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ABSTRACT. The aim of this paper is to offer hyperstability results for the Cauchy functional
equation

f

(
n∑

i=1

xi

)
=

n∑
i=1

f(xi)

in Banach spaces. Namely, we show that a function satisfying the equation approximately
must be actually a solution to it.
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1. INTRODUCTION

LetX and Y be Banach spaces. A mappingX :−→ Y is called, additive function,
if it satisfies the Cauchy functional equation

f(x+ y) = f(x) + f(y) for all x, y ∈ X.

In 1940, S. M. Ulam [15] raised the question concerning the stability of group ho
momorphisms: “when is it true that the solution of an equation differing slightly
from a given one, must of necessity be close to the solution of the given equation?”.
The first answer to Ulams question, concerning the Cauchy equation, was given
by D. H. Hyers [10]. Thus we speak about the HyersUlam stability. This termi
nology is also applied to the case of other functional equations. Th. M. Rassias
[14] generalized the theorem of Hyers for approximately linear mappings [14]. The
stability phenomena that was proved by Th. M. Rassias [14] is called the Hyers
UlamRassias stability. The modified Ulams stability problem with the generalized
control function was proved by P. Găvruta [8].
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In 1994, J. M. Rassias [13] studied the Ulams problem of the following equation

f

(
n∑

i=1

xi

)
=

n∑
i=1

f(xi) (1.1)

for all x1, x2, ..., xn ∈ X.
We say a functional equation D is hyperstable if any function f satisfying the

equation D approximately is a true solution of D. It seems that the first hy
perstability result was published in [2] and concerned the ring homomorphisms.
However, The term hyperstability has been used for the first time in [11]. Quite
often the hyperstability is confused with superstability, which admits also bounded
functions.

The hyperstability problem of various types of functional equations have been
investigated by a number of authors, we refer, for example, to [1], [6], [4], [5], [9] and
[12]. Throughout this paper, we present the hyperstability results for the additive
functional equation (1.1).

The method of the proofs used in the main results is based on a fixed point result
that can be derived from [3, Theorem 1]. To present it we need the following three
hypotheses:

(H1) X is a nonempty set, Y is a Banach space, f1, ..., fk : X −→ Y and
L1, ..., Lk : X −→ R+ are given.

(H2) T : Y X −→ Y X is an operator satisfying the inequality

∥T ξ(x)− T µ(x)∥ ≤
k∑

i=1

Li(x)∥ξ (fi(x))− µ (fi(x)) ∥, ξ, µ ∈ Y X , x ∈ X.

(H3) Λ : RX
+ −→ RX

+ is a linear operator defined by

Λδ(x) :=
k∑

i=1

Li(x)δ (fi(x)) , δ ∈ RX
+ , x ∈ X.

The following theorem is the basic tool in this paper. We use it to assert the
existence of a unique fixed point of operator T : Y X −→ Y X .

Theorem 1.1. Let hypotheses (H1)(H3) be valid and functions ε : X −→ R+ and
φ : X −→ Y fulfil the following two conditions

∥T φ(x)− φ(x)∥ ≤ ε(x), x ∈ X,

ε∗(x) :=

∞∑
n=0

Λnε(x) <∞, x ∈ X.

Then there exits a unique fixed point ψ of T with

∥φ(x)− ψ(x)∥ ≤ ε∗(x), x ∈ X.

Moreover,

ψ(x) := lim
n→∞

T nφ(x), x ∈ X.

Numerous papers on this subject have been published and we refer to [1], [6],
[4], [5], [9], [12].
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2. Hyperstability results

The following theorems and corollaries are the main results in this paper and
concern the hyperstability of equation (1.1).

Theorem 2.1. Let X be a normed space, Y be a Banach space, c ≥ 0, p < 0 and let
f : X −→ Y satisfy ∥∥∥∥∥f

(
n∑

i=1

xi

)
−

n∑
i=1

f(xi)

∥∥∥∥∥ ≤ c

(
n∑

i=1

∥xi∥p
)

(2.1)

for all x1, x2, ..., xn ∈ X \ {0} where n is an integer with n ≥ 2. Then f is additive
on X \ {0}.

Proof. We study two cases as follows:
Case 1: n is even
In this case, let n = 2r + 2 where r ∈ N. Then, the inequality (2.1) can be written
as follows ∥∥∥∥∥f

(
2r+2∑
i=1

xi

)
−

2r+2∑
i=1

f(xi)

∥∥∥∥∥ ≤ c

(
2r+2∑
i=1

∥xi∥p
)

(2.2)

where r ∈ N.
Replacing x(2r+2) by ((2r + 1)m+ 1)x, xi by

(
−m− i

2

)
x where i = 2, 4, ..., 2r and

xj by
(
−m+ j−1

2

)
where j = 1, 3, ..., (2r + 1) and m ∈ N in (2.2), we obtain that

∥∥∥∥∥f(x)− f
((

(2r + 1)m+ 1
)
x
)
− f(−mx)−

r∑
ℓ=1

f
(
(−m+ ℓ)x

)
−

r∑
ℓ=1

f
(
(−m− ℓ)x

)∥∥∥∥∥
≤ c

((
(2r + 1)m+ 1

)p
+mp +

r∑
ℓ=1

∣∣ℓ−m
∣∣p + r∑

ℓ=1

∣∣ℓ+m
∣∣p) ∥x∥p (2.3)

for all x ∈ X \ {0}.
Further put

Tmξ(x) := ξ
((

(2r+ 1)m+ 1
)
x
)
+ ξ(−mx) +

r∑
ℓ=1

ξ
(
(−m+ ℓ)x

)
+

r∑
ℓ=1

ξ
(
(−m− ℓ)x

)
and

εm(x) := c

((
(2r + 1)m+ 1

)p
+mp +

r∑
ℓ=1

∣∣ℓ−m
∣∣p + r∑

ℓ=1

∣∣ℓ+m
∣∣p) ∥x∥p

for all x ∈ X \ {0} and all ξ ∈ Y X\{0}. The inequality (2.3) now takes the following
form

∥Tmf(x)− f(x)∥ ≤ εm(x), x ∈ X \ {0}.
The following operator

Λmδ(x) := δ
((

(2r+1)m+1
)
x
)
+ δ(−mx) +

r∑
ℓ=1

δ
(
(−m+ ℓ)x

)
+

r∑
ℓ=1

δ
(
(−m− ℓ)x

)
for all x ∈ X\{0} and all δ ∈ RX\{0}

+ , has the form described in (H3) with k = 2r+2,
and
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fi(x) = (−m± i)x, i = 1, 2, ..., r,

f(2r+1)(x) =
(
(2r + 1)m+ 1

)
x,

f(2r+2)(x) = −mx,
Li(x) = 1, i = 1, 2, ..., (2r + 2).

Moreover, for every ξ, µ ∈ Y X\{0}∥∥∥Tmξ(x)− Tmµ(x)
∥∥∥ =

∥∥∥ξ(((2r + 1)m+ 1
)
x
)
+ ξ(−mx)

+
r∑

ℓ=1

ξ
(
(−m+ ℓ)x

)
+

r∑
ℓ=1

ξ
(
(−m− ℓ)x

)
− µ

((
(2r + 1)m+ 1

)
x
)
− µ(−mx)

−
r∑

ℓ=1

µ
(
(−m+ ℓ)x

)
−

r∑
ℓ=1

µ
(
(−m− ℓ)x

)∥∥∥
≤

∥∥∥(ξ − µ)
((

(2r + 1)m+ 1
)
x
)∥∥∥+ ∥(ξ − µ)(−mx)∥

+
r∑

ℓ=1

∥∥(ξ − µ)
(
(−m+ ℓ)x

)∥∥+ r∑
ℓ=1

∥∥(ξ − µ)
(
(−m− ℓ)x)

)∥∥
=

(2r+2)∑
i=1

Li(x)
∥∥ξ(fi(x))− µ

(
fi(x)

)∥∥ ,
and so (H2) is valid. Next, we can find m0 ∈ N such that

αm =
(
(2r + 1)m+ 1

)p
+mp +

r∑
ℓ=1

∣∣ℓ−m
∣∣p + r∑

ℓ=1

(
m+ ℓ

)p
< 1

for all m ≥ m0. Therefore, we have

ε∗m(x) :=
∞∑
s=0

Λs
mεm(x)

= c αm

∞∑
s=0

αs
m∥x∥p

=
c αm

1− αm
∥x∥p, x ∈ X \ {0},m ≥ m ≥ m0.

Thus, according to Theorem 1.1, for each m ≥ m0 there exists a unique solution
Fm : X \ {0} −→ Y of the equation

Fm(x) = Fm

((
(2r+1)m+1

)
x
)
+Fm(−mx)+

r∑
ℓ=1

Fm

(
(−m+ℓ)x

)
+

r∑
ℓ=1

Fm

(
(−m−ℓ)x

)
such that

∥f(x)− Fm(x)∥ ≤ c αm

1− αm
∥x∥p, x ∈ X \ {0},m ≥ m ≥ m0.

Moreover,
Fm(x) := lim

s→∞
T s
mf(x), x ∈ X \ {0}.

To prove that Fm(x) satisfies the Cauchy equation (1.1) on X \ {0} observe that
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∥∥∥∥∥T s
mf

(
n∑

i=1

xi

)
−

n∑
i=1

T s
mf(xi)

∥∥∥∥∥ ≤ c αs
m

(
n∑

i=1

∥xi∥p
)

(2.4)

for every x1, x2, ..., xn ∈ X \ {0} and s ∈ N0.
Indeed, if s = 0, then (2.4) is simply (2.1). So, take t ∈ N0 and suppose that (2.4)
holds for s = t and x1, x2, ..., xn ∈ X \ {0}. Then∥∥∥∥∥T t+1

m f

(
n∑

i=1

xi

)
−

n∑
i=1

T t+1
m f(xi)

∥∥∥∥∥ =

∥∥∥∥∥T t
mf

(
n∑

i=1

(
(2r + 1)m+ 1

)
xi

)

+T t
mf

(
n∑

i=1

(−mxi)

)
+

r∑
ℓ=1

T t
mf

(
n∑

i=1

(
−m+ ℓ

)
xi

)
+

r∑
ℓ=1

T t
mf

(
n∑

i=1

(
−m− ℓ

)
xi

)

−
n∑

i=1

T t
mf
((

(2r + 1)m+ 1
)
xi

)
−

n∑
i=1

T t
mf(−mxi)

−
r∑

ℓ=1

(
n∑

i=1

T t
mf
(
(−m+ ℓ)xi

))
−

r∑
ℓ=1

(
n∑

i=1

T t
mf
((

−m− ℓ
)
xi

))∥∥∥∥∥
≤

∥∥∥∥∥T t
mf

(
n∑

i=1

(
(2r + 1)m+ 1

)
xi

)
−

n∑
i=1

T t
mf
((

(2r + 1)m+ 1
)
xi

)∥∥∥∥∥
+

∥∥∥∥∥T t
mf

(
n∑

i=1

(−mxi)

)
−

n∑
i=1

T t
mf(−mxi)

∥∥∥∥∥
+

∥∥∥∥∥
r∑

ℓ=1

T t
mf

(
n∑

i=1

(−m+ ℓ)xi

)
−

r∑
ℓ=1

(
n∑

i=1

T t
mf
(
(−m+ ℓ)xi

))∥∥∥∥∥
+

∥∥∥∥∥
r∑

ℓ=1

T t
mf

(
n∑

i=1

(−m− ℓ)xi

)
−

r∑
ℓ=1

(
n∑

i=1

T t
mf
(
(−m− ℓ)xi

))∥∥∥∥∥
≤ c αt

m

((
(2r + 1)m+ 1

)p
+mp +

r∑
ℓ=1

∣∣ℓ−m
∣∣p + r∑

ℓ=1

∣∣−m− ℓ
∣∣p) n∑

i=1

∥xi∥p

= c αt+1
m

n∑
i=1

∥xi∥p.

By induction, we have shown that (2.4) holds for all x1, x2, ..., xn ∈ X \ {0} and
s ∈ N0. Letting s −→ ∞ in (2.4), we obtain that

Fm

(
n∑

i=1

xi

)
=

n∑
i=1

Fm(xi), x1, x2, ..., xn ∈ X \ {0}.

Thus, we have proved that for every m ≥ m0 there exists a unique function Fm :
X \ {0} −→ Y such that Fm is a solution of the Cauchy equation (1.1) on X \ {0}
and

∥f(x)− Fm(x)∥ ≤ c αm

1− αm
∥x∥p, x ∈ X \ {0}.

Since p < 0, the sequence {
c αm

1− αm
∥x∥p

}
m≥m0
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tends to zero when m −→ ∞. Consequently, f satisfies the Cauchy equation (1.1)
on X \ {0} as the pointwise of (Fm)m≥m0 .

Case 2: n is odd
Letting n = 2r + 1 where r ∈ N, we can rewrite the inequality (2.1) as follows∥∥∥∥∥f

(
2r+1∑
i=1

xi

)
−

2r+1∑
i=1

f(xi)

∥∥∥∥∥ ≤ c

(
2r+1∑
i=1

∥xi∥p
)
. (2.5)

Replacing x2r+1 by (2rm+ 1)x, xi by (−m− i
2 )x where i = 2, 4, ..., 2r and xj by

(−m+ j+1
2 ) where j = 1, 3, ..., (2r − 1) and m ∈ N in (2.5), we get that∥∥∥∥∥f(x)− f

(
(2rm+ 1)x

)
−

r∑
ℓ=1

f
(
(−m+ ℓ)x

)
−

r∑
ℓ=1

f
(
(−m− ℓ)x

)∥∥∥∥∥
≤ c

(∣∣2rm+ 1
∣∣p + r∑

ℓ=1

∣∣−m+ ℓ
∣∣p + r∑

ℓ=1

∣∣m+ ℓ
∣∣p) ∥x∥p (2.6)

for all x ∈ X \ {0}.
Further put

Tmξ(x) := ξ
(
(2rm+ 1)x

)
+

r∑
ℓ=1

ξ
(
(−m+ ℓ)x

)
+

r∑
ℓ=1

ξ
(
(−m− ℓ)x

)
and

εm(x) := c

(∣∣2rm+ 1
∣∣p + r∑

ℓ=1

∣∣−m+ ℓ
∣∣p + r∑

ℓ=1

∣∣m+ ℓ
∣∣p) ∥x∥p

for all x ∈ X \ {0} and all ξ ∈ Y X\{0}. Then the inequality (2.6) takes the form

∥Tmf(x)− f(x)∥ ≤ εm(x), x ∈ X \ {0}.
The following operator

Λmδ(x) := δ
(
(2rm+ 1)x

)
+

r∑
ℓ=1

δ
(
(−m+ ℓ)x

)
+

r∑
ℓ=1

δ
(
(−m− ℓ)x

)
for all x ∈ X\{0} and all δ ∈ RX\{0}

+ , has the form described in (H3) with k = 2r+1,
and

fi(x) = (−m± i)x, i = 1, 2, ..., r,

f2r+1(x) = (2rm+ 1)x,

Li(x) = 1, i = 1, 2, ..., (2r + 1).

Moreover, for every ξ, µ ∈ Y X\{0}

∥∥Tmξ(x)− Tmµ(x)
∥∥ =

∥∥∥∥∥ξ((2rm+ 1)x
)
+

r∑
ℓ=1

ξ
(
(−m+ ℓ)x

)
+

r∑
ℓ=1

ξ
(
(−m− ℓ)x

)
−µ
(
(2rm+ 1)x

)
−

r∑
ℓ=1

µ
(
(−m+ ℓ)x

)
−

r∑
ℓ=1

µ
(
(−m− ℓ)x

)∥∥∥∥∥
≤
∥∥∥(ξ − µ)

(
(2rm+ 1)x

)∥∥∥+ r∑
ℓ=1

∥∥∥(ξ − µ)
(
(−m+ ℓ)x

)∥∥∥+ r∑
ℓ=1

∥∥∥(ξ − µ)
(
(−m− ℓ)x

)∥∥∥
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=

(2r+1)∑
i=1

Li(x)
∥∥∥ξ(fi(x))− µ

(
fi(x)

)∥∥∥,
so (H2) is valid. Now,we can find m0 ∈ N such that

αm =
∣∣2rm+ 1

∣∣p + r∑
ℓ=1

∣∣−m+ ℓ
∣∣p + r∑

ℓ=1

∣∣m+ ℓ
∣∣p < 1

for all m ≥ m0. Therefore, we have

ε∗m(x) :=
∞∑
s=0

Λs
mεm(x)

= c αm

∞∑
s=0

αs
m∥x∥p

=
c αm

1− αm
∥x∥p, x ∈ X \ {0},m ≥ m0.

The rest of the proof is similar to the proof of case 1. �

Corollary 2.2. Let X be a normed space, Y be a Banach space, c ≥ 0, p < 0 and
let f : X −→ Y satisfy

∥f(x+ y)− f(x)− f(y)∥ ≤ θ
(
∥x∥p + ∥y∥p

)
(2.7)

for all x, y ∈ X \ {0} where n ∈ N0. Then f is additive on X \ {0}.

Theorem 2.3. Let X be a normed space, Y be a Banach space, c ≥ 0, pi ∈ R with∑n
i=1 pi < 0 and let f : X −→ Y satisfy∥∥∥∥∥f

(
n∑

i=1

xi

)
−

n∑
i=1

f(xi)

∥∥∥∥∥ ≤ c

(
n∏

i=1

∥xi∥pi

)
(2.8)

for all x1, x2, ..., xn ∈ X \ {0} where n ∈ N0. Then f is additive on X \ {0}.

Proof. Since
∑n

i=1 pi < 0, some of pi must be negative. Assume that these are
pj < 0 where 1 ≤ j ≤ n. By using the same technic of the proof of Theorem 2.1, we
study two cases as follows:
Case 1: n is even
In this case, suppose that n = 2r + 2 where r ∈ N. Then the inequality (2.8) can
be written as follows∥∥∥∥∥f

(
2r+2∑
i=1

xi

)
−

2r+2∑
i=1

f(xi)

∥∥∥∥∥ ≤ c

(
2r+2∏
i=1

∥xi∥pi

)
. (2.9)

Replacing x(2r+2) by ((2r + 1)m+ 1)x, xi by
(
−m− i

2

)
x where i = 2, 4, ..., 2r and

xj by
(
−m+ j−1

2

)
x where j = 1, 3, ..., (2r + 1) and m ∈ N in (2.9), we obtain that∥∥∥∥∥f(x)− f

((
(2r + 1)m+ 1

)
x
)
− f(−mx)−

r∑
ℓ=1

f
(
(−m+ ℓ)x

)
−

r∑
ℓ=1

f
(
(−m− ℓ)x

)∥∥∥∥∥
≤ c|m|p1 ·

∣∣(2r + 1)m+ 1
∣∣p2r+2 ·

r∏
ℓ=1

(∣∣m+ ℓ
∣∣p2ℓ ·

∣∣−m+ ℓ
∣∣p2ℓ+1

)
∥x∥β (2.10)

for all x ∈ X \ {0} where β =
∑n

i=1 pi.
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Further put

Tmξ(x) := ξ
((

(2r+1)m+1
)
x
)
+ ξ(−mx)+

r∑
ℓ=1

ξ
(
(−m+ ℓ)x

)
+

r∑
ℓ=1

ξ
(
(−m− ℓ)x

)
and

εm(x) := θ|m|p1 ·
∣∣(2r + 1)m+ 1

∣∣p2r+2 ·
r∏

ℓ=1

(∣∣m+ ℓ
∣∣p2ℓ ·

∣∣−m+ ℓ
∣∣p2ℓ+1

)
∥x∥β

for all x ∈ X \ {0} and all ξ ∈ Y X . Thus, the inequality (2.10) takes the following
form

∥Tmf(x)− f(x)∥ ≤ εm(x), x ∈ X \ {0}.
The following operator

Λmδ(x) := δ
((

(2r+1)m+1
)
x
)
+ δ(−mx) +

r∑
ℓ=1

δ
(
(−m+ ℓ)x

)
+

r∑
ℓ=1

δ
(
(−m− ℓ)x

)
for all x ∈ X \{0} and all δ ∈ RX\{0}

+ , has the form described in (H3) with k = 2r+2
and

fi(x) = (−m± i)x, i = 1, 2, ..., r,

f(2r+1)(x) =
(
(2r + 1)m+ 1

)
x,

f(2r+2)(x) = −mx,
Li(x) = 1, i = 1, 2, ..., (2r + 2).

Moreover, for every ξ, µ ∈ Y X\{0}∥∥∥Tmξ(x)− Tmµ(x)
∥∥∥ =

∥∥∥∥∥ξ(((2r + 1)m+ 1
)
x
)
+ ξ(−mx) +

r∑
ℓ=1

ξ
(
(−m+ ℓ)x

)
+

r∑
ℓ=1

ξ
(
(−m− ℓ)x

)
− µ

((
(2r + 1)m+ 1

)
x
)
− µ(−mx)

−
r∑

ℓ=1

µ
(
(−m+ ℓ)x

)
−

r∑
ℓ=1

µ
(
(−m− ℓ)x

)∥∥∥∥∥
≤
∥∥∥(ξ − µ)

((
(2r + 1)m+ 1

)
x
)∥∥∥+ ∥∥(ξ − µ)(−mx)

∥∥
+

r∑
ℓ=1

∥∥(ξ − µ)
(
(−m+ ℓ)x

)∥∥+ r∑
ℓ=1

∥∥(ξ − µ)
(
(−m− ℓ)x

)∥∥
=

(2r+2)∑
i=1

Li(x)
∥∥∥ξ(fi(x))− µ

(
fi(x)

)∥∥∥ ,
and so (H2) is valid. Next, we can find m0 ∈ N such that

λm = |m|p1 ·
∣∣(2r + 1)m+ 1

∣∣p2r+2 ·
r∏

ℓ=1

(∣∣m+ ℓ
∣∣p2ℓ ·

∣∣−m+ ℓ
∣∣p2ℓ+1

)
< 1

for all m ≥ m0. Therefore, we have

ε∗m(x) :=
∞∑
s=0

Λs
mεm(x)
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=
θ λm
1− λm

∥x∥β ,

for all x ∈ X \ {0} where m ≥ m0.
The rest of the proof is similar to the proof of Theorem 2.1.

Case 2: n is odd
Let n = 2r + 1 where r ∈ N. Then, we can rewrite the inequality (2.8) as follows∥∥∥∥∥f

(
2r+1∑
i=1

xi

)
−

2r+1∑
i=1

f(xi)

∥∥∥∥∥ ≤ c

(
2r+1∏
i=1

∥xi∥p
)
. (2.11)

Replacing x2r+1 by (2rm+ 1)x, xi by (−m− i
2 )x where i = 2, 4, ..., 2r and xj by

(−m+ j+1
2 )x where j = 1, 3, ..., (2r − 1) and m ∈ N in (2.13), we get that∥∥∥∥∥f(x)− f

(
(2rm+ 1)x

)
−

r∑
ℓ=1

f
(
(−m+ ℓ)x

)
−

r∑
ℓ=1

f
(
(−m− ℓ)x

)∥∥∥∥∥
≤ c

∣∣2rm+ 1
∣∣p2r+1 ·

r∏
ℓ=1

(∣∣m+ ℓ
∣∣p2ℓ ·

∣∣−m+ ℓ
∣∣p2ℓ+1

)
∥x∥β (2.12)

where
∑2r+1

i=1 pi = β for all x ∈ X \ {0}.
Further put

Tmξ(x) := ξ
(
(2rm+ 1)x

)
+

r∑
ℓ=1

ξ
(
(−m+ ℓ)x

)
+

r∑
ℓ=1

ξ
(
(−m− ℓ)x

)
and

εm(x) := θ
∣∣2rm+ 1

∣∣p2r+1 ·
r∏

ℓ=1

(∣∣m+ ℓ
∣∣p2ℓ ·

∣∣−m+ ℓ
∣∣p2ℓ+1

)
∥x∥β

for all x ∈ X \ {0} and all ξ ∈ Y X\{0}. Then the inequality (2.12) takes the form

∥Tmf(x)− f(x)∥ ≤ εm(x), x ∈ X \ {0}.
The following operator

Λmδ(x) := δ
(
(2rm+ 1)x

)
+

r∑
ℓ=1

δ
(
(−m+ ℓ)x

)
+

r∑
ℓ=1

δ
(
(−m− ℓ)x

)
for all x ∈ X\{0} and all δ ∈ RX\{0}

+ , has the form described in (H3) with k = 2r+1,
and

fi(x) = (−m± i)x, i = 1, 2, ..., r,

f2r+1(x) = (2rm+ 1)x,

Li(x) = 1, i = 1, 2, ..., (2r + 1).

Moreover, for every ξ, µ ∈ Y X\{0}

∥∥Tmξ(x)− Tmµ(x)
∥∥ =

∥∥∥∥∥ξ((2rm+ 1)x
)
+

r∑
ℓ=1

ξ
(
(−m+ ℓ)x

)
+

r∑
ℓ=1

ξ
(
(−m− ℓ)x

)
−µ
(
(2rm+ 1)x

)
−

r∑
ℓ=1

µ
(
(−m+ ℓ)x

)



136 M. ALMAHALEBI ET AL. /JNAO : VOL.6, NO.2, (2015), 127137

−
r∑

ℓ=1

µ
(
(−m− ℓ)x

)∥∥∥∥∥
≤
∥∥∥(ξ − µ)

(
(2rm+ 1)x

)∥∥∥+ r∑
ℓ=1

∥∥∥(ξ − µ)
(
(−m+ ℓ)x

)∥∥∥
+

r∑
ℓ=1

∥∥∥(ξ − µ)
(
(−m− ℓ)x

)∥∥∥
=

(2r+1)∑
i=1

Li(x)
∥∥∥ξ(fi(x))− µ

(
fi(x)

)∥∥∥ ,
and so (H2) is valid. Now,we can find m0 ∈ N such that

λm =
∣∣2rm+ 1

∣∣p2r+1 ·
r∏

ℓ=1

(∣∣m+ ℓ
∣∣p2ℓ ·

∣∣−m+ ℓ
∣∣p2ℓ+1

)
< 1

for all m ≥ m0. Therefore, we have

ε∗m(x) :=

∞∑
s=0

Λs
mεm(x)

= c

(∣∣2rm+ 1
∣∣p2r+1 ·

r∏
ℓ=1

(∣∣m+ ℓ
∣∣p2ℓ ·

∣∣−m+ ℓ
∣∣p2ℓ+1

)) ∞∑
s=0

Λs
m∥x∥β

=
c λm

1− λm
∥x∥β , x ∈ X \ {0},m ≥ m0.

The rest of the proof is similar to the proof of case 1. �

Corollary 2.4. Let X be a normed space, Y be a Banach space, c ≥ 0, p, q ∈ R,
p+ q < 0 and let f : X −→ Y satisfy

∥f(x+ y)− f(x)− f(y)∥ ≤ c
(
∥x∥p · ∥y∥q

)
(2.13)

for all x, y ∈ X \ {0} where n ∈ N0. Then f is additive on X \ {0}.
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