$, by Theorem 3.1, there exists a common fixed point u of A and B, such that

$$Au = u = Bu$$
.

Thus $S^n u = u$ and $T^n u = u$. We claim that Su = u. Assume that $Su \neq u$, we have

$$\begin{split} d(Su,u) &= d(S(S^nu),T^nu) \\ &= d(S^n(Su),T^nu) \\ &\preccurlyeq \varphi \left[\lambda \frac{d(Su,S^n(Su))d(Su,T^nu) + d(u,T^nu)d(u,S^n(Su))}{d(Su,T^nu) + d(u,S^n(Su))} + \mu d(Su,u) \right] \\ &= \varphi \left[\lambda \frac{d(Su,S(S^nu))d(Su,T^nu) + d(u,T^nu)d(u,S(S^nu))}{d(Su,T^nu) + d(u,S(S^nu))} + \mu d(Su,u) \right] \\ &= \varphi \left[\lambda \frac{d(Su,Su)d(Su,u) + d(u,u)d(u,Su)}{d(Su,u) + d(u,u)d(u,Su)} + \mu d(Su,u) \right] \end{split}$$

$$= \varphi \left[\mu d(Su, u) \right].$$

From Definition 2.10, we have $d(Su, u) \prec \mu d(Su, u)$. A contradiction, because $\mu < 1$. Hence, Su = u. Next, we claim that Tu = u. Assume that $Tu \neq u$, we have

$$\begin{split} d(u,Tu) &= d(S^nu,T(T^nu)) \\ &= d(S^nu,T^n(Tu)) \\ & \leq \varphi\left[\lambda \frac{d(u,S^nu)d(u,T^n(Tu)) + d(Tu,T^n(Tu))d(Tu,S^nu)}{d(u,T^n(Tu)) + d(Tu,S^nu)} + \mu d(u,Tu)\right] \\ &= \varphi\left[\lambda \frac{d(u,S^nu)d(u,T(T^nu)) + d(Tu,T(T^nu))d(Tu,S^nu)}{d(u,T(T^nu)) + d(Tu,S^nu)} + \mu d(u,Tu)\right] \\ &= \varphi\left[\lambda \frac{d(u,u)d(u,Tu) + d(Tu,Tu)d(Tu,u)}{d(u,Tu) + d(Tu,Tu)d(Tu,u)} + \mu d(u,Tu)\right] \\ &= \varphi\left[\mu d(u,Tu)\right]. \end{split}$$

From Definition 2.10, we have $d(u,Tu) \prec \mu d(u,Tu)$. A contradiction, because $\mu < 1$. Hence, Tu = u. Hence u is a common fixed point of S and T.

Finally, we show that u is a unique fixed point of S and T. Let v be a common fixed point of S and T, thus $S^n v = v = T^n v$. We must show that u = v. Assume that $u \neq v$, we have

$$\begin{split} d(u,v) &= d(S^nu,T^nv) \\ & \preccurlyeq & \varphi \left[\lambda \frac{d(u,S^nu)d(u,T^nv) + d(v,T^nv)d(v,S^nu)}{d(u,T^nv) + d(v,S^nu)} + \mu d(u,v) \right] \\ &= & \varphi \left[\lambda \frac{d(u,u)d(u,v) + d(v,v)d(v,u)}{d(u,v) + d(v,u)} + \mu d(u,v) \right] \\ &= & \varphi \left[\mu d(u,v) \right]. \end{split}$$

From Definition 2.10, we have $d(u,v) \prec \mu d(u,v)$. A contradiction, because $\mu < 1$. Hence, u = v. Therefore, u is a unique common fixed point of S and T.

Example 3.4. Let $X = \mathbb{C}$. Define a function $d: X \times X \to \mathbb{C}$ such that

$$d(z_1, z_2) = |x_1 - x_2|^2 + i|y_1 - y_2|^2.$$

where $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2$.

From Example 18 in [9], it implied that (X, d) is a complete complex valued b-metric space with s = 2. Now, we define two self-mappings $S, T : X \to X$ as follows:

$$Sz = \begin{cases} 0 & \text{if } a, b \in \mathbb{Q}, \\ 2 & \text{if } a \in \mathbb{Q}^C, b \in \mathbb{Q} \\ 2i & \text{if } a, b \in \mathbb{Q}^C \\ 2 + 2i & \text{if } a \in \mathbb{Q}, b \in \mathbb{Q}^C \end{cases} \text{ and } Tz = \begin{cases} 0 & \text{if } a, b \in \mathbb{Q}, \\ 1 & \text{if } a \in \mathbb{Q}^C, b \in \mathbb{Q} \\ i & \text{if } a, b \in \mathbb{Q}^C \\ 1 + i & \text{if } a \in \mathbb{Q}, b \in \mathbb{Q}^C \end{cases}$$

where $z = a + bi \in X$. We see that $S^n z = 0 = T^n z$ for n > 1, so

$$d(S^{n}x, T^{n}y) = 0 \leq \lambda \frac{d^{2}(x, y)}{1 + d(x, y)} + \mu d(y, T^{n}y) + \rho d(x, S^{n}x),$$

for all $x, y \in X$ and $\lambda, \mu, \rho \ge 0$ with $2(\lambda + \rho) + \mu < 1$. So all conditions of Theorem 3.3 are satisfied to get a unique common fixed point 0 of S and T.

4. Acknowledgements

The authors would like to thank Department of Mathematics, faculty of Science and Technology. Moreover, we would like to thank Uttaradit Rajabhat University for financial support.

References

- 1. S. Ali, A Common Fixed Point Result in Complex Valued b-Metric Spaces under Contractive Condition, Global Journal of Pure and Applied Mathematics. 13(9)(2017), 4869-4876.
- 2. A. Azam, F. Brain and M. Khan: Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim. 32(3)(2011), 243–253.
- I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Functional Analysis, 30(1989), 26-37.
- S. Bhatt, S. Chaukiyal and R. C. Dimri: A common fixed point theorem for weakly compatible maps in complex valued metric space, Int. J. Math. Sci. Appl. 1(3)(2011), 1385–1389.
- O. Ege, I. Karaca, Banach fixed point theorem for digital images, J. Nonlinear Sci. Appl., 8(2015), 237–245.
- G. Emmanuele, Fixed point theorems in complete metric spaces, Nonlinear Analysis: Theory, Methods and Aplications, 5(3)(1981), 287-292.
- M. Frechet, Sur quelques points du calcul functional. Rendicontide Circolo Mathematico di-Palermo. 22(1)(1906), 1-72.
- 8. S. K. Mohanta and R. Maitra, Common fixed points for φ -pairs in complex valued metric spaces, Int. J. Math. Comput. Res., 1(2013), 251-256.
- A. A. Mukheimer, Some common fixed point theorems in complex valued b-metric spaces, The Scientific World Journal, vol. 2014, Article ID 587825,6 pages, 2014.
- 10. K. Rao, P. Swamy and J. Prasad: A common fixed point theorem complex valued b-metric spaces, Bulletin of Mathmatics and Statistics Research, 1(1), 2013.
- T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Analysis: Theory, Methods and Applications, 71(11)(2009), 5313-5317.
- 12. M. Tripathi and A. K. Dubey, Common fixed point Theorems in complex valued b-metric spaces, Int. J. Advances in Science Engineering and Technology, 6(2)(2018), 15-17.
- 13. T. Zamfirescu, Fix point theorems in metric spaces, Archiv der Mathematik, 2(1)(1972), 292-298
- M. B. Zada, M. Sarwar and S. K. Panda, Common Fixed Point Results in Complex Valued Metric Spaces with (E.A) and (CLR) Properties, Advances in Analysis, 2(4)(2017), 247-256.