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ABSTRACT. In this paper, we define a balanced mapping by a maximizer of a certain
function generated by a finite number of mappings without regard to their order and find its
fundamental properties in a complete CAT(1) space. Furthermore, we approximate a fixed
point of a balanced mapping which is generated by a finite number of quasinonexpansive
and A-demiclosed mappings by using Mann’s iterative scheme.
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1. INTRODUCTION

In the study of nonlinear analysis, we approximate a fixed point of many kinds of
mappings. We focus on a balanced mapping which is generated by a finite number
of mappings without regard to their order. Hasegawa and Kimura [2] defined it by
proving the following theorem in the setting of complete CAT(0) spaces. We will
extend its definition in the setting of complete CAT(1) spaces.

Theorem 1.1. (Hasegawa-Kimura [2]) Let X be a complete CAT(0) space. Let T*
be a nonexpansive mapping from X to X for every k =1,2,...,N. Let o* €[0,1]
for every k =1,2,..., N such that Z,ivzl af =1. Let x be a point of X. Then the
set
N
argmin Z oFd(T*z, y)?
yeX 1

consists of one point.
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We know that there are various kinds of iterative schemes which is effective to find
fixed points of nonexpansive mappings. We pay attention to Mann’s [3] iterative
scheme. A number of authors have proved approximation theorems by using that
scheme. Reich [7] proved it in a Banach space. Dhompongsa and Panyanak [1]
proved it in a CAT(0) space. Kimura, Saejung, and Yotkaew [4] proved it by using
a quainonexpansive and A-demiclosed mapping in a CAT(1) space. We particularly
note that Hasegawa and Kimura [2] proved the convergence of Mann type iteration
by using a balanced mapping.

Theorem 1.2. (HasegawaKimura [2]) Let X be a complete CAT(0) space. Let T*
be a nonexpansive mapping from X to X for every k =1,2,..., N such that F =
N, F(T*) # 0. For a given real number a € 10,21, let {ak} {8} C [a,1—d] for
every k=1,2,...,N and n € N such that Zgzl af = 1. Define U, be a mapping
from X to X by
N
U,x = argmin Z oFd(T*z, y)?

yeX 1
for every x € X and n € N. For a given point x1 € X, let {z,} be a sequence in X
generated by

Tn+l = 6nxn @ (1 - ﬁn)Unxn
for every n € N. Then {x,} A-converges to a point in F.

In this paper, we define a balanced mapping in a complete CAT(1) space and
prove a convergence theorem of Mann type iteration by using it. Namely, our results
are a modified version of the results by Hasegawa and Kimura [2] in a complete
CAT(1) space.

2. PRELIMINARIES

Let X be a metric space and {z,} a sequence in X. An element z € X is said
to be an asymptotic center of {x,} C X if
limsup d(xy,, 2) = inf limsup d(z,, z).
n—00 z€X pooco
Moreover, we say {x,} A-converges to a A-limit z if z is the unique asymptotic
center of any subsequences of {x, }. For z,y € X, a mapping ¢ : [0,]] — X is called
a geodesic if ¢ satisfies

c(0) = z,¢(l) =y, and d(c(u),c(v)) = |u — |

for every w,v € [0,{]. An image of [z,y] of ¢ is called a geodesic segment joining z
and y. For r > 0, X is said to be an r-geodesic space if for every z,y € X with
d(z,y) < r, there exists a geodesic ¢ joining x and y. Moreover, if such a geodesic
segment is unique for each pair of points, then X is said to be a uniquely r-geodesic
space.

Let X be a uniquely m-geodesic space. For a triangle A(x,y,z) C X such
that d(x,y) + d(y, 2) + d(z,2) < 27, let a comparison triangle A(Z, 7, 2) in two-
dimensional unit sphere S? be such that each corresponding edge has the same length
as that of the original triangle. X is called a CAT(1) space if every p,q € Az, y, z)
and their corresponding points p, g € A(Z, g, Z) satisfy that

d(p7 q) < dS2 (57 Q)7

where dg2 is the spherical metric on S2.
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Let X be a CAT(1) space. For every x,y € X with d(x,y) < 7 and « € [0, 1], if
z € [x,y] satisfies that d(y, z) = ad(z,y) and d(z, z) = (1—a)d(z, y), then we denote
zby z=ax® (1 — a)y. A subset C C X is called m-convex if ax ® (1 — a)y € C
for every x,y € C with d(z,y) < 7 and « € [0,1].

Let X be a CAT(1) space and let T' be a mapping from X to X such that the set
F(T)={z € X : z =Tz} of fixed points of T is not empty. If d(Tz,p) < d(z,p)
for every € X and p € F(T), then we call T a quasinonexpansive mapping.

T is said to be a strongly quasinonexpansive mapping if 7" is a quasinonexpansive
mapping, and lim, o, d(z,, Tx,) = 0 whenever {z,,} C X satisfies sup,,cy d(xn,p) <
/2 and lim,_,o(cos d(zy, p)/ cosd(Tx,,p)) = 1 for every p € F(T).

Let X be a CAT(1) space and let T be a mapping from X to X such that
F(T) # 0. T is said to be a A-demiclosed mapping if z € F(T) whenever {z,}
A-converges to z and lim, o d(xn, T2,) = 0.

Let X be a complete CAT(1) space and let C C X be a nonempty closed 7-
convex subset such that d(z,C) = inf,cc d(x,y) < 7/2 for every & € X. Then for
every x € X, there exists a unique point zg € C satisfying

We define the metric projection Py from X onto C' by Poz = xp.
We introduce some lemmas used for our results.

Lemma 2.1. (Kimura and Saté [5]) Let X be a CAT(1) space. For everyx,y,z € X
with d(x,y) + d(y, z) + d(z,x) < 27 and a € [0, 1], the following inequality holds:

cosd(x,w)sind(y, z) > cosd(x,y)sin(ad(y, z)) + cosd(z, z) sin((1 — a)d(y, z)),
where w = ay & (1 — a)z.
Lemma 2.2. (Kimura and Satd [0]) Let X be a CAT(1) space. For everyz,y,z € X
with d(z,y) + d(y, z) + d(z,z) < 27 and « € [0, 1], the following inequality holds:
cosd(z,w) > acosd(z,y) + (1 — a) cosd(z, z),
where w = ay & (1 — a)z.

Lemma 2.3. (Kimura and Saté [6]) Let X be a CAT(1) space and yo,y1 and y
elements of X such that d(yo,y) + d(y1,y) + d(yo,y1) < 2w. Then we have

1 1 d
cosd (2y0 @ 2y1,y) cos % > min{cos d(yo,y),cosd(y1,y)}-

3. BALANCED MAPPING IN CAT(1) SPACES

In this section, we define a balanced mapping and find its fundamental properties
in a CAT(1) space. We begin with the following theorem which guarantees that the
balanced mapping can be defined as a single-valued mapping.

Theorem 3.1. Let X be a complete CAT(1) space such that d(x,y) < w/2 for every
x,y € X. Let 2¥ be a point of X for every k =1,2,...,N. Let o € [0,1] for every
k=1,2,...,N such that Z;ICV:1 af = 1. Then the set

N

argmax E oF cosd(z*, y)
veX ko

consists of one point.
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Proof. Let D = sup,¢x Zszl a¥ cosd(x*,y) and {y,} a sequence in X such that
lim,, s 0o Zivzl a¥ cosd(z*,y,) = D. For m,n € N, from Lemma 2.3, we have

N
]' d ny Jm .
E « cosd( ynQB ym> COS%Z E o min{cos d(y,, z"), cos d(ym, z*)}.
k=1

Thus we get

A(Yny Ym) < Z,ivzl o® min{cos d(y,, z"*), cos d(ym, ")}

2 - D '
Hence we obtain {y, } is a Cauchy sequence. By the completeness of X, there exists
u = lim,,_,s0 yn. From the continuity of the metric, we get Zi\;l ok cosd(x®,u) =
SUp, ¢ x 25:1 a¥ cosd(x*,y). Hence argmax, ¢ y Zszl a¥ cosd(x*,y) is nonempty.
Let u,v € argmax,¢x Egzl cosd(x*,y) and suppose u # v. By Lemma 2.1, we
have

(¢0)]

N
1 1
;a cos d(z*, u) sind(u,v) > Z: cosd( Qu@ 2v> sin d(u, v)

> sin d(u,v

) Z o (cos d(z* 1) 4 cosd(zF,v)).
k=1

Dividing by sin(d(u,v)/2), we get

N
2cos Z cos d(z*,u) > o (cosd(z",u) + cosd(z*,v)).

M=

>
Il

1

Similarly, we get

d(u,

2 cos o (cos d(z*, u) + cos d(z*,v)).

Mz

5 Za cosd(z",v) >

b
Il
—

Therefore, we obtain
( N
Za (cosd(z",u) + cosd(z*,v)) > 2 Za (cosd(z®,u) + cosd(z*,v)).
k=1

2 cos

Then we have

1> cos d(u, v)

=1,

which is a contradiction. Hence we get u = v. 0

By Theorem 3.1, we know the set argmax, ¢ y Zszl o cosd(z*,y) is a singleton.

In what follows, a balanced mapping U from X to X for a sequence o!,a?,...,a" €
[0,1] and mappings T, 72,...,T" is defined by
N
Uz = argmaXZa cosd(T*z,y)
vexX k=

for every x € X. We prove some basic properties of balanced mappings in this
section.
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Theorem 3.2. Let X be a complete CAT(1) space such that d(z,y) < 7/2 for

every x,y € X. Let T* be a quasinonexpansive mapping from X to X for every

k=1,2,...,N such that ﬂgle(T”“) #0. Let o €]0,1[ for every k =1,2,...,N

such that Zszl a* = 1. Let U be a balanced mapping for {a*} and {T*}. Then
N

F(U) = ﬂk:l F(Tk)

Proof. Let z € ﬂfj:l F(T*). Then we have

N

Uz = argmax Z oF cosd(T*z,y)
vexX ko1
N
= argmax Z o cosd(z,y)
veX k=1

= argmax cos d(z,y)
yeX

=Z.

Hence we get z € F(U). Let z € F(U),w € ﬂivzl F(T*) and t € ]0,1[. We may
assume that z # w. From Lemma 2.1, we have

N
Z o cosd(T*z, z) sind(z, w)

k=1
N
> Z o cosd(T*z,tz @ (1 — t)w)sind(z, w)
k=1
N N
> Z aF cosd(T*z, 2) sintd(z, w) + Z aF cos d(T*z, w) sin(1 — t)d(z, w)
k=1 k=1

M=

o cosd(T*z, 2) sintd(z, w) + cos d(z, w)sin(1 — t)d(z, w).

>
Il

1
Hence we get
N
2 Z o cosd(T*z, 2)(sind(z, w) — sintd(z,w)) > cosd(z,w)sin(1 — t)d(z, w),
k=1
and it implies that

N
(1= t)d(z,w) (14 t)d(zw)
2 k Tk ( ) R
; a”cosd(T"z, z) sin 5 cos 5
> 2cosd(z,w)sin a- t);l(z,w) cos (1— t)2d(z,w).

Dividing by 2sin((1 — ¢)d(z,w)/2) cosd(z,w) and tending t — 1, we get
N
Z o cosd(TFz,2) > 1.
k=1

Therefore we have cosd(T*z,z) = 1 for every k = 1,2,..., N. Hence we get z €
N
Mi—1 F(T"). O

Lemma 3.1. Let X be a complete CAT(1) space such that d(z,y) < w/2 for
every x,y € X. Let T* be a quasinonexpansive mapping from X to X for every
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k=1,2,..., N such that ﬂfcvle(Tk) #0. Let o €[0,1] for every k =1,2,...,N

such that ch\;l ¥ =1. Let U be a balanced mapping for {a*} and {T*}. Then we
have

N
Z o cos d(T*z,Uz) cosd(Ux, z) > cosd(z, 2)
k=1

for every x € X and z € ﬂiv:l F(T").

Proof. Let z € ﬂivzl F(T*) and t € ]0,1[. Then, from Lemma 3.2, we have z €
F(U). We may assume that Uz # z since if Uz = z, the inequality is obvious true.
By Lemma 2.1, we get

N
Z o cosd(T*z,Uz)sind(Uz, z)
k=1
N
> Z ¥ cosd(TFz,tUz @ (1 —t)z)sind(Uz, )
k=1

N
o cosd(T*x,Uz)sintd(Uz, z) + Z o¥ cos d(T"z, z) sin(1 — t)d(Uz, 2)

] =

k=1 k=1
N N

> Z o cosd(TFz,Uz)sintd(Uz, z) + Z aF cosd(z, z) sin(1 — t)d(Uz, 2)
k=1 k=1

aF cosd(T*x,Uz)sintd(Uz, z) + cosd(x, z) sin(1 — t)d(Uz, 2).

I
WE

=
Il
-

Hence we obtain
N
Z o cosd(TFz,Uz)(sind(Ux, 2) — sintd(Uz, z)) > cosd(z, z) sin(1 — t)d(Uz, 2),
k=1
and it implies that

N
2 Z a” cosd(T*x, Uz) sin (1 = H)d(Uz, ) cos (1 +1)d(Us, 2)
k=1

2 2

1-— 1 _
> 2cosd(x,z)sin ( t)C;(Ux’Z) oS ( t)C;(UUU,Z)'

Dividing by 2sin((1 — t)d(Ux, z)/2) and tending ¢ — 1, we get

N
Z o cos d(T*x,Uz) cosd(Uz, z) > cosd(z, 2)
k=1

for z € X. O

Theorem 3.3. Let X be a complete CAT(1) space such that d(z,y) < 7/2 for
every x,y € X. Let T* be a quasinonexpansive mapping from X to X for every
k=1,2,..., N such that ﬂszlF(Tk) #0. Let o €[0,1] for every k =1,2,...,N
such that Zi\; af =1. Let U be a balanced mapping for {a*} and {T*}. Then U
is a quasinonerpansive mapping.
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Proof. From Lemma 3.2, let z € F(U) = (r_, F(T*). By Lemma 3.1, we have
Z o cosd(T*z,Uz) cosd(Ux, 2) > cosd(x, 2)
for z € X. Since cosd(T*z,Uz) < 1, we get

cosd(Uz, 2)

Mz

Fcosd(T x,Ux) cosd(Ux, z)

2 d(x, z).
Thus, we obtain
AUz, z) < d(z, z).
Hence U is a quasinonexpansive mapping. O

Theorem 3.4. Let X be a complete CAT(1) space such that d(x,y) < w/2 for
every x,y € X. Let T* be a quasinonexpansive and A-demiclosed mapping from X
to X for every k =1,2,..., N such that ﬂfj:l F(TF) # 0. Let o €]0,1] for every
k=1,2,...,N such that Zszl o = 1. Let U be a balanced mapping for {a*} and
{T*}. Then U is a A-demiclosed mapping.

Proof. From Lemma 3.2, let z € F(U) = ﬂ,ivzl F(T*). Let {r,} C X satisfying
d(Uzxy, x,) — 0 and {z,} A-converges to o € X. By Lemma 3.1, we have

Z oF cos d(T*z,,, Uzx,) cos d(Uz,,, z) > cosd(xy, 2).

Then we get

cosd(xy, 2)

ZO‘ cos d(T"z,,, Uz,,) > cos d(Uzn, 2)°

Since limy,_, o0 (cos d(xn, z)/ cosd(Uzyp, z)) = 1, we obtain

N
nlin;o Zak cosd(T*z,,Uzx,) = 1.
k=1
Hence we get lim,, oo d(T*x,,Uz,) = 0 for every k = 1,2,..., N. Then we have
lim,, oo d(T*z,,,7,) = 0 for every k = 1,2,..., N. Since T* is a A-demiclosed
mapping for every k =1,2,..., N, we obtain o € F. O

Theorem 3.5. Let X be a complete CAT(1) space such that d(x,y) < w/2 for every
x,y € X. Let T* be a strongly quasinonerpansive mapping from X to X for every
k=1,2,..., N such that ﬂivle(Tk) #0. Let o* €]0,1] for every k =1,2,...,N
such that Z,ivzl ¥ =1. Let U be a balanced mapping for {a*} and {T*}. Then U
s a strongly quasinonexpansive mapping.

Proof. From Lemma 3.2, let z € F(U) = miV:l F(T*). Let {z,} C X satisfy-
ing limsup,, , . d(xn,2) < 7/2 and lim,_,o(cosd(zy, z)/ cosd(Uzy, z)) = 1. By
Lemma 3.1, we have

N
Z o¥ cos d(T .y, Uxy) cos d(Uty, 2) > cosd(xy, 2).
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Then we get

o cosd(xy, 2)
E oF cos d(T x,,, Uxy) > ——— 22
— cosd(Uxy, 2)
Since lim,, o0 (cos d(xy, 2)/ cos d(Ux,, z)) = 1, we obtain

N
. k k —
nlgrgo kg_la cosd(T"xy,Uzy) = 1.

Hence we get lim,, oo d(T*x,,Ux,) = 0 for every k = 1,2,...,N. For any k =
1,2,..., N, we have

- cosd(xp, 2) — lim inf cosd(xy, 2)
n—oo cosd(Uxy,z)  nooo cosd(Uzp,2)
o cosd(xy, 2)
<1 f
= e cos(d(Uxy, TFx,) + d(TFx,, 2))
— liminf cosd(xy, 2)

n—oo cosd(Tkxy, z)
cos d(xy, 2)

< limsup ———
=nop cosd(Tkzx,, z)

< lim sup cos d{wn, 2)
T oo cos(d(TFRxy,Uxy) + d(Uxy, 2))

lim s cosd(xy, 2)

= limsup —————

ool CoS d(Uxy, z)
cosd(xy, z)

im ————"
n—oo cos d(Uwy, 2)

Thus we obtain lim,, o (cosd(x,, z)/cosd(T*z,,z)) = 1. Since T* is a strongly

quasinonexpansive mapping for every k = 1,2,..., N, we get lim,, oo d(T*z,,, z,,) =
0forevery k = 1,2,...,N. Since lim,, ;o d(T*2,,,Uz,) = 0 and lim,, o0 d(T*z,,, 2,) =
0 for every k =1,2,..., N, we obtain lim, . d(Uz,,x,) = 0. O

4. AN ITERATIVE SCHEME FOR BALANCED MAPPINGS

In this section, we prove a convergence theorem of a Mann iterative sequence by
using a balanced mapping in a complete CAT(1) space.

Lemma 4.1. Let X be a complete CAT(1) space such that d(z,y) < w/2 for every
xz,y € X. Let T* be a mapping from X to X for every k = 1,2,...,N. Let
a* €10,1] for every k = 1,2,..., N such that Zivzl o = 1. Let U be a balanced
mapping for {a*} and {T*}. Then we have

Zi\;l ok cosd(T*x, Uy)
cosd(Ux,Uy)

N
Z oF cosd(T*z,Uz) >
k=1

for every x,y € X.
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Proof. Let t € ]0,1[. We may assume Uz # Uy. By Lemma 2.1, we have

Z a¥ cosd(T*x,Uz) sind(Uz, Uy)

k=1
N
> Z cosd(T*z, tUz ® (1 — t)Uy) sind(Uz, Uy)
k=1
N
> Z o (cos d(T x, Uz) sintd(Uz, Uy) + cos d(T"z, Uy) sin(1 — t)d(Uz, Uy)).
k=1
Then we get

(1+t)d(Uz,Uy) sin (1—-t)d(Uz,Uy)
2

N
2) aFcosd(T x,U
’;a cosd(T"x,Uxzx) cos 5

Mz

Fcosd(T z,Uy)sin(1 — t)d(Uz, Uy).

Dividing by 2cos((1 +t)d(Uz,Uy)/2)sin((1 — t)d(Uz,Uy)/2), we get
(1-t)d(Ux,Uy)

N cos
Za cosd(T"z,Ux) Z cosd(TFz, Uy) T )d?Uaz Ty)
k=1 cos 9 i
Tending ¢t — 1, we obtain the desired result. U

Theorem 4.1. Let X be a complete CAT(1) space such that d(x,y) < 7/2 for
every x,y € X. Let T* be a quasinonexpansive and A-demiclosed mapping from X
to X for every k=1,2,..., N such that ﬂ,iV:l F(T*) # 0. For a given real number
a €10,1/2], let {ak} ,{6,} C [a,1—a] for every k =1,2,...,N and n € N such
that Z,ivzl af = 1. Let U, be a balanced mapping for {ak} and {T*}. For a given
point 1 € X, let {x,} be a sequence in X generated by

Tn+1 = 5nxn ® (1 - 6n)Un$n
for every n € N. Then {x,} A-converges to a point in ﬂi\il F(TF).

Proof. From Lemma 3.2, we know that F(U,) = ﬂk | F(T*) for every n € N. Let
ze F=F{U,) = ﬂk | F(T*). From Lemmas 2.2 and 3.3, we have
cosd(xpy1,2) = cosd(0pxy B (1 — 0,)Unn, 2)
> 0p cosd(zp, 2) + (1 — 6,) cos d(Upxn, 2)
> cosd(zy, 2).

Thus, we obtain d(z,+1,2) < d(zy, z) for all n € N and there exists

D = lim d(zp,2) <d(z1,2) < T

n—00 2
Since {0,} C [a,1 — a], from Lemma 2.1, we get
cos d(xpy1,2) sind(xy, Upzy)
= co8d(6p2n ® (1 — 6p)Unp, 2) sind(zy, Upzy)
> cosd(Xp, z) Sin 0pd(Xy, Upxy) + cos d(Upxp, 2) sin(1 — §,)d(zp, Unty)
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> cos d(Xp, 2)(sin 6, d(Tn, Unxy) + sin(1l — 6, )d(xn, Unxy))
> 2cosd(xy, z) sin ad(xy, Upxy,).
Putting F = lim,, o d(xy, U,z,) and tending n — oo, we get
cosDsinE > 2cos DsinakF.
Using elementary calculation, we have E = 0, that is,
lim d(z,,U,x,) = 0.
n— 00
We show lim,, o0 d(,,, T*2,) = 0 for all k = 1,2,..., N. Since {x,} is bounded,
it follows that
D = lim d(zy,2) < lim (d(xn, Upzy) + d(Upzy, 2))
n—o0 n—o0
= lim d(U,2xn,2)
n—oo
< lim d(zp,2) = D.
n— 00

Thus we get lim,, o0 d(2,, 2) = lim, oo d(Up 2y, 2) = D. By Lemma 4.1, we have

ch\;l af cosd(T*x,, 2)
cos d(Upxn, 2)

Zi\;l ak cosd(xy, 2)

N
Z afl coS d(Tchn7 Unpxp) >
k=1

>
—  cosd(Upxn, 2)
cosd(xy, 2)
~ cosd(Upap,z)
Since of < 1 —a < 1, we obtain lim, o d(T*z,,U,z,) = 0 for every k =
1,2,...,N. Since lim, . d(Un2p,r,) = 0, we also get lim,, o d(T*z,,7,) = 0
for every k = 1,2,...,N. Let xo be an asymptotic center of {z,} and for every

{zn,} C {zn}, let y be an asymptotic center of {z,,}. There exists {z,, } C
{zn,} satisfying that {x,, } A-converges to w. Since T* is A-demiclosed and
lim,, o0 d(T*2y,,2,) = 0 for every k = 1,2,..., N, we get w € F. Since there exists
lim,, 00 d(2p,, , w), we have

limsup d(zy,,,w) = lim d(z,,,w)

k—00 k— o0

= lim d(z,, ,w)
l—o00 l

< lim sup d(zn,, , y)

l—o0

< limsupd(zy,,,y).

k—o0

Since y is an asymptotic center of {x,, }, we obtain y = w. Then we have y € F.
Hence we get
limsup d(zn,y) = lim d(z,,y)
n—00 n—00

= lim d('r’flk’y)

k— o0
< lim sup d(xn,,, o)
k—o0
< limsup d(zy,, Tg).
n— 00

Since z¢ is an asymptotic center of {z,}, we obtain o = y. Therefore we obtain
{zn} A-converges to zo € F. O
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