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1. Introduction

Fractional calculus is a generalized of ordinary differentiation and integration to
arbitrary non-integer order. Fractional differential equations (FDE’s) have picked
up significance during the past decades due to its applicability in science and en-
gineering. The primary concept of a fractional derivative was introduced in a let-
ter written to Guillaume del’ Hopital by Gottfried Wilhelm Leibniz in 1695 [28].
Because of the history effects associated with the dynamics of the models, non-
integer order derivatives have been shown to be useful in modeling various phe-
nomena. Non-integer order derivatives have been effectively utilized to describe
physical processes in medicine, physics, image processing, optimization, electro-
dynamics, nanotechnology, biotechnology, engineering and many more fields, see
[5, 17, 24, 16, 12, 44, 37] and the references cited therein.

Zhou et al. in [45], considered the presence of mild solutions for FDE’s with
Caputo fractional derivative. By applying the Laplace transform and probability
density function, they gave a reasonable definition of mild solution. Utilizing the
same strategy, Zhou et al. [46], gave a definition of mild solution for FDEs with
Riemann Liouville fractional derivative. On the other hand, Hilfer proposed a gen-
eralized Rieman-Liouville fractional derivative, Hilfer fractional derivative, which
includes Riemann-Liouville fractional derivative and Caputo fractional derivative.
For case and details, see [33, 23, 32, 2, 1, 25, 21, 35, 36, 3, 30, 34, 6] and references
therein.

An uncommon kind of delay differential equations is so called pantograph equa-
tions. It occurs in different fields of pure and applied mathematics, for examples,
electrodynamics, control systems, number theory, probability, and quantum me-
chanics. Many researchers have studied the pantograph-type delay differential equa-
tion using analytical and numerical techniques [13, 18, 19, 26, 26, 38, 42, 41, 7, 8].
As of late, stability of FDE’s has pulled in expanding interest due to it’s appli-
cations in solving real life problems such as economics, biology and optimization.
Different types of stability such as Ulam-Hyers, generalized Ulam-Hyers, Ulam-
Hyers-Rassias and generalized Ulam-Hyers-Rassias stability has been given much
attention for FDE’s which involves different types of operators, see [1, 14, 22, 27,
31, 39, 9, 21, 10, 20, 11]. For example, in [18], Balachandran et al. established
the existence of solutions of abstract fractional pantograph equations with different
types of initial conditions of the form:{

CDα
0+z(t) = f(t, z(t), z(γt)), t ∈ J = [0, a], 0 < α < 1, 0 < γ < 1,

z(0) = z0,
(1.1)

where CDα
0+(·) is the Caputo fractional derivative of order α and f : J×X×X → X

is a continuous function. Vivek et al. [43] extended the results of [18] to differential
equations involving Hilfer fractional derivative.

Vivek et al. [40], considered an implicit fractional differential equations with
nonlocal condition described by:

Dα,β
0+ z(t) = f(t, z(t), Dα,β

0+ z(t)), t ∈ [0, T ],

I1−γ
0+ z(0) =

m∑
i=1

ciz(ηi), α ≤ γ = α+ β − αβ, ηi ∈ (0, T ),
(1.2)

where Dα,β
0+ (·) is the Hilfer fractional derivative of order (0 < α < 1) and type

0 ≤ β ≤ 1, I1−γ
0+ (·) is the Riemann-Liouville fractional integral of order 1 − γ.

The existence and uniqueness results were proved by Schaefer fixed point theorem
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and Banach’s Contraction principle. Moreover, the authors addressed the stability
analysis via Gronwall’s lemma. Recently, Asawasamrit et al. [15] investigated the
existence of solutions to nonlocal boundary value problems for fractional differential
equations which involves Hilfer fractional derivative

Dα,β
a+ z(t) = f(t, z(t)), t ∈ [a, b], 1 < α < 2, 0 ≤ β ≤ 1,

z(a) = 0, z(b) =

m∑
i=1

ciI
γi

a+z(ηi), ci ∈ R, γi > 0, ηi ∈ [a, b],
(1.3)

where Dα,β
a+ (·) is the Hilfer fractional derivative of order α and type β, Iγi

a+(·) is the
Riemann-Liouville fractional integral of order γi and i = 1, . . . ,m. Using different
types of fixed point theorems, the authors proved the existence and uniqueness
results.

Motivated by the aforementioned discussions, this manuscript investigates the
existence and uniqueness of the solutions of nonlinear fractional pantograph differ-
ential equations (NFPDE):

Dα,β
0+ x(t) = f(t, x(t), x(λt)), t ∈ J = [0, b], 1 < α < 2, 0 ≤ β ≤ 1, 0 < λ < 1,(1.4)

x(0) = 0, x(b) =

m∑
i=1

cix(τi) +

k∑
j=1

djI
ρj

0+x(δj), ρj > 0, τi, δj ∈ [0, b], (1.5)

where Dα,β
0+ (·) is the Hilfer fractional derivative of order α and type β, I

ρj

0+(·) is
the Riemann-Liouville fractional integral of order ρj > 0. τi, dj ∈ R, i = 1, . . . ,m,
j = 1, . . . , k and f : J × R2 → R, is a given continuous functions. Moreover, two
different types of Ulam stability are investigated.

Remark 1.1. We note that the application of nonlocal condition:

m∑
i=1

cix(τi) +

k∑
j=1

djI
ρj

0+x(δj), in physical problems yields an excellent results than the initial con-

dition x(b) = xb [4]. In addition,

• If dj = 0, the generalized nonlocal condition reduces to multipoint nonlocal
condition [15, 42, 40].

• If ci = 0, the generalized nonlocal condition reduces to nonlocal Riemann-
Liouville integral condition [21].

• If ρj → 1 and ci = 0, reduces to nonlocal integral condition.

The outline of the paper is as follows: In Section ??, we give some prerequisite
definitions and results concerning Hilfer fractional operator. In Section ??, we de-
rived the equivalence between the proposed problem and Volterra integral equation.
The existence and uniqueness of the solution of NFPDE are investigated. Stability
analysis in the frame of Ulam-Hyers and generalized Ulam-Hyers stable are proved.
Example are given to demonstrate the theoretical results. Finally, conclusions part
of the paper are given in Section 5

2. Preliminaries

In this section, we recall some preliminaries facts, lemmas and definitions with
respect to fractional operators and Hilfer differential equation [29].
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Let J = [0, b] (−∞ < 0 < b < ∞) be a finite interval of R and C[0, b] be the space
of continuous function on [0, b]. Let X = C([0, b],R) denotes the Banach space of
all continuous from [0, b] to R endowed with the norm defined by

∥x∥ = max
t∈[0,b]

|x(t)|.

Definition 2.1. [29] The left-sided Riemann-Liouville fractional integral of order
α ∈ R+ of a function f is defined by

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0, α > 0, (2.1)

where Γ(·) denotes Gamma function.

Definition 2.2. [29] Let α ∈ R+, n ∈ N and f ∈ C([0, b],R). The operator

RLDα
0+f(t) =

{
1

Γ(n−α)

(
d
dt

)n ∫ t

0
(t− s)n−α−1f(s)ds, t > 0, n− 1 < α < n,

dn

dtn f(t), α = n,

(2.2)
is called left-sided Riemann-Liouville fractional derivative of order α of a function
f .

Definition 2.3. [29] Suppose α ∈ R+, n ∈ N and f ∈ Cn[0, b]. The Caputo
fractional derivative of order (n− 1 < α < n) of a function f is given by

CDα
0+f(t) =

{
1

Γ(n−α)

∫ t

0+
(t− s)n−α−1

(
d
dtf
)n

(s)ds, t > 0,
dn

dtn f(t), α = n,
(2.3)

where Γ(·) denotes the Gamma function.

Definition 2.4. [29] Let n− 1 < α < n and 0 ≤ β ≤ 1, with n ∈ N. The left-sided
Hilfer fractional derivative of order α and type β of a function f is defined by(

Dα,β
0+ f

)
(t) = I

β(n−α)
0+

[
Dn
(
I
(1−β)(n−α)
0+ f

)]
(t), (2.4)

where Dn =
(

d
dt

)n
and I is the Riemann-Liouville fractional integral defined in

equation equations (2.1).

in particular, if n = 2, Definition 2.4 is equivalent with(
Dα,β

0+ f
)
(t) = I

β(2−α)
0+

[
D2
(
I
(1−β)(2−α)
0+ f

)]
(t). (2.5)

Thus, throughout this manuscript, we discuss the case where n = 2, 1 < α < 2,
0 ≤ β ≤ 1 and γ = α+ 2β − αβ.

Remark 2.5. It’s worth to mention that:

• The derivative is considered as an interpolator between the Riemann-
Liouville and Caputo fractional derivatives since

Dα,β
0+ f(t) =

{
Dα

0+f(t), β = 0,

In−α
0+ Dnf(t), β = 1.

(2.6)

Next, we recall some properties of Hilfer derivative and integral operators.

Lemma 2.6. [29] Let α, β ∈ C such that Re(α) ≥ 0 and Re(β) > 0, then there
exists, (

Iα0+s
β−1
)
(t) =

Γ(β)

Γ(β + α)
tβ+α−1
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and (
Dα

0+s
α−1

)
(t) = 0, 0 < α < 1.

Lemma 2.7. [29] Let Re(α) > 0 and Re(β) > 0. If f ∈ L1(J), for each t ∈ [0, b],
then the following properties holds:(

Iα0+I
β
0+f

)
(t) =

(
Iα+β
0+ f

)
(t)

and (
Dα

0+I
α
0+f

)
(t) = f(t).

Lemma 2.8. [29] Let Re(α) > 0, n = −[−Re(α)], f ∈ L1(0, b) and (Iα0+f)(t) ∈
ACn[0, b], then,

(Iα0+D
α
0+f)(t) = f(t)−

n∑
j=1

tα−j

Γ(α− j + 1)
(Ij−α

0+ f)(0). (2.7)

Furthermore, if 1 < α < 2, we get

(Iα0+D
α
0+f)(t) = f(t)− tα−1

Γ(α)
(I1−α

0+ f)(0) +
tα−2

Γ(α+ 1)
(I2−α

0+ f)(0). (2.8)

Theorem 2.1. (Krasnoselskii’s fixed point theorem) Let B be a nonempty
bounded closed convex subset of a Banach space X. Let T1, T2 : B → X be two
continuous operators satisfying:

(i) T1x+ T2y ∈ B whenever x, y ∈ B;
(ii) T1 is compact and continuous;
(iii) T2 is contraction mapping;

then, there exist u ∈ B such that u = T1u+ T2u.

Theorem 2.2. (Contraction Mapping Principle) Let X be a Banach space,
N ⊂ X be closed and T : N → N a contraction mapping i.e

∥Tx− Ty∥ ≤ k∥x− y∥, for all x, y ∈ N and k ∈ (0, 1),

then N has a unique fixed point.

For shortness of notation, we take Iα0+ and Iα0+ as Iα and Dα respectively.

3. Main Results

This section presents the uniformity connecting NFPDE (1.4) − (1.5) and the
Volterra integral equation. In addition, the existence and uniqueness of solutions
of NFPDE (1.4) − (1.5) were prove using Banach and Kransnoselkii’s fixed point
theorems.

Lemma 3.1. Let 1 < α < 2, 0 ≤ β ≤ 1 and γ = α+2β−αβ, and let f : J×R2 → R
be a function such that f ∈ C([J,R]) for any x ∈ C([J,R]). A function x ∈ C([J,R])
is a solution of problem (1.4) − (1.5) if and only if x satisfies the Volterra integral
equation:

x(t) =
tγ−1

ΛΓ(γ)

(
Iαf(t, x(t), x(λt))(b)−

m∑
i=1

ciI
αf(t, x(t), x(λt))(τi)

+

k∑
j=1

djI
α+ρjf(t, x(t), x(λt))(δj)

+ Iαf(t, x(t), x(λt)),

(3.1)
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where

Λ =
1

Γ(γ)

m∑
i=1

ciτ
γ−1
i +

k∑
j=1

dj
Γ(γ + ρj)

δ
ρj+γ−1
i +

bγ−1

Γ(γ)
̸= 0. (3.2)

Proof. Suppose x ∈ C([J,R]) satisfies problem (1.4) − (1.5), then we show that
x is also a satisfies the integral equation (3.1). Indeed, setting (I2−γ,ρx)(0) =
e1, (I

1−γ,ρx)(0) = e2, and applying definition 2.4 and Lemma 2.8, yields

x(t) =
e2

Γ(γ)
tγ−1 +

e1
Γ(γ)

tγ−2 + Iαf(t, x(t), x(λt)). (3.3)

From the first boundary condition of equation (1.5), we can see that e1 = 0, which
implies

x(t) =
e2

Γ(γ)
tγ−1 + Iαf(t, x(t), x(λt)). (3.4)

Substituting t = τi and multiplying both sides by ci in (3.4), give

cix(τi) =
cie2
Γ(γ)

τγ−1
i + ciI

αf(t, x(t), x(λt))(τi), (3.5)

which implies

m∑
i=1

cix(τi) =
e2

Γ(γ)

m∑
i=1

ciτ
γ−1
i +

m∑
i=1

ciI
αf(t, x(t), x(λt))(τi). (3.6)

Now, putting t = δj and multiplying through by dj in (3.4), we have

djx(δj) =
dje2
Γ(γ)

δγ−1
j + djI

αf(t, x(t), x(λt))(δj). (3.7)

Applying Iρj to both sides of (3.7) and using Lemma 2.6, we get

djI
ρjx(δj) =

dje2
Γ(γ + ρj)

δ
γ+ρj−1
j + djI

α+ρjf(t, x(t), x(λt))(δj). (3.8)

Thus,

m∑
j=1

djI
ρjx(δj) =

m∑
j=1

dje2
Γ(γ + ρj)

δ
γ+ρj−1
j +

m∑
j=1

djI
α+ρjf(t, x(t), x(λt))(δj). (3.9)

From the second boundary condition: x(b) =

m∑
i=1

cix(τi) +

k∑
j=1

djI
ρjx(δj) and in

view of equations (3.6) and (3.9), we obtain

m∑
i=1

cix(τi) +

k∑
j=1

djI
ρjx(δj) =

e2
Γ(γ)

m∑
i=1

ciτ
γ−1
i +

m∑
i=1

ciI
αf(t, x(t), x(λt))(τi)

+

m∑
j=1

dje2
Γ(γ + δj)

δ
γ+ρj−1
j +

m∑
j=1

djI
α+ρjf(t, x(t), x(λt))(δj).

(3.10)

It follows from (3.4), that

x(b) =
e2

Γ(γ)
bγ−1 + Iαf(t, x(t), x(λt))(b). (3.11)
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In view of equations (3.10) and (3.11), we have

e2
Γ(γ)

bγ−1 + Iαf(t, x(t), x(λt))(b) =
e2

Γ(γ)

m∑
i=1

ciτ
γ−1
i +

m∑
i=1

ciI
αf(t, x(t), x(λt))(τi)

+

m∑
j=1

dje2
Γ(γ + ρj)

δ
γ+ρj−1
j +

m∑
j=1

djI
α+ρjf(t, x(t), x(λt))(δj).

(3.12)

Hence,

e2 =
1

Λ

(
Iαf(t, x(t), x(λt))(b) +

m∑
i=1

ciI
αf(t, x(t), x(λt))(τi)

+

m∑
j=1

djI
α+δjf(t, x(t), x(λt))(δj)

 .

(3.13)

Therefore, by substituting equation (3.13) in (3.4), the result follows. The converse
follows directly. Hence the proof is completed. □

Let us denote

ϕ =
bα+γ−1

|Λ|Γ(γ)Γ(α+ 1)
+

bγ−1

|Λ|Γ(γ)Γ(α+ 1)

m∑
i=1

|ci|ταi +
bγ−1

|Λ|Γ(γ)

k∑
j=1

|dj |δ
α+ρj

j

Γ(α+ ρj + 1)
+

bα

Γ(α+ 1)
.

(3.14)

3.1. Existence result via Kransnoselskii’s fixed point theorem.
In this subsection, we investigate the existence of solution of problem (1.4)− (1.5)
with helps of Kransnoselkii’s fixed point theorem 2.1. Thus, followings hypotheses
are needed.
(H1) Let f : J × R2 → R be a function such that f ∈ C[0, b] for any x ∈ C[0, b].
For all u, v, ū, v̄ ∈ R and t ∈ J there exist a constants K > 0 such that

|f(t, u, v)− f(t, ū, v̄)| ≤ K(|u− ū|+ |v − v̄|).

(H2) There exist θ ∈ C([0, b],R) such that

|f(t, x(s), x(γs))| ≤ θ(t)

for each t ∈ J
(H3) Suppose that

Kη <
1

2
, (3.15)

where

η =
bα+γ−1

|Λ|Γ(γ)Γ(α+ 1)
+

bγ−1

|Λ|Γ(γ)Γ(α+ 1)

m∑
i=1

|ci|ταi +
bγ−1

|Λ|Γ(γ)

k∑
j=1

|dj |δ
α+ρj

j

Γ(α+ ρj + 1)
.

(3.16)

Theorem 3.1. Let 1 < α < 2, 0 ≤ β ≤ 1 and γ = α + 2β − αβ. Suppose that the
hypotheses (H1)− (H3) are satisfied, then the problem (1.4)− (1.5) has at least one
solution on J.
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Proof. Setting ∥θ∥ = sup
t∈J

|θ(t)| and choosing k ≥ ϕ∥θ∥ where ϕ is defined as in

equation (3.14) and construct a closed convex set x ∈ Bk = {x ∈ X : ∥x∥ ≤ k}.
Define the operators T1 and T2 on Bk as follows

T1x(t) =I
αf(s, x(s), x(λs))(t), for all t ∈ [0, b].

T2x(t) =
tγ−1

ΛΓ(γ)

[
Iαf(s, x(s), x(λs))(b)−

m∑
i=1

ciI
αf(s, x(s), x(λs))(τi)

+

k∑
j=1

djI
α+ρjf(s, x(s), x(λs))(δj)

 , for all t ∈ [0, b].

We give the prove in the following steps.
Step 1. We show that T1x+ T2x ∈ Bk.
Thus, for any x, y ∈ Bk, yields

|(T1x(t) + T2y(t))| ≤ sup
t∈J

{
Iα|f(s, x(s), x(λs))|(t) + tγ−1

|ΛΓ(γ)|
Iα|f(s, y(s), y(λs))|(b)

+
tγ−1

|Λ|Γ(γ)

m∑
i=1

|ci|Iα|f(s, y(s), y(λs))|(τi)

+
tγ−1

|Λ|Γ(γ)

k∑
j=1

|dj |Iα+ρj |f(s, y(s), y(λs))|(δj)


≤ ∥θ∥

(
bα

Γ(α+ 1)
+

bα+γ−1

|Λ|Γ(γ)Γ(α+ 1)
+

bγ−1

|Λ|Γ(γ)Γ(α+ 1)

m∑
i=1

|ci|ταi

+
bγ−1

|Λ|Γ(γ)

k∑
j=1

|dj |δ
α+ρj

j

Γ(α+ ρj + 1)


≤ ϕ∥θ∥
≤ k <∞.

(3.17)
Step 2. We show that, the operator T2 is contractive.
Let x, y ∈ C([J,R]) and t ∈ J , then

|(T2x(t) + T2y(t))| ≤
bγ−1

|Λ|Γ(γ)
Iα|f(s, x(s), x(λs))− f(s, y(s), y(λs))|(b)

+
bγ−1

|Λ|Γ(γ)

m∑
i=1

|ci|Iα|f(s, x(s), x(λs))− f(s, y(s), y(λs))|(τi)

+
bγ−1

|Λ|Γ(γ)

k∑
j=1

|dj |Iα+ρj |f(s, x(s), x(λs))− f(s, y(s), y(λs))|(δj)

≤ 2K

(
bα+γ−1

|Λ|Γ(γ)Γ(α+ 1)
+

bγ−1

|Λ|Γ(γ)Γ(α+ 1)

m∑
i=1

|ci|ταi

(3.18)
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+
bγ−1

|Λ|Γ(γ)

k∑
j=1

|dj |δ
α+ρj

j

Γ(α+ ρj + 1)

 ∥x− y∥

≤ 2Kη∥x− y∥.

(3.19)

Hence, it follows from (3.15), that T2 is a contraction map.
Step 3. We show that the operator T1 is continuous and compact.
Indeed, since f is continuous this implies that T1 is also continuous and for any
x ∈ C[0, b], we get

∥T1x∥ ≤ bα

Γ(α+ 1)
∥θ∥,

which shows that the operator T1 is uniformly bounded on Bk. Finally, we shows
that T1 is compact.
Denoting sup

(t,x)∈J×Bk

|f(t, x(t), x(λt))| = f∗ < ∞. Thus, for any 0 < t1 < t2 < T

gives

|(T1x)(t2)− (T1x)(t1)| ≤
1

Γ(α)

∫ t1

0

[(t2 − s)t−1 − (t1 − s)α−1]|f(s, x(s), x(λs))|ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1|f(s, x(s), x(λs))|ds

≤ f∗

Γ(α+ 1)

(
(t2 − t1)

α + tα2 − tα1

)
→ 0

(3.20)

as t2 → t1. As a consequence of Arzela-Ascoli theorem, implies that the operator
T1 is compact on Bκ. Thus, by Theorem 2.1, problem (1.4)− (1.5) has at least one
solution on J . □

3.2. Uniqueness result via Banach contraction principle.
Now, we prove the uniqueness of problem (1.4) − (1.5) by means of Banach con-
traction principle.

Theorem 3.2. Let 0 < α < 1, 0 ≤ β ≤ 1 and γ = α + β − αβ. Suppose that
assumption (H1) holds such that 2Kϕ < 1, where ϕ is defined by (3.14). Then if
there exist a solution of problem (1.4)− (1.5) is unique on J .

Proof. Define the operator T : X → X by

(Tx)(t) =
tγ−1

ΛΓ(γ)

[
Iαf(s, x(s), x(λs))(b)−

m∑
i=1

ciI
αf(s, x(s), x(λs))(τi)

+

k∑
j=1

djI
α+ρjf(s, x(s), x(λs))(δj)

+ Iαf(s, x(s), x(λs))(t),

(3.21)

then, clearly the operator T is well defined. It enough to show that the operator T
has a fixed point which is a solution of problem (1.4)− (1.5).

Let, N = sup
t∈J

|f(t, 0, 0)| < ∞ and setting κ ≥ Nϕ
1−2Kϕ . It suffices to show that

TBκ ⊂ Bκ, where x ∈ Bκ = {x ∈ C[0, b] : ∥x∥ ≤ κ}.
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Indeed, for any x ∈ Bκ, we have

|(Tx)(t)| ≤ sup
t∈J

{
tγ−1

|ΛΓ(γ)|
Iα|f(s, x(s), x(λs))|(b) + tγ−1

|Λ|Γ(γ)

m∑
i=1

|ci|Iα|f(s, x(s), x(λs))|(τi)

+
tγ−1

|Λ|Γ(γ)

k∑
j=1

|dj |Iα+ρj |f(s, x(s), x(λs))|(δj) + Iα|f(s, x(s), x(λs))|(t)


≤ tγ−1

|Λ|Γ(γ)
Iα
(
|f(s, x(s), x(λs))− f(s, 0, 0)|+ |f(s, 0, 0)|

)
(b)

(3.22)

+
tγ−1

|Λ|Γ(γ)

m∑
i=1

|ci|Iα
(
|f(s, x(s), x(λs))− f(s, 0, 0)|+ |f(s, 0, 0)|

)
(τi)

+
tγ−1

|Λ|Γ(γ)

k∑
j=1

|dj ||Iα+ρj
(
|f(s, x(s), x(λs))− f(s, 0, 0)|+ |f(s, 0, 0)|

)
(δj)

+ Iα
(
|f(s, x(s), x(λs))− f(s, 0, 0)|+ |f(s, 0, 0)|

)
(t)

≤
(
2K∥x∥+N

){
tγ−1

|Λ|Γ(γ)
Iα(b) +

tγ−1

|Λ|Γ(γ)

m∑
i=1

|ci|Iα(τi)

+
tγ−1

|Λ|Γ(γ)

k∑
j=1

|dj ||Iα+ρj (δj) + Iα(t)


≤
(
2K∥x∥+N

){
bα+γ−1

|Λ|Γ(γ)Γ(α+ 1)
+

bγ−1

|Λ|Γ(γ)Γ(α+ 1)

m∑
i=1

|ci|ταi

+
bγ−1

|Λ|Γ(γ)

k∑
j=1

|dj |δ
α+ρj

j

Γ(α+ ρj + 1)
+

bα

Γ(α+ 1)


≤ ϕ

(
2Kκ+N

)
≤ κ.

(3.23)
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This shows that, TBκ ⊂ Bκ.
Now, for any x1, x2 ∈ X and each t ∈ J , yields

|((Tx1)(t)−(Tx2)(t))|

≤ bγ−1

|ΛΓ(γ)|
Iα|f(s, x1(s), x1(λs))− f(s, x2(s), x2(λs))|(b)

+
bγ−1

|Λ|Γ(γ)

m∑
i=1

|ci|Iα|f(s, x1(s), x1(λs))− f(s, x2(s), x2(λs))|(τi)

+
bγ−1

|Λ|Γ(γ)

k∑
j=1

|dj |Iα+ρj |f(s, x1(s), x1(λs))− f(s, x2(s), x2(λs))|(δj)

+ Iα|f(s, x1(s), x1(λs))− f(s, x2(s), x2(λs))|(t)

≤ 2K

(
bα+γ−1

|Λ|Γ(γ)Γ(α+ 1)
+

bγ−1

|Λ|Γ(γ)Γ(α+ 1)

m∑
i=1

|ci|ταi

+
bγ−1

|Λ|Γ(γ)

k∑
j=1

|dj |δ
α+ρj

j

Γ(α+ ρj + 1)
+

bα

Γ(α+ 1)

 ∥x1 − x2∥

≤ 2Kϕ∥x1 − x2∥.
(3.24)

Therefore, it follows that the operator T is a contraction mapping. Thus, Theorem
2.2, guarantee the existence of a unique solution of problem (1.4)− (1.5) on J . □

4. Ulam-Hyers stability

In this section, the Ulam-Hyers and generalized Ulam-Hyers stability for NFPDE
(1.4)−(1.5) are investigate. Thus, before we prove the theorem we need the following
definitions, remark and lemma which are important in this section.

Definition 4.1. The NFPDE (1.4)− (1.5) is said to be Ulam-Hyers stable if there
exists a real constant ψ > 0 such that for all ϵ > 0 and for every solution y ∈
C([0, b],R) of the inequality

|Dα,βy(t)− f(t, y(t), y(λt))| ≤ ϵ, t ∈ J, (4.1)

there exists a solution x ∈ C([0, b],R) of the problem (1.4)− (1.5) with

|y(t)− x(t)| ≤ ψϵ, t ∈ J. (4.2)

Definition 4.2. The NFPDE (1.4) − (1.5) is said to be generalized Ulam-Hyers
stable if there is νf ∈ (R+,R+) and νf (0) = 0 such that for every solution y ∈
C([0, b],R) of problem (1.4) − (1.5) there exists a solution x ∈ C([0, b],R) of the
problem (1.4)− (1.5) such that:

|y(t)− x(t)| ≤ νf (ϵ), t ∈ J, (4.3)

holds.

Remark 4.3. A function y ∈ C([0, b],R) is a solution of (1.4)− (1.5) if and only if
there exists a function h ∈ C([0, b],R) (which depends on y ) such that

• |g(t)| < ϵ, t ∈ J .

• Dα,βy(t) = f(t, y(t), y(λt)) + h(t) t ∈ J .
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It follows from Remark 4.3, that

y(t) =
tγ−1

ΛΓ(γ)

[
Iαf(s, y(s), y(λs))(b)−

m∑
i=1

ciI
αf(s, y(s), y(λs))(τi)

+

k∑
j=1

djI
α+ρjf(s, y(s), y(λs))(δj)

+ Iαf(s, y(s), y(λs))(t)

+
tγ−1

ΛΓ(γ)

Iαg(b)− m∑
i=1

ciI
αg(τi) +

k∑
j=1

djI
α+ρjg(δj)

+ Iαg(t),

(4.4)

is the solution of the following equation:

Dα,βy(t) = w(t, y(t), y(λt)) + h(t), t ∈ J. (4.5)

Lemma 4.4. Let 1 < α < 2 and 0 ≤ β ≤ 1. If y ∈ C([0, b],R) is a solution of
problem (1.4)− (1.5), then y is a solution of the following integral inequality:

|y(t)−By − Iαf(s, y(s), y(λs))(t)| ≤ ϕϵ, (4.6)

where

By =
tγ−1

ΛΓ(γ)

[
Iαf(s, y(s), y(λs))(b)−

m∑
i=1

ciI
αf(s, y(s), y(λs))(τi)

+

k∑
j=1

djI
α+ρjf(s, y(s), y(λs))(δj)

 .
Proof. Indeed, from Remark 4.3 and equation (4.4), that

|y(t)−By − Iαf(s, y(s), y(λs))(t)| =

∣∣∣∣∣ tγ−1

ΛΓ(γ)

[
Iαg(b)−

m∑
i=1

ciI
αg(τi)

+

k∑
j=1

djI
α+ρjg(δj)

+ Iαg(t)

∣∣∣∣∣
≤ Iα|g(t)|+ tγ−1

|Λ|Γ(γ)
Iα|g(b)|+ tγ−1

|Λ|Γ(γ)

m∑
i=1

ciI
α|g(τi)|

+
tγ−1

|Λ|Γ(γ)

k∑
j=1

djI
α+ρj |g(δj)|

≤ ϵ

[
bα+γ−1

|Λ|Γ(γ)Γ(α+ 1)
+

bγ−1

|Λ|Γ(γ)Γ(α+ 1)

m∑
i=1

|ci|ταi

+
bγ−1

|Λ|Γ(γ)

k∑
j=1

|dj |δ
α+ρj

j

Γ(α+ ρj + 1)
+

bα

Γ(α+ 1)


= ϕϵ.

(4.7)

□
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Theorem 4.1. Suppose that the assumption (H1) holds with Kϕ < 1
2 , then the

NFPDE (1.4)− (1.5) is Ulam-Hyers stable on J and accordingly generalized Ulam-
Hyers stable.

Proof. Let y ∈ C([0, b],R) be the solution of the inequality (4.1) and x ∈ C([0, b],R)
be the unique solution of problem (1.4)− (1.5). Thus,

|y(t)− x(t)| =∣∣∣∣∣y(t)− tγ−1

|Λ|Γ(γ)
Iαf(s, x(s), x(λs))(b) +

tγ−1

|Λ|Γ(γ)

m∑
i=1

|ci|Iαf(s, x(s), x(λs))(τi)

− tγ−1

|Λ|Γ(γ)

k∑
j=1

|dj |Iα+ρjf(s, x(s), x(λs))(δj)− Iαf(s, x(s), x(λs))(t)

∣∣∣∣∣∣
≤

∣∣∣∣∣y(t)−By − Iαf(s, y(s), y(λs))(t)

∣∣∣∣∣
+

tγ−1

|Λ|Γ(γ)

m∑
i=1

|ci|Iα
∣∣f(s, y(s), y(λs))− f(s, x(s), x(λs))

∣∣(τi)
+

tγ−1

|Λ|Γ(γ)

k∑
j=1

|dj |Iα+ρj
∣∣f(s, y(s), y(λs))− f(s, x(s), x(λs))

∣∣(δj)
+ Iα

∣∣f(s, y(s), y(λs))− f(s, x(s), x(λs))
∣∣(t)

≤ ϵϕ+ 2Kϕ|y(t)− x(t)|,
(4.8)

which implies that

|y(t)− x(t)| ≤ ϵϕ

1− 2Kϕ
. (4.9)

Therefore,
|y(t)− x(t)| ≤ ψϵ, (4.10)

where

ψ =
ϕ

1− 2Kϕ
,

such that Kϕ < 1
2 . Hence, we conclude that the NFPDE(1.4)− (1.5) is Ulam-Hyers

stable. Moreover, setting νf (ϵ) = ψϵ such that νf (0) = 0, the NFPDE (1.4)− (1.5)
is generalized Ulam-Hyers stable. □

Example 4.5. Consider NFPDE of the form:{
D

6
5 ,

1
5x(t) = 1

10t+3(1+|x(t)|+|x( 1
6 t)|)

, t ∈ J = [0, 1],

x(0) = 0, x(1) = 1
3x(

1
3 )−

1
2x(

1
2 ) +

1
4I

1
4x( 14 ).

(4.11)

By comparing (1.4)− (1.5) with (4.11), we obtain the followings:
α = 6

5 , β = 1
5 , γ = 1

35 , λ = 1
6 , b = 1, c1 = 1

3 , c2 = −1
2 , τ1 = 1

3 , τ2 = 1
2 , d1 = 1

4 ,

ρ1 = 1
4 and f : J × R2 → R is a function defined by

f(t, u, v) =
1

10t+3 (1 + |u|+ |v|)
, t ∈ J, u, v ∈ R.

Clearly, the function f is continuous and for all u, v, ū, v̄ ∈ R and t ∈ J ,

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

103
(|u− ū|+ |v − v̄|) .
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Thus, assumption (H1) is satisfies with K = 1
103 . Hence, by simple calculation, we

obtain |Λ| ≈ 0.7578 and ϕ ≈ 2.3206.
So,

2Kϕ =
2

103
× 2.3206 < 1.

Thus, it follows from Theorem 3.14 that problem (1.4)− (1.5) has a unique solution
on J , since all the assumptions are satisfied.
In addition, Kϕ = 1

103 × 2.3206 < 1
2 . Thus, by Theorem 4.1, problem (1.4)− (1.5)

is both Ulam-Hyers and generalized Ulam-Hyers stable on J .

5. Conclusions

We investigate the existence and uniqueness of solutions for problem (1.4)−(1.5)
by employed the techniques of Banach and Kransnoselkii’s fixed point theorems.
We also establish the uniformity between generalized problem (1.4) − (1.5) and
the Volterra integral equation. Ulam-Hyers and generalized Ulam-Hyers stability
of solutions to (1.4) − (1.5) using the classical calculus approach are established.
Finally, as an application example were given to illustrate the main results.
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[35] Sevinik Adigüzel, R., Aksoy, Ü., Karapinar, E., and Erhan, İ. M. On the solution of
a boundary value problem associated with a fractional differential equation. Mathematical

Methods in the Applied Sciences (2020).
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