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ABSTRACT. In this paper, we define a balanced mapping by a maximizer of a certain
function generated by a finite number of mappings without regard to their order and find its
fundamental properties in a complete CAT(1) space. Furthermore, we approximate a fixed
point of a balanced mapping which is generated by a finite number of quasinonexpansive
and ∆-demiclosed mappings by using Mann’s iterative scheme.
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1. Introduction

In the study of nonlinear analysis, we approximate a fixed point of many kinds of
mappings. We focus on a balanced mapping which is generated by a finite number
of mappings without regard to their order. Hasegawa and Kimura [2] defined it by
proving the following theorem in the setting of complete CAT(0) spaces. We will
extend its definition in the setting of complete CAT(1) spaces.

Theorem 1.1. (Hasegawa–Kimura [2]) Let X be a complete CAT(0) space. Let T k

be a nonexpansive mapping from X to X for every k = 1, 2, . . . , N . Let αk ∈ [0, 1]

for every k = 1, 2, . . . , N such that
∑N

k=1 α
k = 1. Let x be a point of X. Then the

set

argmin
y∈X

N∑
k=1

αkd(T kx, y)2

consists of one point.
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We know that there are various kinds of iterative schemes which is effective to find
fixed points of nonexpansive mappings. We pay attention to Mann’s [3] iterative
scheme. A number of authors have proved approximation theorems by using that
scheme. Reich [7] proved it in a Banach space. Dhompongsa and Panyanak [1]
proved it in a CAT(0) space. Kimura, Saejung, and Yotkaew [4] proved it by using
a quainonexpansive and ∆-demiclosed mapping in a CAT(1) space. We particularly
note that Hasegawa and Kimura [2] proved the convergence of Mann type iteration
by using a balanced mapping.

Theorem 1.2. (Hasegawa–Kimura [2]) Let X be a complete CAT(0) space. Let T k

be a nonexpansive mapping from X to X for every k = 1, 2, . . . , N such that F =∩N
k=1 F (T k) ̸= ∅. For a given real number a ∈

]
0, 1

2

]
, let

{
αk
n

}
, {βn} ⊂ [a, 1− a] for

every k = 1, 2, . . . , N and n ∈ N such that
∑N

k=1 α
k
n = 1. Define Un be a mapping

from X to X by

Unx = argmin
y∈X

N∑
k=1

αk
nd(T

kx, y)2

for every x ∈ X and n ∈ N. For a given point x1 ∈ X, let {xn} be a sequence in X
generated by

xn+1 = βnxn ⊕ (1− βn)Unxn

for every n ∈ N. Then {xn} ∆-converges to a point in F .

In this paper, we define a balanced mapping in a complete CAT(1) space and
prove a convergence theorem of Mann type iteration by using it. Namely, our results
are a modified version of the results by Hasegawa and Kimura [2] in a complete
CAT(1) space.

2. Preliminaries

Let X be a metric space and {xn} a sequence in X. An element z ∈ X is said
to be an asymptotic center of {xn} ⊂ X if

lim sup
n→∞

d(xn, z) = inf
x∈X

lim sup
n→∞

d(xn, x).

Moreover, we say {xn} ∆-converges to a ∆-limit z if z is the unique asymptotic
center of any subsequences of {xn}. For x, y ∈ X, a mapping c : [0, l] → X is called
a geodesic if c satisfies

c(0) = x, c(l) = y, and d(c(u), c(v)) = |u− v|

for every u, v ∈ [0, l]. An image of [x, y] of c is called a geodesic segment joining x
and y. For r > 0, X is said to be an r-geodesic space if for every x, y ∈ X with
d(x, y) < r, there exists a geodesic c joining x and y. Moreover, if such a geodesic
segment is unique for each pair of points, then X is said to be a uniquely r-geodesic
space.

Let X be a uniquely π-geodesic space. For a triangle △(x, y, z) ⊂ X such
that d(x, y) + d(y, z) + d(z, x) < 2π, let a comparison triangle △(x̄, ȳ, z̄) in two-
dimensional unit sphere S2 be such that each corresponding edge has the same length
as that of the original triangle. X is called a CAT(1) space if every p, q ∈ △(x, y, z)
and their corresponding points p̄, q̄ ∈ △(x̄, ȳ, z̄) satisfy that

d(p, q) ≤ dS2(p̄, q̄),

where dS2 is the spherical metric on S2.
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Let X be a CAT(1) space. For every x, y ∈ X with d(x, y) < π and α ∈ [0, 1], if
z ∈ [x, y] satisfies that d(y, z) = αd(x, y) and d(x, z) = (1−α)d(x, y), then we denote
z by z = αx ⊕ (1 − α)y. A subset C ⊂ X is called π-convex if αx ⊕ (1 − α)y ∈ C
for every x, y ∈ C with d(x, y) < π and α ∈ [0, 1].

Let X be a CAT(1) space and let T be a mapping from X to X such that the set
F (T ) = {z ∈ X : z = Tz} of fixed points of T is not empty. If d(Tx, p) ≤ d(x, p)
for every x ∈ X and p ∈ F (T ), then we call T a quasinonexpansive mapping.

T is said to be a strongly quasinonexpansive mapping if T is a quasinonexpansive
mapping, and limn→∞ d(xn, Txn) = 0 whenever {xn} ⊂ X satisfies supn∈N d(xn, p) <
π/2 and limn→∞(cos d(xn, p)/ cos d(Txn, p)) = 1 for every p ∈ F (T ).

Let X be a CAT(1) space and let T be a mapping from X to X such that
F (T ) ̸= ∅. T is said to be a ∆-demiclosed mapping if z ∈ F (T ) whenever {xn}
∆-converges to z and limn→∞ d(xn, Txn) = 0.

Let X be a complete CAT(1) space and let C ⊂ X be a nonempty closed π-
convex subset such that d(x,C) = infy∈C d(x, y) < π/2 for every x ∈ X. Then for
every x ∈ X, there exists a unique point x0 ∈ C satisfying

d(x, x0) = inf
y∈C

d(x, y).

We define the metric projection PC from X onto C by PCx = x0.
We introduce some lemmas used for our results.

Lemma 2.1. (Kimura and Satô [5]) Let X be a CAT(1) space. For every x, y, z ∈ X
with d(x, y) + d(y, z) + d(z, x) < 2π and α ∈ [0, 1], the following inequality holds:

cos d(x,w) sin d(y, z) ≥ cos d(x, y) sin(αd(y, z)) + cos d(x, z) sin((1− α)d(y, z)),

where w = αy ⊕ (1− α)z.

Lemma 2.2. (Kimura and Satô [6]) Let X be a CAT(1) space. For every x, y, z ∈ X
with d(x, y) + d(y, z) + d(z, x) < 2π and α ∈ [0, 1], the following inequality holds:

cos d(x,w) ≥ α cos d(x, y) + (1− α) cos d(x, z),

where w = αy ⊕ (1− α)z.

Lemma 2.3. (Kimura and Satô [6]) Let X be a CAT(1) space and y0, y1 and y
elements of X such that d(y0, y) + d(y1, y) + d(y0, y1) < 2π. Then we have

cos d

(
1

2
y0 ⊕

1

2
y1, y

)
cos

d(y0, y1)

2
≥ min{cos d(y0, y), cos d(y1, y)}.

3. Balanced mapping in CAT(1) spaces

In this section, we define a balanced mapping and find its fundamental properties
in a CAT(1) space. We begin with the following theorem which guarantees that the
balanced mapping can be defined as a single-valued mapping.

Theorem 3.1. Let X be a complete CAT(1) space such that d(x, y) < π/2 for every
x, y ∈ X. Let xk be a point of X for every k = 1, 2, . . . , N . Let αk ∈ [0, 1] for every
k = 1, 2, . . . , N such that

∑N
k=1 α

k = 1. Then the set

argmax
y∈X

N∑
k=1

αk cos d(xk, y)

consists of one point.
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Proof. Let D = supy∈X

∑N
k=1 α

k cos d(xk, y) and {yn} a sequence in X such that
limn→∞

∑N
k=1 α

k cos d(xk, yn) = D. For m,n ∈ N, from Lemma 2.3, we have
N∑

k=1

αk cos d

(
xk,

1

2
yn ⊕ 1

2
ym

)
cos

d(yn, ym)

2
≥

N∑
k=1

αk min{cos d(yn, xk), cos d(ym, xk)}.

Thus we get

cos
d(yn, ym)

2
≥

∑N
k=1 α

k min{cos d(yn, xk), cos d(ym, xk)}
D

.

Hence we obtain {yn} is a Cauchy sequence. By the completeness of X, there exists
u = limn→∞ yn. From the continuity of the metric, we get

∑N
k=1 α

k cos d(xk, u) =

supy∈X

∑N
k=1 α

k cos d(xk, y). Hence argmaxy∈X

∑N
k=1 α

k cos d(xk, y) is nonempty.
Let u, v ∈ argmaxy∈X

∑N
k=1 cos d(x

k, y) and suppose u ̸= v. By Lemma 2.1, we
have

N∑
k=1

αk cos d(xk, u) sin d(u, v) ≥
N∑

k=1

αk cos d

(
xk,

1

2
u⊕ 1

2
v

)
sin d(u, v)

≥ sin
d(u, v)

2

N∑
k=1

αk(cos d(xk, u) + cos d(xk, v)).

Dividing by sin(d(u, v)/2), we get

2 cos
d(u, v)

2

N∑
k=1

αk cos d(xk, u) ≥
N∑

k=1

αk(cos d(xk, u) + cos d(xk, v)).

Similarly, we get

2 cos
d(u, v)

2

N∑
k=1

αk cos d(xk, v) ≥
N∑

k=1

αk(cos d(xk, u) + cos d(xk, v)).

Therefore, we obtain

2 cos
d(u, v)

2

N∑
k=1

αk(cos d(xk, u) + cos d(xk, v)) ≥ 2

N∑
k=1

αk(cos d(xk, u) + cos d(xk, v)).

Then we have

1 > cos
d(u, v)

2
≥ 1,

which is a contradiction. Hence we get u = v. □

By Theorem 3.1, we know the set argmaxy∈X

∑N
k=1 α

k cos d(xk, y) is a singleton.
In what follows, a balanced mapping U from X to X for a sequence α1, α2, . . . , αN ∈
[0, 1] and mappings T 1, T 2, . . . , TN is defined by

Ux = argmax
y∈X

N∑
k=1

αk cos d(T kx, y)

for every x ∈ X. We prove some basic properties of balanced mappings in this
section.
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Theorem 3.2. Let X be a complete CAT(1) space such that d(x, y) < π/2 for
every x, y ∈ X. Let T k be a quasinonexpansive mapping from X to X for every
k = 1, 2, . . . , N such that

∩N
k=1 F (T k) ̸= ∅. Let αk ∈ ]0, 1[ for every k = 1, 2, . . . , N

such that
∑N

k=1 α
k = 1. Let U be a balanced mapping for {αk} and {T k}. Then

F (U) =
∩N

k=1 F (T k).

Proof. Let z ∈
∩N

k=1 F (T k). Then we have

Uz = argmax
y∈X

N∑
k=1

αk cos d(T kz, y)

= argmax
y∈X

N∑
k=1

αk cos d(z, y)

= argmax
y∈X

cos d(z, y)

= z.

Hence we get z ∈ F (U). Let z ∈ F (U), w ∈
∩N

k=1 F (T k) and t ∈ ]0, 1[. We may
assume that z ̸= w. From Lemma 2.1, we have

N∑
k=1

αk cos d(T kz, z) sin d(z, w)

≥
N∑

k=1

αk cos d(T kz, tz ⊕ (1− t)w) sin d(z, w)

≥
N∑

k=1

αk cos d(T kz, z) sin td(z, w) +

N∑
k=1

αk cos d(T kz, w) sin(1− t)d(z, w)

≥
N∑

k=1

αk cos d(T kz, z) sin td(z, w) + cos d(z, w) sin(1− t)d(z, w).

Hence we get

2

N∑
k=1

αk cos d(T kz, z)(sin d(z, w)− sin td(z, w)) ≥ cos d(z, w) sin(1− t)d(z, w),

and it implies that

2

N∑
k=1

αk cos d(T kz, z) sin
(1− t)d(z, w)

2
cos

(1 + t)d(z, w)

2

≥ 2 cos d(z, w) sin
(1− t)d(z, w)

2
cos

(1− t)d(z, w)

2
.

Dividing by 2 sin((1− t)d(z, w)/2) cos d(z, w) and tending t → 1, we get
N∑

k=1

αk cos d(T kz, z) ≥ 1.

Therefore we have cos d(T kz, z) = 1 for every k = 1, 2, . . . , N . Hence we get z ∈∩N
k=1 F (T k). □

Lemma 3.1. Let X be a complete CAT(1) space such that d(x, y) < π/2 for
every x, y ∈ X. Let T k be a quasinonexpansive mapping from X to X for every
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k = 1, 2, . . . , N such that
∩N

k=1 F (T k) ̸= ∅. Let αk ∈ [0, 1] for every k = 1, 2, . . . , N

such that
∑N

k=1 α
k = 1. Let U be a balanced mapping for {αk} and {T k}. Then we

have
N∑

k=1

αk cos d(T kx,Ux) cos d(Ux, z) ≥ cos d(x, z)

for every x ∈ X and z ∈
∩N

k=1 F (T k).

Proof. Let z ∈
∩N

k=1 F (T k) and t ∈ ]0, 1[. Then, from Lemma 3.2, we have z ∈
F (U). We may assume that Ux ̸= z since if Ux = z, the inequality is obvious true.
By Lemma 2.1, we get

N∑
k=1

αk cos d(T kx,Ux) sin d(Ux, z)

≥
N∑

k=1

αk cos d(T kx, tUx⊕ (1− t)z) sin d(Ux, z)

≥
N∑

k=1

αk cos d(T kx,Ux) sin td(Ux, z) +

N∑
k=1

αk cos d(T kx, z) sin(1− t)d(Ux, z)

≥
N∑

k=1

αk cos d(T kx,Ux) sin td(Ux, z) +

N∑
k=1

αk cos d(x, z) sin(1− t)d(Ux, z)

=

N∑
k=1

αk cos d(T kx,Ux) sin td(Ux, z) + cos d(x, z) sin(1− t)d(Ux, z).

Hence we obtain
N∑

k=1

αk cos d(T kx,Ux)(sin d(Ux, z)− sin td(Ux, z)) ≥ cos d(x, z) sin(1− t)d(Ux, z),

and it implies that

2

N∑
k=1

αk cos d(T kx,Ux) sin
(1− t)d(Ux, z)

2
cos

(1 + t)d(Ux, z)

2

≥ 2 cos d(x, z) sin
(1− t)d(Ux, z)

2
cos

(1− t)d(Ux, z)

2
.

Dividing by 2 sin((1− t)d(Ux, z)/2) and tending t → 1, we get
N∑

k=1

αk cos d(T kx,Ux) cos d(Ux, z) ≥ cos d(x, z)

for x ∈ X. □

Theorem 3.3. Let X be a complete CAT(1) space such that d(x, y) < π/2 for
every x, y ∈ X. Let T k be a quasinonexpansive mapping from X to X for every
k = 1, 2, . . . , N such that

∩N
k=1 F (T k) ̸= ∅. Let αk ∈ [0, 1] for every k = 1, 2, . . . , N

such that
∑N

k=1 α
k = 1. Let U be a balanced mapping for {αk} and {T k}. Then U

is a quasinonexpansive mapping.
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Proof. From Lemma 3.2, let z ∈ F (U) =
∩N

k=1 F (T k). By Lemma 3.1, we have
N∑

k=1

αk cos d(T kx,Ux) cos d(Ux, z) ≥ cos d(x, z)

for x ∈ X. Since cos d(T kx,Ux) ≤ 1, we get

cos d(Ux, z) ≥
N∑

k=1

αk cos d(T kx,Ux) cos d(Ux, z)

≥ cos d(x, z).

Thus, we obtain
d(Ux, z) ≤ d(x, z).

Hence U is a quasinonexpansive mapping. □

Theorem 3.4. Let X be a complete CAT(1) space such that d(x, y) < π/2 for
every x, y ∈ X. Let T k be a quasinonexpansive and ∆-demiclosed mapping from X

to X for every k = 1, 2, . . . , N such that
∩N

k=1 F (T k) ̸= ∅. Let αk ∈ ]0, 1[ for every
k = 1, 2, . . . , N such that

∑N
k=1 α

k = 1. Let U be a balanced mapping for {αk} and
{T k}. Then U is a ∆-demiclosed mapping.

Proof. From Lemma 3.2, let z ∈ F (U) =
∩N

k=1 F (T k). Let {xn} ⊂ X satisfying
d(Uxn, xn) → 0 and {xn} ∆-converges to x0 ∈ X. By Lemma 3.1, we have

N∑
k=1

αk cos d(T kxn, Uxn) cos d(Uxn, z) ≥ cos d(xn, z).

Then we get
N∑

k=1

αk cos d(T kxn, Uxn) ≥
cos d(xn, z)

cos d(Uxn, z)
.

Since limn→∞(cos d(xn, z)/ cos d(Uxn, z)) = 1, we obtain

lim
n→∞

N∑
k=1

αk cos d(T kxn, Uxn) = 1.

Hence we get limn→∞ d(T kxn, Uxn) = 0 for every k = 1, 2, . . . , N . Then we have
limn→∞ d(T kxn, xn) = 0 for every k = 1, 2, . . . , N . Since T k is a ∆-demiclosed
mapping for every k = 1, 2, . . . , N , we obtain x0 ∈ F . □

Theorem 3.5. Let X be a complete CAT(1) space such that d(x, y) < π/2 for every
x, y ∈ X. Let T k be a strongly quasinonexpansive mapping from X to X for every
k = 1, 2, . . . , N such that

∩N
k=1 F (T k) ̸= ∅. Let αk ∈ ]0, 1[ for every k = 1, 2, . . . , N

such that
∑N

k=1 α
k = 1. Let U be a balanced mapping for {αk} and {T k}. Then U

is a strongly quasinonexpansive mapping.

Proof. From Lemma 3.2, let z ∈ F (U) =
∩N

k=1 F (T k). Let {xn} ⊂ X satisfy-
ing lim supn→∞ d(xn, z) < π/2 and limn→∞(cos d(xn, z)/ cos d(Uxn, z)) = 1. By
Lemma 3.1, we have

N∑
k=1

αk cos d(T kxn, Uxn) cos d(Uxn, z) ≥ cos d(xn, z).
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Then we get

N∑
k=1

αk cos d(T kxn, Uxn) ≥
cos d(xn, z)

cos d(Uxn, z)
.

Since limn→∞(cos d(xn, z)/ cos d(Uxn, z)) = 1, we obtain

lim
n→∞

N∑
k=1

αk cos d(T kxn, Uxn) = 1.

Hence we get limn→∞ d(T kxn, Uxn) = 0 for every k = 1, 2, . . . , N . For any k =
1, 2, . . . , N , we have

lim
n→∞

cos d(xn, z)

cos d(Uxn, z)
= lim inf

n→∞

cos d(xn, z)

cos d(Uxn, z)

≤ lim inf
n→∞

cos d(xn, z)

cos(d(Uxn, T kxn) + d(T kxn, z))

= lim inf
n→∞

cos d(xn, z)

cos d(T kxn, z)

≤ lim sup
n→∞

cos d(xn, z)

cos d(T kxn, z)

≤ lim sup
n→∞

cos d(xn, z)

cos(d(T kxn, Uxn) + d(Uxn, z))

= lim sup
n→∞

cos d(xn, z)

cos d(Uxn, z)

= lim
n→∞

cos d(xn, z)

cos d(Uxn, z)
.

Thus we obtain limn→∞(cos d(xn, z)/ cos d(T
kxn, z)) = 1. Since T k is a strongly

quasinonexpansive mapping for every k = 1, 2, . . . , N , we get limn→∞ d(T kxn, xn) =
0 for every k = 1, 2, . . . , N . Since limn→∞ d(T kxn, Uxn) = 0 and limn→∞ d(T kxn, xn) =
0 for every k = 1, 2, . . . , N , we obtain limn→∞ d(Uxn, xn) = 0. □

4. An iterative scheme for balanced mappings

In this section, we prove a convergence theorem of a Mann iterative sequence by
using a balanced mapping in a complete CAT(1) space.

Lemma 4.1. Let X be a complete CAT(1) space such that d(x, y) < π/2 for every
x, y ∈ X. Let T k be a mapping from X to X for every k = 1, 2, . . . , N . Let
αk ∈ [0, 1] for every k = 1, 2, . . . , N such that

∑N
k=1 α

k = 1. Let U be a balanced
mapping for {αk} and {T k}. Then we have

N∑
k=1

αk cos d(T kx,Ux) ≥
∑N

k=1 α
k cos d(T kx,Uy)

cos d(Ux,Uy)

for every x, y ∈ X.
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Proof. Let t ∈ ]0, 1[. We may assume Ux ̸= Uy. By Lemma 2.1, we have
N∑

k=1

αk cos d(T kx,Ux) sin d(Ux,Uy)

≥
N∑

k=1

αk cos d(T kx, tUx⊕ (1− t)Uy) sin d(Ux,Uy)

≥
N∑

k=1

αk(cos d(T kx,Ux) sin td(Ux,Uy) + cos d(T kx,Uy) sin(1− t)d(Ux,Uy)).

Then we get

2

N∑
k=1

αk cos d(T kx,Ux) cos
(1 + t)d(Ux,Uy)

2
sin

(1− t)d(Ux,Uy)

2

≥
N∑

k=1

αk cos d(T kx,Uy) sin(1− t)d(Ux,Uy).

Dividing by 2 cos((1 + t)d(Ux,Uy)/2) sin((1− t)d(Ux,Uy)/2), we get

N∑
k=1

αk cos d(T kx,Ux) ≥
N∑

k=1

αk cos d(T kx,Uy)
cos

(1− t)d(Ux,Uy)

2

cos
(1 + t)d(Ux,Uy)

2

.

Tending t → 1, we obtain the desired result. □

Theorem 4.1. Let X be a complete CAT(1) space such that d(x, y) < π/2 for
every x, y ∈ X. Let T k be a quasinonexpansive and ∆-demiclosed mapping from X

to X for every k = 1, 2, . . . , N such that
∩N

k=1 F (T k) ̸= ∅. For a given real number
a ∈ ]0, 1/2], let

{
αk
n

}
, {δn} ⊂ [a, 1− a] for every k = 1, 2, . . . , N and n ∈ N such

that
∑N

k=1 α
k
n = 1. Let Un be a balanced mapping for {αk

n} and {T k}. For a given
point x1 ∈ X, let {xn} be a sequence in X generated by

xn+1 = δnxn ⊕ (1− δn)Unxn

for every n ∈ N. Then {xn} ∆-converges to a point in
∩N

k=1 F (T k).

Proof. From Lemma 3.2, we know that F (Un) =
∩N

k=1 F (T k) for every n ∈ N. Let
z ∈ F = F (Un) =

∩N
k=1 F (T k). From Lemmas 2.2 and 3.3, we have

cos d(xn+1, z) = cos d(δnxn ⊕ (1− δn)Unxn, z)

≥ δn cos d(xn, z) + (1− δn) cos d(Unxn, z)

≥ cos d(xn, z).

Thus, we obtain d(xn+1, z) ≤ d(xn, z) for all n ∈ N and there exists

D = lim
n→∞

d(xn, z) ≤ d(x1, z) <
π

2
.

Since {δn} ⊂ [a, 1− a], from Lemma 2.1, we get

cos d(xn+1, z) sin d(xn, Unxn)

= cos d(δnxn ⊕ (1− δn)Unxn, z) sin d(xn, Unxn)

≥ cos d(xn, z) sin δnd(xn, Unxn) + cos d(Unxn, z) sin(1− δn)d(xn, Unxn)
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≥ cos d(xn, z)(sin δnd(xn, Unxn) + sin(1− δn)d(xn, Unxn))

≥ 2 cos d(xn, z) sin ad(xn, Unxn).

Putting E = limn→∞ d(xn, Unxn) and tending n → ∞, we get
cosD sinE ≥ 2 cosD sin aE.

Using elementary calculation, we have E = 0, that is,
lim
n→∞

d(xn, Unxn) = 0.

We show limn→∞ d(xn, T
kxn) = 0 for all k = 1, 2, . . . , N . Since {xn} is bounded,

it follows that
D = lim

n→∞
d(xn, z) ≤ lim

n→∞
(d(xn, Unxn) + d(Unxn, z))

= lim
n→∞

d(Unxn, z)

≤ lim
n→∞

d(xn, z) = D.

Thus we get limn→∞ d(xn, z) = limn→∞ d(Unxn, z) = D. By Lemma 4.1, we have
N∑

k=1

αk
n cos d(T

kxn, Unxn) ≥
∑N

k=1 α
k
n cos d(T

kxn, z)

cos d(Unxn, z)

≥
∑N

k=1 α
k
n cos d(xn, z)

cos d(Unxn, z)

≥ cos d(xn, z)

cos d(Unxn, z)
.

Since αk
n ≤ 1 − a < 1, we obtain limn→∞ d(T kxn, Unxn) = 0 for every k =

1, 2, . . . , N . Since limn→∞ d(Unxn, xn) = 0, we also get limn→∞ d(T kxn, xn) = 0
for every k = 1, 2, . . . , N . Let x0 be an asymptotic center of {xn} and for every
{xnk

} ⊂ {xn}, let y be an asymptotic center of {xnk
}. There exists {xnkl

} ⊂
{xnk

} satisfying that {xnkl
} ∆-converges to w. Since T k is ∆-demiclosed and

limn→∞ d(T kxn, xn) = 0 for every k = 1, 2, . . . , N , we get w ∈ F . Since there exists
limn→∞ d(xnk

, w), we have
lim sup
k→∞

d(xnk
, w) = lim

k→∞
d(xnk

, w)

= lim
l→∞

d(xnkl
, w)

≤ lim sup
l→∞

d(xnkl
, y)

≤ lim sup
k→∞

d(xnk
, y).

Since y is an asymptotic center of {xnk
}, we obtain y = w. Then we have y ∈ F .

Hence we get
lim sup
n→∞

d(xn, y) = lim
n→∞

d(xn, y)

= lim
k→∞

d(xnk
, y)

≤ lim sup
k→∞

d(xnk
, x0)

≤ lim sup
n→∞

d(xn, x0).

Since x0 is an asymptotic center of {xn}, we obtain x0 = y. Therefore we obtain
{xn} ∆-converges to x0 ∈ F . □
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