HYPERSTABILITY OF A CAUCHY FUNCTIONAL EGUATION

M. ALMAHALEBI*, A. CHARIFI AND S. KABBAJ
Department of Mathematics, Faculty of Sciences, Ibn Tofail University, BP: 133, 14000, KENITRA, MOROCCO.

ABSTRACT. The aim of this paper is to offer hyperstability results for the Cauchy functional equation

$$
f\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} f\left(x_{i}\right)
$$

in Banach spaces. Namely, we show that a function satisfying the equation approximately must be actually a solution to it.

KEYWORDS : Hyperstability, Cauchy equation, Fixed point theorem.
AMS Subject Classification: Primary 39B82, 39B62; Secondary 47H14, 47H10.

1. INTRODUCTION

Let X and Y be Banach spaces. A mapping $X: \longrightarrow Y$ is called, additive function, if it satisfies the Cauchy functional equation

$$
f(x+y)=f(x)+f(y) \quad \text { for all } \quad x, y \in X
$$

In 1940, S. M. Ulam [15] raised the question concerning the stability of group homomorphisms: "when is it true that the solution of an equation differing slightly from a given one, must of necessity be close to the solution of the given equation?". The first answer to Ulams question, concerning the Cauchy equation, was given by D. H. Hyers [10]. Thus we speak about the Hyers-Ulam stability. This terminology is also applied to the case of other functional equations. Th. M. Rassias [14] generalized the theorem of Hyers for approximately linear mappings [14]. The stability phenomena that was proved by Th. M. Rassias [14] is called the Hyers-Ulam-Rassias stability. The modified Ulams stability problem with the generalized control function was proved by P. Găvruta [8].

[^0]In 1994, J. M. Rassias [13] studied the Ulams problem of the following equation

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} f\left(x_{i}\right) \tag{1.1}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$.
We say a functional equation \mathfrak{D} is hyperstable if any function f satisfying the equation \mathfrak{D} approximately is a true solution of \mathfrak{D}. It seems that the first hyperstability result was published in [2] and concerned the ring homomorphisms. However, The term hyperstability has been used for the first time in [11]. Quite often the hyperstability is confused with superstability, which admits also bounded functions.

The hyperstability problem of various types of functional equations have been investigated by a number of authors, we refer, for example, to [1], [6], [4], [5], [9] and [12]. Throughout this paper, we present the hyperstability results for the additive functional equation (1.1).

The method of the proofs used in the main results is based on a fixed point result that can be derived from [3, Theorem 1]. To present it we need the following three hypotheses:
(H1) X is a nonempty set, Y is a Banach space, $f_{1}, \ldots, f_{k}: X \longrightarrow Y$ and $L_{1}, \ldots, L_{k}: X \longrightarrow \mathbb{R}_{+}$are given.
(H2) $\mathcal{T}: Y^{X} \longrightarrow Y^{X}$ is an operator satisfying the inequality

$$
\|\mathcal{T} \xi(x)-\mathcal{T} \mu(x)\| \leq \sum_{i=1}^{k} L_{i}(x)\left\|\xi\left(f_{i}(x)\right)-\mu\left(f_{i}(x)\right)\right\|, \quad \xi, \mu \in Y^{X}, \quad x \in X
$$

(H3) $\Lambda: \mathbb{R}_{+}^{X} \longrightarrow \mathbb{R}_{+}^{X}$ is a linear operator defined by

$$
\Lambda \delta(x):=\sum_{i=1}^{k} L_{i}(x) \delta\left(f_{i}(x)\right), \quad \delta \in \mathbb{R}_{+}^{X}, \quad x \in X
$$

The following theorem is the basic tool in this paper. We use it to assert the existence of a unique fixed point of operator $\mathcal{T}: Y^{X} \longrightarrow Y^{X}$.

Theorem 1.1. Let hypotheses (H1)-(H3) be valid and functions $\varepsilon: X \longrightarrow \mathbb{R}_{+}$and $\varphi: X \longrightarrow Y$ fulfil the following two conditions

$$
\begin{array}{cl}
\|\mathcal{T} \varphi(x)-\varphi(x)\| \leq \varepsilon(x), & x \in X, \\
\varepsilon^{*}(x):=\sum_{n=0}^{\infty} \Lambda^{n} \varepsilon(x)<\infty, & x \in X .
\end{array}
$$

Then there exits a unique fixed point ψ of \mathcal{T} with

$$
\|\varphi(x)-\psi(x)\| \leq \varepsilon^{*}(x), \quad x \in X
$$

Moreover,

$$
\psi(x):=\lim _{n \rightarrow \infty} \mathcal{T}^{n} \varphi(x), \quad x \in X
$$

Numerous papers on this subject have been published and we refer to [1], [6], [4], [5], [9], [12].

2. Hyperstability results

The following theorems and corollaries are the main results in this paper and concern the hyperstability of equation (1.1).

Theorem 2.1. Let X be a normed space, Y be a Banach space, $c \geq 0, p<0$ and let $f: X \longrightarrow Y$ satisfy

$$
\begin{equation*}
\left\|f\left(\sum_{i=1}^{n} x_{i}\right)-\sum_{i=1}^{n} f\left(x_{i}\right)\right\| \leq c\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right) \tag{2.1}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X \backslash\{0\}$ where n is an integer with $n \geq 2$. Then f is additive on $X \backslash\{0\}$.

Proof. We study two cases as follows:

Case 1: n is even

In this case, let $n=2 r+2$ where $r \in \mathbb{N}$. Then, the inequality (2.1) can be written as follows

$$
\begin{equation*}
\left\|f\left(\sum_{i=1}^{2 r+2} x_{i}\right)-\sum_{i=1}^{2 r+2} f\left(x_{i}\right)\right\| \leq c\left(\sum_{i=1}^{2 r+2}\left\|x_{i}\right\|^{p}\right) \tag{2.2}
\end{equation*}
$$

where $r \in \mathbb{N}$.
Replacing $x_{(2 r+2)}$ by $((2 r+1) m+1) x, x_{i}$ by $\left(-m-\frac{i}{2}\right) x$ where $i=2,4, \ldots, 2 r$ and x_{j} by $\left(-m+\frac{j-1}{2}\right)$ where $j=1,3, \ldots,(2 r+1)$ and $m \in \mathbb{N}$ in (2.2), we obtain that

$$
\begin{align*}
\| f(x) & -f(((2 r+1) m+1) x)-f(-m x)-\sum_{\ell=1}^{r} f((-m+\ell) x)-\sum_{\ell=1}^{r} f((-m-\ell) x) \| \\
& \leq c\left(((2 r+1) m+1)^{p}+m^{p}+\sum_{\ell=1}^{r}|\ell-m|^{p}+\sum_{\ell=1}^{r}|\ell+m|^{p}\right)\|x\|^{p} \tag{2.3}
\end{align*}
$$

for all $x \in X \backslash\{0\}$.
Further put
$\mathcal{T}_{m} \xi(x):=\xi(((2 r+1) m+1) x)+\xi(-m x)+\sum_{\ell=1}^{r} \xi((-m+\ell) x)+\sum_{\ell=1}^{r} \xi((-m-\ell) x)$
and

$$
\varepsilon_{m}(x):=c\left(((2 r+1) m+1)^{p}+m^{p}+\sum_{\ell=1}^{r}|\ell-m|^{p}+\sum_{\ell=1}^{r}|\ell+m|^{p}\right)\|x\|^{p}
$$

for all $x \in X \backslash\{0\}$ and all $\xi \in Y^{X \backslash\{0\}}$. The inequality (2.3) now takes the following form

$$
\left\|\mathcal{T}_{m} f(x)-f(x)\right\| \leq \varepsilon_{m}(x), \quad x \in X \backslash\{0\}
$$

The following operator
$\Lambda_{m} \delta(x):=\delta(((2 r+1) m+1) x)+\delta(-m x)+\sum_{\ell=1}^{r} \delta((-m+\ell) x)+\sum_{\ell=1}^{r} \delta((-m-\ell) x)$
for all $x \in X \backslash\{0\}$ and all $\delta \in \mathbb{R}_{+}^{X \backslash\{0\}}$, has the form described in (H3) with $k=2 r+2$, and

$$
\begin{aligned}
f_{i}(x) & =(-m \pm i) x, \quad i=1,2, \ldots, r \\
f_{(2 r+1)}(x) & =((2 r+1) m+1) x \\
f_{(2 r+2)}(x) & =-m x \\
L_{i}(x) & =1, \quad i=1,2, \ldots,(2 r+2) .
\end{aligned}
$$

Moreover, for every $\xi, \mu \in Y^{X \backslash\{0\}}$

$$
\begin{aligned}
\left\|\mathcal{T}_{m} \xi(x)-\mathcal{T}_{m} \mu(x)\right\| & =\| \xi(((2 r+1) m+1) x)+\xi(-m x) \\
& +\sum_{\ell=1}^{r} \xi((-m+\ell) x)+\sum_{\ell=1}^{r} \xi((-m-\ell) x) \\
& -\mu(((2 r+1) m+1) x)-\mu(-m x) \\
& -\sum_{\ell=1}^{r} \mu((-m+\ell) x)-\sum_{\ell=1}^{r} \mu((-m-\ell) x) \| \\
& \leq\|(\xi-\mu)(((2 r+1) m+1) x)\|+\|(\xi-\mu)(-m x)\| \\
& \left.+\sum_{\ell=1}^{r}\|(\xi-\mu)((-m+\ell) x)\|+\sum_{\ell=1}^{r} \|(\xi-\mu)((-m-\ell) x)\right) \| \\
& =\sum_{i=1}^{(2 r+2)} L_{i}(x)\left\|\xi\left(f_{i}(x)\right)-\mu\left(f_{i}(x)\right)\right\|
\end{aligned}
$$

and so (H2) is valid. Next, we can find $m_{0} \in \mathbb{N}$ such that

$$
\alpha_{m}=((2 r+1) m+1)^{p}+m^{p}+\sum_{\ell=1}^{r}|\ell-m|^{p}+\sum_{\ell=1}^{r}(m+\ell)^{p}<1
$$

for all $m \geq m_{0}$. Therefore, we have

$$
\begin{aligned}
\varepsilon_{m}^{*}(x) & :=\sum_{s=0}^{\infty} \Lambda_{m}^{s} \varepsilon_{m}(x) \\
& =c \alpha_{m} \sum_{s=0}^{\infty} \alpha_{m}^{s}\|x\|^{p} \\
& =\frac{c \alpha_{m}}{1-\alpha_{m}}\|x\|^{p}, \quad x \in X \backslash\{0\}, m \geq m \geq m_{0}
\end{aligned}
$$

Thus, according to Theorem 1.1, for each $m \geq m_{0}$ there exists a unique solution $F_{m}: X \backslash\{0\} \longrightarrow Y$ of the equation
$F_{m}(x)=F_{m}(((2 r+1) m+1) x)+F_{m}(-m x)+\sum_{\ell=1}^{r} F_{m}((-m+\ell) x)+\sum_{\ell=1}^{r} F_{m}((-m-\ell) x)$
such that

$$
\left\|f(x)-F_{m}(x)\right\| \leq \frac{c \alpha_{m}}{1-\alpha_{m}}\|x\|^{p}, \quad x \in X \backslash\{0\}, m \geq m \geq m_{0}
$$

Moreover,

$$
F_{m}(x):=\lim _{s \rightarrow \infty} \mathcal{T}_{m}^{s} f(x), \quad x \in X \backslash\{0\}
$$

To prove that $F_{m}(x)$ satisfies the Cauchy equation (1.1) on $X \backslash\{0\}$ observe that

$$
\begin{equation*}
\left\|\mathcal{T}_{m}^{s} f\left(\sum_{i=1}^{n} x_{i}\right)-\sum_{i=1}^{n} \mathcal{T}_{m}^{s} f\left(x_{i}\right)\right\| \leq c \alpha_{m}^{s}\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right) \tag{2.4}
\end{equation*}
$$

for every $x_{1}, x_{2}, \ldots, x_{n} \in X \backslash\{0\}$ and $s \in \mathbb{N}_{0}$.
Indeed, if $s=0$, then (2.4) is simply (2.1). So, take $t \in \mathbb{N}_{0}$ and suppose that (2.4) holds for $s=t$ and $x_{1}, x_{2}, \ldots, x_{n} \in X \backslash\{0\}$. Then

$$
\begin{aligned}
&\left\|\mathcal{T}_{m}^{t+1} f\left(\sum_{i=1}^{n} x_{i}\right)-\sum_{i=1}^{n} \mathcal{T}_{m}^{t+1} f\left(x_{i}\right)\right\|=\| \mathcal{T}_{m}^{t} f\left(\sum_{i=1}^{n}((2 r+1) m+1) x_{i}\right) \\
&+\mathcal{T}_{m}^{t} f\left(\sum_{i=1}^{n}\left(-m x_{i}\right)\right)+\sum_{\ell=1}^{r} \mathcal{T}_{m}^{t} f\left(\sum_{i=1}^{n}(-m+\ell) x_{i}\right)+\sum_{\ell=1}^{r} \mathcal{T}_{m}^{t} f\left(\sum_{i=1}^{n}(-m-\ell) x_{i}\right) \\
&-\sum_{i=1}^{n} \mathcal{T}_{m}^{t} f\left(((2 r+1) m+1) x_{i}\right)-\sum_{i=1}^{n} \mathcal{T}_{m}^{t} f\left(-m x_{i}\right) \\
&-\sum_{\ell=1}^{r}\left(\sum_{i=1}^{n} \mathcal{T}_{m}^{t} f\left((-m+\ell) x_{i}\right)\right)-\sum_{\ell=1}^{r}\left(\sum_{i=1}^{n} \mathcal{T}_{m}^{t} f\left((-m-\ell) x_{i}\right)\right) \| \\
& \leq\left\|\mathcal{T}_{m}^{t} f\left(\sum_{i=1}^{n}((2 r+1) m+1) x_{i}\right)-\sum_{i=1}^{n} \mathcal{T}_{m}^{t} f\left(((2 r+1) m+1) x_{i}\right)\right\| \\
&+\left\|\mathcal{T}_{m}^{t} f\left(\sum_{i=1}^{n}\left(-m x_{i}\right)\right)-\sum_{i=1}^{n} \mathcal{T}_{m}^{t} f\left(-m x_{i}\right)\right\| \\
&+\left\|\sum_{\ell=1}^{r} \mathcal{T}_{m}^{t} f\left(\sum_{i=1}^{n}(-m+\ell) x_{i}\right)-\sum_{\ell=1}^{r}\left(\sum_{i=1}^{n} \mathcal{T}_{m}^{t} f\left((-m+\ell) x_{i}\right)\right)\right\| \\
&+\left\|\sum_{\ell=1}^{r} \mathcal{T}_{m}^{t} f\left(\sum_{i=1}^{n}(-m-\ell) x_{i}\right)-\sum_{\ell=1}^{r}\left(\sum_{i=1}^{n} \mathcal{T}_{m}^{t} f\left((-m-\ell) x_{i}\right)\right)\right\| \\
& \leq c \alpha_{m}^{t}\left(((2 r+1) m+1)^{p}+m^{p}+\sum_{\ell=1}^{r}|\ell-m|^{p}+\sum_{\ell=1}^{r}|-m-\ell|^{p}\right) \sum_{i=1}^{n}\left\|x_{i}\right\|^{p} \\
&=c \alpha_{m}^{t+1} \sum_{i=1}^{n}\left\|x_{i}\right\|^{p} .
\end{aligned}
$$

By induction, we have shown that (2.4) holds for all $x_{1}, x_{2}, \ldots, x_{n} \in X \backslash\{0\}$ and $s \in \mathbb{N}_{0}$. Letting $s \longrightarrow \infty$ in (2.4), we obtain that

$$
F_{m}\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} F_{m}\left(x_{i}\right), \quad x_{1}, x_{2}, \ldots, x_{n} \in X \backslash\{0\}
$$

Thus, we have proved that for every $m \geq m_{0}$ there exists a unique function F_{m} : $X \backslash\{0\} \longrightarrow Y$ such that F_{m} is a solution of the Cauchy equation (1.1) on $X \backslash\{0\}$ and

$$
\left\|f(x)-F_{m}(x)\right\| \leq \frac{c \alpha_{m}}{1-\alpha_{m}}\|x\|^{p}, \quad x \in X \backslash\{0\}
$$

Since $p<0$, the sequence

$$
\left\{\frac{c \alpha_{m}}{1-\alpha_{m}}\|x\|^{p}\right\}_{m \geq m_{0}}
$$

tends to zero when $m \longrightarrow \infty$. Consequently, f satisfies the Cauchy equation (1.1) on $X \backslash\{0\}$ as the pointwise of $\left(F_{m}\right)_{m \geq m_{0}}$.

Case 2: n is odd
Letting $n=2 r+1$ where $r \in \mathbb{N}$, we can rewrite the inequality (2.1) as follows

$$
\begin{equation*}
\left\|f\left(\sum_{i=1}^{2 r+1} x_{i}\right)-\sum_{i=1}^{2 r+1} f\left(x_{i}\right)\right\| \leq c\left(\sum_{i=1}^{2 r+1}\left\|x_{i}\right\|^{p}\right) \tag{2.5}
\end{equation*}
$$

Replacing $x_{2 r+1}$ by $(2 r m+1) x, x_{i}$ by $\left(-m-\frac{i}{2}\right) x$ where $i=2,4, \ldots, 2 r$ and x_{j} by $\left(-m+\frac{j+1}{2}\right)$ where $j=1,3, \ldots,(2 r-1)$ and $m \in \mathbb{N}$ in (2.5), we get that

$$
\begin{align*}
\| f(x) & -f((2 r m+1) x)-\sum_{\ell=1}^{r} f((-m+\ell) x)-\sum_{\ell=1}^{r} f((-m-\ell) x) \| \\
& \leq c\left(|2 r m+1|^{p}+\sum_{\ell=1}^{r}|-m+\ell|^{p}+\sum_{\ell=1}^{r}|m+\ell|^{p}\right)\|x\|^{p} \tag{2.6}
\end{align*}
$$

for all $x \in X \backslash\{0\}$.
Further put

$$
\mathcal{T}_{m} \xi(x):=\xi((2 r m+1) x)+\sum_{\ell=1}^{r} \xi((-m+\ell) x)+\sum_{\ell=1}^{r} \xi((-m-\ell) x)
$$

and

$$
\varepsilon_{m}(x):=c\left(|2 r m+1|^{p}+\sum_{\ell=1}^{r}|-m+\ell|^{p}+\sum_{\ell=1}^{r}|m+\ell|^{p}\right)\|x\|^{p}
$$

for all $x \in X \backslash\{0\}$ and all $\xi \in Y^{X \backslash\{0\}}$. Then the inequality (2.6) takes the form

$$
\left\|\mathcal{T}_{m} f(x)-f(x)\right\| \leq \varepsilon_{m}(x), \quad x \in X \backslash\{0\}
$$

The following operator

$$
\Lambda_{m} \delta(x):=\delta((2 r m+1) x)+\sum_{\ell=1}^{r} \delta((-m+\ell) x)+\sum_{\ell=1}^{r} \delta((-m-\ell) x)
$$

for all $x \in X \backslash\{0\}$ and all $\delta \in \mathbb{R}_{+}^{X \backslash\{0\}}$, has the form described in (H3) with $k=2 r+1$, and

$$
\begin{aligned}
f_{i}(x) & =(-m \pm i) x, \quad i=1,2, \ldots, r \\
f_{2 r+1}(x) & =(2 r m+1) x, \\
L_{i}(x) & =1, \quad i=1,2, \ldots,(2 r+1)
\end{aligned}
$$

Moreover, for every $\xi, \mu \in Y^{X \backslash\{0\}}$

$$
\begin{aligned}
&\left\|\mathcal{T}_{m} \xi(x)-\mathcal{T}_{m} \mu(x)\right\|=\| \xi((2 r m+1) x)+\sum_{\ell=1}^{r} \xi((-m+\ell) x)+\sum_{\ell=1}^{r} \xi((-m-\ell) x) \\
&-\mu((2 r m+1) x)-\sum_{\ell=1}^{r} \mu((-m+\ell) x)-\sum_{\ell=1}^{r} \mu((-m-\ell) x) \| \\
& \leq\|(\xi-\mu)((2 r m+1) x)\|+\sum_{\ell=1}^{r}\|(\xi-\mu)((-m+\ell) x)\|+\sum_{\ell=1}^{r}\|(\xi-\mu)((-m-\ell) x)\|
\end{aligned}
$$

$$
=\sum_{i=1}^{(2 r+1)} L_{i}(x)\left\|\xi\left(f_{i}(x)\right)-\mu\left(f_{i}(x)\right)\right\|,
$$

so (H2) is valid. Now,we can find $m_{0} \in \mathbb{N}$ such that

$$
\alpha_{m}=|2 r m+1|^{p}+\sum_{\ell=1}^{r}|-m+\ell|^{p}+\sum_{\ell=1}^{r}|m+\ell|^{p}<1
$$

for all $m \geq m_{0}$. Therefore, we have

$$
\begin{aligned}
\varepsilon_{m}^{*}(x) & :=\sum_{s=0}^{\infty} \Lambda_{m}^{s} \varepsilon_{m}(x) \\
& =c \alpha_{m} \sum_{s=0}^{\infty} \alpha_{m}^{s}\|x\|^{p} \\
& =\frac{c \alpha_{m}}{1-\alpha_{m}}\|x\|^{p}, \quad x \in X \backslash\{0\}, m \geq m_{0}
\end{aligned}
$$

The rest of the proof is similar to the proof of case 1 .
Corollary 2.2. Let X be a normed space, Y be a Banach space, $c \geq 0, p<0$ and let $f: X \longrightarrow Y$ satisfy

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{2.7}
\end{equation*}
$$

for all $x, y \in X \backslash\{0\}$ where $n \in \mathbb{N}_{0}$. Then f is additive on $X \backslash\{0\}$.
Theorem 2.3. Let X be a normed space, Y be a Banach space, $c \geq 0, p_{i} \in \mathbb{R}$ with $\sum_{i=1}^{n} p_{i}<0$ and let $f: X \longrightarrow Y$ satisfy

$$
\begin{equation*}
\left\|f\left(\sum_{i=1}^{n} x_{i}\right)-\sum_{i=1}^{n} f\left(x_{i}\right)\right\| \leq c\left(\prod_{i=1}^{n}\left\|x_{i}\right\|^{p_{i}}\right) \tag{2.8}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X \backslash\{0\}$ where $n \in \mathbb{N}_{0}$. Then f is additive on $X \backslash\{0\}$.
Proof. Since $\sum_{i=1}^{n} p_{i}<0$, some of p_{i} must be negative. Assume that these are $p_{j}<0$ where $1 \leq j \leq n$. By using the same technic of the proof of Theorem 2.1, we study two cases as follows:

Case 1: n is even

In this case, suppose that $n=2 r+2$ where $r \in \mathbb{N}$. Then the inequality (2.8) can be written as follows

$$
\begin{equation*}
\left\|f\left(\sum_{i=1}^{2 r+2} x_{i}\right)-\sum_{i=1}^{2 r+2} f\left(x_{i}\right)\right\| \leq c\left(\prod_{i=1}^{2 r+2}\left\|x_{i}\right\|^{p_{i}}\right) \tag{2.9}
\end{equation*}
$$

Replacing $x_{(2 r+2)}$ by $((2 r+1) m+1) x, x_{i}$ by $\left(-m-\frac{i}{2}\right) x$ where $i=2,4, \ldots, 2 r$ and x_{j} by $\left(-m+\frac{j-1}{2}\right) x$ where $j=1,3, \ldots,(2 r+1)$ and $m \in \mathbb{N}$ in (2.9), we obtain that

$$
\begin{align*}
& \left\|f(x)-f(((2 r+1) m+1) x)-f(-m x)-\sum_{\ell=1}^{r} f((-m+\ell) x)-\sum_{\ell=1}^{r} f((-m-\ell) x)\right\| \\
& \quad \leq c|m|^{p_{1}} \cdot|(2 r+1) m+1|^{p_{2 r+2}} \cdot \prod_{\ell=1}^{r}\left(|m+\ell|^{p_{2 \ell}} \cdot|-m+\ell|^{p_{2 \ell+1}}\right)\|x\|^{\beta} \tag{2.10}
\end{align*}
$$

for all $x \in X \backslash\{0\}$ where $\beta=\sum_{i=1}^{n} p_{i}$.

Further put
$\mathcal{T}_{m} \xi(x):=\xi(((2 r+1) m+1) x)+\xi(-m x)+\sum_{\ell=1}^{r} \xi((-m+\ell) x)+\sum_{\ell=1}^{r} \xi((-m-\ell) x)$
and

$$
\varepsilon_{m}(x):=\theta|m|^{p_{1}} \cdot|(2 r+1) m+1|^{p_{2 r+2}} \cdot \prod_{\ell=1}^{r}\left(|m+\ell|^{p_{2 \ell}} \cdot|-m+\ell|^{p_{2 \ell+1}}\right)\|x\|^{\beta}
$$

for all $x \in X \backslash\{0\}$ and all $\xi \in Y^{X}$. Thus, the inequality (2.10) takes the following form

$$
\left\|\mathcal{T}_{m} f(x)-f(x)\right\| \leq \varepsilon_{m}(x), \quad x \in X \backslash\{0\}
$$

The following operator
$\Lambda_{m} \delta(x):=\delta(((2 r+1) m+1) x)+\delta(-m x)+\sum_{\ell=1}^{r} \delta((-m+\ell) x)+\sum_{\ell=1}^{r} \delta((-m-\ell) x)$
for all $x \in X \backslash\{0\}$ and all $\delta \in \mathbb{R}_{+}^{X \backslash\{0\}}$, has the form described in (H3) with $k=2 r+2$ and

$$
\begin{aligned}
f_{i}(x) & =(-m \pm i) x, \quad i=1,2, \ldots, r \\
f_{(2 r+1)}(x) & =((2 r+1) m+1) x \\
f_{(2 r+2)}(x) & =-m x, \\
L_{i}(x) & =1, \quad i=1,2, \ldots,(2 r+2)
\end{aligned}
$$

Moreover, for every $\xi, \mu \in Y^{X \backslash\{0\}}$

$$
\begin{aligned}
\left\|\mathcal{T}_{m} \xi(x)-\mathcal{T}_{m} \mu(x)\right\| & =\| \xi(((2 r+1) m+1) x)+\xi(-m x)+\sum_{\ell=1}^{r} \xi((-m+\ell) x) \\
& +\sum_{\ell=1}^{r} \xi((-m-\ell) x)-\mu(((2 r+1) m+1) x)-\mu(-m x) \\
& -\sum_{\ell=1}^{r} \mu((-m+\ell) x)-\sum_{\ell=1}^{r} \mu((-m-\ell) x) \| \\
& \leq\|(\xi-\mu)(((2 r+1) m+1) x)\|+\|(\xi-\mu)(-m x)\| \\
& +\sum_{\ell=1}^{r}\|(\xi-\mu)((-m+\ell) x)\|+\sum_{\ell=1}^{r}\|(\xi-\mu)((-m-\ell) x)\| \\
& =\sum_{i=1}^{(2 r+2)} L_{i}(x)\left\|\xi\left(f_{i}(x)\right)-\mu\left(f_{i}(x)\right)\right\|
\end{aligned}
$$

and so (H2) is valid. Next, we can find $m_{0} \in \mathbb{N}$ such that

$$
\lambda_{m}=|m|^{p_{1}} \cdot|(2 r+1) m+1|^{p_{2 r+2}} \cdot \prod_{\ell=1}^{r}\left(|m+\ell|^{p_{2 \ell}} \cdot|-m+\ell|^{p_{2 \ell+1}}\right)<1
$$

for all $m \geq m_{0}$. Therefore, we have

$$
\varepsilon_{m}^{*}(x):=\sum_{s=0}^{\infty} \Lambda_{m}^{s} \varepsilon_{m}(x)
$$

$$
=\frac{\theta \lambda_{m}}{1-\lambda_{m}}\|x\|^{\beta},
$$

for all $x \in X \backslash\{0\}$ where $m \geq m_{0}$.
The rest of the proof is similar to the proof of Theorem 2.1.

Case 2: n is odd
Let $n=2 r+1$ where $r \in \mathbb{N}$. Then, we can rewrite the inequality (2.8) as follows

$$
\begin{equation*}
\left\|f\left(\sum_{i=1}^{2 r+1} x_{i}\right)-\sum_{i=1}^{2 r+1} f\left(x_{i}\right)\right\| \leq c\left(\prod_{i=1}^{2 r+1}\left\|x_{i}\right\|^{p}\right) . \tag{2.11}
\end{equation*}
$$

Replacing $x_{2 r+1}$ by $(2 r m+1) x, x_{i}$ by $\left(-m-\frac{i}{2}\right) x$ where $i=2,4, \ldots, 2 r$ and x_{j} by $\left(-m+\frac{j+1}{2}\right) x$ where $j=1,3, \ldots,(2 r-1)$ and $m \in \mathbb{N}$ in (2.13), we get that

$$
\begin{gather*}
\left\|f(x)-f((2 r m+1) x)-\sum_{\ell=1}^{r} f((-m+\ell) x)-\sum_{\ell=1}^{r} f((-m-\ell) x)\right\| \\
\leq c|2 r m+1|^{p_{2 r+1}} \cdot \prod_{\ell=1}^{r}\left(|m+\ell|^{p_{2 \ell}} \cdot|-m+\ell|^{p_{2 \ell+1}}\right)\|x\|^{\beta} \tag{2.12}
\end{gather*}
$$

where $\sum_{i=1}^{2 r+1} p_{i}=\beta$ for all $x \in X \backslash\{0\}$.
Further put

$$
\mathcal{T}_{m} \xi(x):=\xi((2 r m+1) x)+\sum_{\ell=1}^{r} \xi((-m+\ell) x)+\sum_{\ell=1}^{r} \xi((-m-\ell) x)
$$

and

$$
\varepsilon_{m}(x):=\theta|2 r m+1|^{p_{2 r+1}} \cdot \prod_{\ell=1}^{r}\left(|m+\ell|^{p_{2 \ell}} \cdot|-m+\ell|^{p_{2 \ell+1}}\right)\|x\|^{\beta}
$$

for all $x \in X \backslash\{0\}$ and all $\xi \in Y^{X \backslash\{0\}}$. Then the inequality (2.12) takes the form

$$
\left\|\mathcal{T}_{m} f(x)-f(x)\right\| \leq \varepsilon_{m}(x), \quad x \in X \backslash\{0\}
$$

The following operator

$$
\Lambda_{m} \delta(x):=\delta((2 r m+1) x)+\sum_{\ell=1}^{r} \delta((-m+\ell) x)+\sum_{\ell=1}^{r} \delta((-m-\ell) x)
$$

for all $x \in X \backslash\{0\}$ and all $\delta \in \mathbb{R}_{+}^{X \backslash\{0\}}$, has the form described in (H3) with $k=2 r+1$, and

$$
\begin{aligned}
f_{i}(x) & =(-m \pm i) x, \quad i=1,2, \ldots, r, \\
f_{2 r+1}(x) & =(2 r m+1) x, \\
L_{i}(x) & =1, \quad i=1,2, \ldots,(2 r+1)
\end{aligned}
$$

Moreover, for every $\xi, \mu \in Y^{X \backslash\{0\}}$

$$
\begin{aligned}
\left\|\mathcal{T}_{m} \xi(x)-\mathcal{T}_{m} \mu(x)\right\| & =\| \xi((2 r m+1) x)+\sum_{\ell=1}^{r} \xi((-m+\ell) x)+\sum_{\ell=1}^{r} \xi((-m-\ell) x) \\
& -\mu((2 r m+1) x)-\sum_{\ell=1}^{r} \mu((-m+\ell) x)
\end{aligned}
$$

$$
\begin{aligned}
& -\sum_{\ell=1}^{r} \mu((-m-\ell) x) \| \\
& \leq\|(\xi-\mu)((2 r m+1) x)\|+\sum_{\ell=1}^{r}\|(\xi-\mu)((-m+\ell) x)\| \\
& +\sum_{\ell=1}^{r}\|(\xi-\mu)((-m-\ell) x)\| \\
& =\sum_{i=1}^{(2 r+1)} L_{i}(x)\left\|\xi\left(f_{i}(x)\right)-\mu\left(f_{i}(x)\right)\right\|
\end{aligned}
$$

and so (H2) is valid. Now,we can find $m_{0} \in \mathbb{N}$ such that

$$
\lambda_{m}=|2 r m+1|^{p_{2 r+1}} \cdot \prod_{\ell=1}^{r}\left(|m+\ell|^{p_{2 \ell}} \cdot|-m+\ell|^{p_{2 \ell+1}}\right)<1
$$

for all $m \geq m_{0}$. Therefore, we have

$$
\begin{aligned}
\varepsilon_{m}^{*}(x) & :=\sum_{s=0}^{\infty} \Lambda_{m}^{s} \varepsilon_{m}(x) \\
& =c\left(|2 r m+1|^{p_{2 r+1}} \cdot \prod_{\ell=1}^{r}\left(|m+\ell|^{p_{2 \ell}} \cdot|-m+\ell|^{p_{2 \ell+1}}\right)\right) \sum_{s=0}^{\infty} \Lambda_{m}^{s}\|x\|^{\beta} \\
& =\frac{c \lambda_{m}}{1-\lambda_{m}}\|x\|^{\beta}, \quad x \in X \backslash\{0\}, m \geq m_{0} .
\end{aligned}
$$

The rest of the proof is similar to the proof of case 1.
Corollary 2.4. Let X be a normed space, Y be a Banach space, $c \geq 0, p, q \in \mathbb{R}$, $p+q<0$ and let $f: X \longrightarrow Y$ satisfy

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq c\left(\|x\|^{p} \cdot\|y\|^{q}\right) \tag{2.13}
\end{equation*}
$$

for all $x, y \in X \backslash\{0\}$ where $n \in \mathbb{N}_{0}$. Then f is additive on $X \backslash\{0\}$.

References

[1] A. Bahyrycz and M. Piszczek, Hyperstability of the Jensen functional equation, Acta Math. Hungar., 142, 2 (2014), 353-365.
[2] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J., 16, (1949), 385-397.
[3] J. Brzdȩk, J. Chudziak and Zs. Páles, A fixed point approach to stability of functional equations, Nonlinear Anal., 74 (2011), 6728-6732.
[4] J. Brzdȩk, Hyperstability of the Cauchy equation on restricted domains, Acta Mathematica Hungarica, 141 1-2, (2013), 58-67.
[5] J. Brzdȩk, Remarks on hyperstability of the Cauchy functional equation, Aequat. Math., 86, (2013), 255-267.
[6] J. Brzdȩk, A hyperstability result for the Cauchy equation, Society Bulletin of the Australian Mathematical Society, 89, 01, (2014), 33-40.
[7] L. Cădariu and V. Radu, Fixed point and the stability of Jensens functional equation, J. Inequal. Pure Appl. Math., 4 1, (2003), Article 4, pp. 7.
[8] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184, (1994), 431-436.
[9] E. Gselmann, Hyperstability of a functional equation, Acta Mathematica Hungarica, 124, (2009), 179-188.
[10] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., 27, (1941), 222-224.
[11] Gy. Maksa and Zs. Páles, Hyperstability of a class of linear functional equations, Acta Math. Acad. Paedag. Nyíregyháziensis, 17, (2001), 107-112.
[12] M. Piszczek and J. Szczawińska, Hyperstability of the Drygas Functional Equation, Journal of Function Spaces and Applications, Vol. 2013, (2013), 1-5.
[13] J. M. Rassias, Complete solution of the multi-dimentional problem of Ulam, Discuss. Math., 14, (1994), 101-107.
[14] Th. M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72, (1978), 297-300.
[15] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ. New York, 1961. Problems in Modern Mathematics, Wiley, New York, 1964.

[^0]: * Corresponding author.

 Email address : muaadh 1979@hotmail.fr; charifi2000@yahoo.fr; samkabbaj@yahoo.fr.
 Article history : Received July 9, 2014 Accepted December 23, 2015.

