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1. INTRODUCTION

For a given set of continuous functions f,g1,92,...,9m,h1,he, ..., hy : C =

P lei,d;] = R, a minimization problem of the form

nip ()
subject to ¢g;(z) =0 (i=1,2,...,m) (1.1)
hi(z) <0 (i=1,2,...,n).

is well known. For the Problem (1.1), f is called the objective function and the
equalities (described by g¢;) and the inequalities (described by h;) are called the
constraints. We call the set A ={z € C: g;(x) =0 (i = 1,2,...,m) and h;(z) <
0 (i =1,2,...,n)} the feasible set of Problem (1.1). If A is not empty, it is com-
pact since it is a zero set of the continuous function F' defined below. Consequently,
Problem (1.1) always has a solution if A is not empty. The subject is well under-
stood for convex optimization with Lagrange multipliers and Karush-Kuhn-Tucker
conditions are its familiar main tools. It is the purpose of this article to introduce
an alternative method in minimizing a function without using the tools mentioned
above. The method can be considered as a complement to the “penalty method”.
It transforms the constrained Problem (1.1) of f into an unconstrained one of a
deformation f; of f. “It also serves as a toolkit using for approximating a result by
applying any existing software. We choose to work on some well-known software to
find a decreasing sequence {fi(z,)}, namely, particle swarm optimization (PSO),
particle-search algorithm, and convex optimization. By testing the method over
many kinds of objective functions f, we believe the method is quite practical. It
is found that a problem may work well under one software but not under some
others. Moreover, the method can be performed to obtain a Brouwer fixed point
and applied to a vector optimization.

In computational science, particle swarm optimization (PSO) [12, 13, 14] is the
computational method that optimization problem by iteratively trying to improve a
candidate solution with regard to a given measure of quality. A basic variant of the
PSO algorithm works by having a population (swarm) of candidate solutions (par-
ticles). These particles are moved around in the search-space according to a simple
formula. The movements of the particles are guided by their own best known posi-
tion in the search-space. The entire swarm’s best known position. When improved
positions are being discovered these will then come to guide the movements of the
swarm. The process is repeated and by doing so it is hoped, but not guaranteed,
that a satisfactory solution will eventually be discovered.

Pattern search algorithm is a family of numerical optimization methods. It finds
a sequence of points that approach an optimal point. The value of the objective
function either decreases or remains the same from each point in the sequence to
the next [1, 2, 8].

Convex optimization is a subfield of mathematical optimization that studies the
problem of minimizing convex functions over convex sets. Convex algorithm is
a mathematical method of solving convex optimization [4, 5, 7]. The key to the
algorithmic success in minimizing convex functions is that these functions exhibit a
local to global phenomenon. This local to global phenomenon is that local minimal
of convex functions are in fact global minimal.
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2. METHODOLOGY
Put G; = |g;| (i = 1,2,....,m), H; = |h;| +h; (i = 1,2,...,n), and F =
m n

G; + >_ H,;. Clearly, F is continuous and F'(z) = 0 if and only if = satisfies the
i=1 i=1
constraints of Problem (1.1) (i.e., it lies in the feasible set .A). For large numbers

K and M, set for t € (0,1), fi = (1 —t)(f — K) + tMF.

Since we are going to work on the deformed function f; for ¢ sufficiently close to
1, we therefore take any existing software available. We select 3 softwares, namely
Particle Swarm Optimization, Pattern-Search, and Convex Algorithm. We let K to
be large to be certained that the graph of f — K totally lies under the graph of F.
As for large M, we try to make it easy for a software to find a decreasing sequence
{ft(zn)}. The parameter t getting close to 1 is to making the iteration point z,
being closer to or lying in the feasible set A.

Proposition 2.1. For any t € (0,1) with f; > 0 outside A, = is a minimizer of
Problem (1.1) if and only if x is a minimizer of fi.

Proof. This is straightforward since f; = (1 —¢)(f — K) on A. O

By the term “minimizer” it is meant to be a minimal element, i.e., a local minimizer.

Algorithm 1 Example code (PAO our Algorithm)

Input Set up problem 1.1
Parameter K, M, t

Output z
Gi=lgl (i=1,2,...,m)
H; =|hil+h; (i=1,2,...,n)
F—ZGi+ZHZ
i=1 i=1

—~

T = arg miél fe(2)

fAS

3. APPLICATIONS

3.1. Brouwer Fixed Points. The Brouwer fixed theorem says that any continuous
mapping T = (f1,..., fa) : H?:ﬂaia bi] — Hle[ai, b;] always has a fixed point. See
[3, 6, 10, 9] for some new proofs. To find a fixed point of T, set in Problem (1.1),
flx1,29,...,2q) = 1and g;(x1,22,...,2q) = fi(z1,22,...,2q)—x; (1=1,2,...,d).
(See Example 4.6 and 4.7.)

3.2. Vector Optimization. Given continuous mappings fi1, f2,---, fk, 91,92, - - -,
Gms Iy hos oo by C=TI0_ [ei, di] — R. We need to solve

melg(fl (x), f2(x),..., fr(x)) (with respect to an order)
subject to g;(z) =0 (i=1,2,...,m) (3.1)
hi(z) <0 (i=1,2,...,n).

We consider the problem of the forms:
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k
(1) mi? > fi(z). Set f = Zle fi for the objective function in Problem (1.1).
zEC =1

(See Example 4.8.)

(2) Finding 2* = (27, 23,...,7;) € C such that f;(z*) < ¢;, where ¢; < t; for
some thresholds t; (i = 1,2,...,k). To comply with Problem (1.1), we
set f = 1 as an objective function and additionally define h; = f; — ¢;
(i=n+1,n+2,...,n+k). (See Example 4.9.)

In practice, if we only want to find a point z* with f(z*) < ¢ for some assigned
number ¢, Problem (1.1) can read as

mip 1

subject to g;(z) =0 (1 =1,2,...,m) (3.2)
hi(x) <0 (i=1,2,...,n)
f@)—e<0

3.3. Quantiles. For a distribution function f : R — [0, 1], a quantile at o € [0, 1]
is defined as f~'(a) = inf{z € R : f(z) > a}. There does not exist a method
to extend the concept to multivalued case. We are given a continuous function
f oI [eisdi] — R and ¢ € R. We need to find z* giving f(z*) = ¢ . We set
Problem (1.1) as:

min 0
xzeC

subject to f(z) = c.
See Example 4.10.

3.4. Non-emptiness of the feasible set. To see if the feasible set is non-empty,
we set fi = (1 — k)(—K) + tMF and find a minimizer z; and see if z; € A,
i.e., F(x¢) = 0. Thus, any kind of problems on non-emptiness of sets defined by
sets of equations and inequalities can be verified by our method. Consequently,
assumptions on non-emptiness in many theorems can be worked out. For examples,
non-emptiness of fixed points of mappings assumed in various results.

4. NUMERICAL EXAMPLES

We choose C = [-10,10]?, K = 100, M = 10000 and ¢ = 0.95. We experiment on
nine Examples, and record results in three Tables. The Tables display approximate
minimizers and constraint validation.

Example 4.1. [11]
min x% + x170 + x% — 5x9
zeC
subject to x1+x2 =1
T Z 0
X2 Z 0
Example 4.2. [11]
min —(x1 —3)8 — (w3 — 4)°
zeC
subject to 2% + 23 < 25
xr1 + T2 Z 7
X1 Z 0

.Z’QZO
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Example 4.3. [11][Geometric Programming)
: 1
I,I{lelg X1x2I3 + 31‘1.’);‘2
subject to  0.5z123 + 0.25x125 < 1
X1 Z 0
Zo Z O
I3 2 0
Example 4.4. [11]
min L4 T1T2 + xg
zeC 212223
subject to  0.5z1x3 + 0.25x122 < 1
X1 Z 0
€Io Z 0
I3 2 0
Example 4.5.
IIliIl 4171 + ].OSCQ —+ 151’3
zeC
subject to  x7 4+ 2x9 +3x3 =3
3x1+ a2+ 223 =7.5
I Z 0
T2 Z 0
T3 2 0
Example 4.6.
min 1
zeC

subject to  0.5(cos(x1 + x9 — 245))rs — 21 =0
0.1(|z129 + 3 — 25| + 23) — 22 =0
($1 + X314 — (56’2 + 1‘5)2)/30 —x3=0
(1 — 23+ a3 —22)/12 —24 =0
(T1 4+ 22 — (3 + x5 + 24)?) /40 — 25 = 0

Example 4.7.

o
subject to  0.001((z1 +3)% + (z2 — 2)* + 23 + 23 + 25) — 21 =0
0.01(x1 + (22 +5)% + a3+ a4 + (15 +2)) —22 =0
0.001(xF + (24 —3)% + (25 +2)?) —23 =0
0.001((x3 —3)* + a2 +a2f) —1—24=0
001(%% + 2o+ x3 — (I5 - 1)2) — Ty = 0

Example 4.8. [11]
melg (22 — 5wy + Tx2) + (=22 — 23) + (1 — 1)? + (22 — 5)?
subject to  3x1 +4x3 =6
xr1+ o = 2
2%1 + 31’2 § 6
X1 Z 0

.%'220
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Example 4.9. [11]
min 1
zeC
subject to  2x7 + 22 <1
x% <1
Vai+ a3 — a3 <2
—23 4+ 0.5(—my — 23 + |23 — 22]) <0, z1,72 €R.
Example 4.10. Find f(x1,...,25) = sin((2? + 23 — 2327) + cos(zf — x1 +2323)) +

129+ 22xa+ (1 —29)2 + (1 —23)%2 4+ (1 —24)? restricted to a2 4222 — x5 — 22224 = 0,
3 1 2 3

1 —23)% — 2222 + cos(z422) < 2. Find z € A for which f(z) = 19.
2Ty 5

TABLE 1. Particle Swarm Optimization

Example PSO
initial point | value T max |g; ()] max h;(x)
zeC zeC
4.1 - —4 (0,1) 0 0
4.2 - -2 (4,3) - 0
4.3 - 0.6325 (10,0.0316, 10) - —0.0316
4.4 - 2.4397 (0.1141,9.9975,0.7715) - —0.1141
4.5 - 12.6 (2.4,0.3,0) 0 0
—1.977x10711 1.02%x 10712, —1.067 x _

4.6 ) ! (10—12, —2.719 x 10711,6.04 x 10712) 2.546 x 10711 B
4.7 - 1 (0.018,0.291,0.019, —0.921, —0.007) 1.766 x 10— 12 -
4.8 - 16 (2,0) 0 0
4.9 - 1 (0.7312,1.0271) - —0.4654
4.10 - 0 (—4.03,—1.27,1.93,1.77,6.28) 0 9.82
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TABLE 2. Pattern-Search Optimization
E 1 Pattern-Search
XAMPe M itial point value T max |g;(z)] max h;(x)
zeC zeC
11 1,1 —1 (0,1) 0 0
4.2 (1,1) —94.3669 (4.6094, 1.9374) - 0.4532
4.3 (1,1,1) 0.6325 (0.6325,0.5, 10) - —0.5
4.4 (1,1,1) 2.4397 (1.1385,1,0.7715,1) - —0.2762
4.5 (1,1,1) 12.6429 (2.3571,0,0.2143) 1.5259 x 10~° 0
4.6 (0,0,0,0,0) 1 (0,0,0,0,0) 0 -
4.7 (0,0,0,0,0) 1 (0.019,0.029, 1.93, —0.92, —0.007) | 3.978 x 10~ —
4.8 (1,1) 18.7777 (0.6667, 1) 152595 —0.6667
4.9 (1,1) 1 (0,1) - -1
4.10 (0,0,0,0,0) 0 (—2,-2.01,—0.88,2.13, 8.88) 0 20.16
TABLE 3. Convex Algorithm
E I Convex Algorithm
XAMPe M itial point value z max |g;(xz)] | maxh;(x)
zeC zeC
11 (1,1) 3.9694 (0.0076, 0.9924) 73x10-9 | —0.0076
4.2 (1,1) —1.2057 (3.9302, 3.0698) - 12‘?35
4.3 (1,1,1) 0.6325 (0.5623,0.5623, 10) — —0.5623
4.4 (1,1,1) 2.4397 (1.0670, 1.0670, 0.7715) - —0.3038
31
4.5 (1,1,1) 12.6392 (2.3608,0.0253,0.1962) 0 ?06_77 x —0.0253
, (—1.520x10719,1.283 x 10~ 11,1.265 x 2.661 x B
4.6 (0,0,0,0,0) ! 10710,2.282 x 10710, —3.341 x 10~11) 10-10
41

4.7 (0,0,0,0,0) 1 (0.018,0.291,0.019, —0.921, —0.007) SIOE)QX -
4.8 (1,1) 16 (2,0) 0 0
4.9 (1,1) 1 (—0.0888, 0.8020) - —0.8013
4.10 (0,0,0,0,0) 0 (—0.73,—-0.53,—0.25, —0.95,1.21) 0 4.47

5. DISCUSSION

In this paper, we transform a constrained optimization to an unconstrained one.

Under our approach, the given objective function f (subjected to some constraints)
is replaced by a deformed function f; (without constraints) for some t. We chose
to use some software packages to approximate a minimizer of f;. We observe that
all outcomes approximately satisfy corresponding constraints. Of course, we may
obtain different minimizers from different software. It is challenging to construct a
new algorithm for finding a global minimizer even for some special cases.

6. APPENDIX

In this appendix, we give the MATLAB GUI for finding a minimizer by using
POA method. The MATLAB GUI of POA method is given in Figures 1, 2 and 3.

ACKNOWLEDGEMENTS

The authors acknowledge the financial support provided by the Center of Excel-
lence in Theoretical and Computational Science (TaCS-CoE), KMUTT. The second
author was supported by the “Petchra Pra Jom Klao Ph.D. Research Scholarship
from King Mongkut’s University of Technology Thonburi” (No. Grand 10/2560).



20

10.

11.

12.

13.

14.

J. NONLINEAR ANAL. OPTIM. VOL. 12(1) (2021)

REFERENCES

. Mark A Abramson, Pattern search algorithms for mized variable general constrained opti-

mization problems, Tech. report, 2002.

. Charles Audet and J. E. Dennis, Jr., Analysis of generalized pattern searches, SIAM J. Optim.

13 (2002), no. 3, 889-903 (2003). MR 1972220

. L. E. J. Brouwer, Uber Jordansche Mannigfaltigkeiten, Math. Ann. 71 (1912), no. 4, 598.

MR 1511679

. Richard H. Byrd, Jean Charles Gilbert, and Jorge Nocedal, A trust region method based on

interior point techniques for nonlinear programming, Math. Program. 89 (2000), no. 1, Ser.
A, 149-185. MR 1795061

. Richard H. Byrd, Mary E. Hribar, and Jorge Nocedal, An interior point algorithm for large-

scale nonlinear programming, SIAM J. Optim. 9 (1999), no. 4, 877-900, Dedicated to John E.
Dennis, Jr., on his 60th birthday. MR 1724768

. N. Chuensupantharat, P. Kumam, and S. Dhompongsa, A graphical proof of the Brouwer fized

point theorem, Thai J. Math. 15 (2017), no. 3, 607-610. MR 3745100

. Thomas F. Coleman and Yuying Li, An interior trust region approach for nonlinear mini-

mization subject to bounds, SIAM J. Optim. 6 (1996), no. 2, 418-445. MR 1387333

. A. R. Conn, Nick Gould, and Ph. L. Toint, A globally convergent lagrangian barrier algo-

rithm for optimization with general inequality constraints and simple bounds, Mathematics of
Computation 66 (1997), no. 217, 261-289.

. S. Dhompongsa and J. Nantadilok, A simple proof of the Brouwer fized point theorem, Thai

J. Math. 13 (2015), no. 3, 519-525. MR 3446192

Sompong Dhompongsa and Poom Kumam, An elementary proof of the Brouwer fixed point
theorem, Thai J. Math. 17 (2019), no. 2, 539-542. MR 4009295

Joel Franklin, Fized-point theorems, Methods of Mathematical Economics, Springer New York,
1980, pp. 224-292.

J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of ICNN’95 - Inter-
national Conference on Neural Networks, vol. 4, 1995, pp. 1942-1948.

Efrén Mezura-Montes and Carlos A. Coello Coello, Constraint-handling in nature-inspired
numerical optimization: Past, present and future, Swarm and Evolutionary Computation 1
(2011), no. 4, 173-194.

Magnus Erik Hvass Pedersen, Good parameters for particle swarm optimization, Hvass Lab.,
Copenhagen, Denmark, Tech. Rep. HL1001 (2010), 1551-3203.



A PRACTICAL APPROACH TO OPTIMIZATION

g Optimization
OPSO
Opatternsearch min f(x,y,z,uv) == @(x,y,z,uv)0 Compute
Ofmincon fab]’
subject to g(x,y,z,u,v) = 0 subject to h(x,y,z,u,v) <= 0 approximate solution
@(x.y,z,uv)0 @(xy,2,u,v)0 X
@(xyz,uv)0 @(xy,z,u,v)0 =y
@(xy.z,uv)0 @(xy.z,uv)0 z=z
@(xy.z,uv)0 @(xy.z,u,v)0 L
@(xy,z,uv)0 @(xy,z,uv)0 vEv

a= -10 b= 10 fxy,zuv) = f(xy.z,uyv)

FIGURE 1. MATLAB GUI for PAO method.

e Optimization
@PSO

Opatternsearch min f(xy,z,uv) = @(x,y,z,uV)1/(x"y*2)+x*y Compute
Ofmincon fab]’

subject to g(x,y,z,u,v) = 0 subject to h(x,y,z,u,v) <= 0 approximate solution
@(x,y,z,u,v)0 @(x,y,z,u,v)0.5*x*z+0.25*x*y-1 X=X
@xyz,uv)0 @(xyZuv)x y=y
@(xy.2,uv)0 @xy.z,uv)-y z=z
@(xy,z,uv)0 @(xy.z,u,v)-z usu
@(x.yz,uv)0 @(x.yz,uv)0 vEv

a= -10 b= 10 fx,y,zuv) = f(xy.z,uv)
FIGURE 2. In put data.
e
Choose Optimization
@PSO

Opatternsearch mir}3 fxy,zuyv) = @(xy,z,uV)1/(x*y*z)+x*y Compute
Cfmincon [ab]

subject to g(x,y,z,u,v) = 0 subject to h(x,y,z,u,v) <=0 approximate solution
@(x.y,z,u,v)0 @(x,Y,2,u,v)0.5*x*z+0.25*x*y-1 x = 0.03999
@(xy,z,uv)0 @y,z,uv)x y= 7.8657
@(xy.z,uv)0 @(xy.zuv)-y 2=
@(x,y,z,u,v)0 @(x,y,z,uv)-z u=9.3158
@(xy,z,u,v)0 @(x,y,z,u,v)0 v=1619

a= -10 b= 10 f(x,y,z,uv) = 0.63246

FIGURE 3. Result.
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