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ABSTRACT. The aim of this paper is to offer hyperstability results for the Cauchy functional
equation

f <Z$z> = Zf(wi)

in Banach spaces. Namely, we show that a function satisfying the equation approximately
must be actually a solution to it.
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1. INTRODUCTION

Let X and Y be Banach spaces. Amapping X :— Y is called, additive function,
if it satisfies the Cauchy functional equation

flx+y) = f(z)+ fly) forall z,y€ X.

In 1940, S. M. Ulam [15] raised the question concerning the stability of group ho-
momorphisms: “when is it true that the solution of an equation differing slightly
from a given one, must of necessity be close to the solution of the given equation?”.
The first answer to Ulams question, concerning the Cauchy equation, was given
by D. H. Hyers [10]. Thus we speak about the Hyers-Ulam stability. This termi-
nology is also applied to the case of other functional equations. Th. M. Rassias
[14] generalized the theorem of Hyers for approximately linear mappings [14]. The
stability phenomena that was proved by Th. M. Rassias [14] is called the Hyers-
Ulam-Rassias stability. The modified Ulams stability problem with the generalized
control function was proved by P. Gavruta [8].
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In 1994, J. M. Rassias [13] studied the Ulams problem of the following equation

f (Zx) :Zf(zi) (1.1)

for all 1, x9,...,x, € X.

We say a functional equation ® is hyperstable if any function f satisfying the
equation ® approximately is a true solution of ®. It seems that the first hy-
perstability result was published in [2] and concerned the ring homomorphisms.
However, The term hyperstability has been used for the first time in [11]. Quite
often the hyperstability is confused with superstability, which admits also bounded
functions.

The hyperstability problem of various types of functional equations have been
investigated by a number of authors, we refer, for example, to [1], [6], [4], [5], [9] and
[12]. Throughout this paper, we present the hyperstability results for the additive
functional equation (1.1).

The method of the proofs used in the main results is based on a fixed point result
that can be derived from [3, Theorem 1]. To present it we need the following three
hypotheses:

(H1) X is a nonempty set, Y is a Banach space, fi,...,fr : X — Y and
Lq,...,L;: X — R, are given.
H2) 7 : YX — Y X is an operator satisfying the inequality

k
I1T€(@) = Tu(@)| < Y- Li@)lE (fi(z) = u(fi(2)) Il Luevy™, zeX.
i=1

(H3) A: Rf — Rf is a linear operator defined by

k
AS(z) =Y Li(2)s (fi(x)), §eRY, zeX.

i=1

The following theorem is the basic tool in this paper. We use it to assert the
existence of a unique fixed point of operator 7 : YX — Y X,

Theorem 1.1. Let hypotheses (H1)-(H3) be valid and functions € : X — R, and
v : X — 'Y fulfil the following two conditions

[Te(x) — o(@)| < e(), z € X,
e*(z) = i/\"s(x) < 00, r e X.
n=0

Then there exits a unique fixed point v of T with

lo(z) = ()| < e*(x), z € X.
Moreover,
P(x) = nl;ngo T"p(x), z e X.

Numerous papers on this subject have been published and we refer to [1], [6],

(41, [51, 91, [12].
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2. HYPERSTABILITY RESULTS

The following theorems and corollaries are the main results in this paper and
concern the hyperstability of equation (1.1).

Theorem 2.1. Let X be a normed space, Y be a Banach space, ¢ > 0, p < 0 and let
f: X — Y satisfy

‘f (Zx> -3 f@) <c(z ||xz-||f’> 2.1
=1 =1 =1

forall z1,z9,...,x, € X \ {0} where n is an integer with n > 2. Then f is additive
on X \ {0}.

Proof. We study two cases as follows:
Case 1: n is even
In this case, let n = 2r 4+ 2 where r € N. Then, the inequality (2.1) can be written

as follows
2r+-2 2r+-2 2r4-2
Hf (Z x> -3 )| <e (Z ||xi|p> 2.2)
i=1 i=1 i=1

where r € N. _
Replacing z(z,42y by ((2r +1)m + 1) z, z; by (—m - %) x where 1 = 2,4, ..., 2r and
x; by (—m + %) where j = 1,3,...,(2r + 1) and m € N in (2.2), we obtain that

for all z € X \ {0}.
Further put

f(z) — f(((Qr + 1)m + 1)30) — f(—=mzx) — Z f((=m+0)z) - Z f((=m —0)z)
=1 =1

sc¢ (((27’ +1)m + l)p +mP 4y [e—m|" Y|+ m|p> lz|F ©@.3)

/=1 (=1

T ™

Tmé(x) = f(((Zr +1)m + l)x) +&(—max) + Z E((—=m+0)z) + Zf((—m —0)z)
=1 =1
and

em(z) :=c <((27“ +1)m + 1)p +mP + Z ‘E - m’p + Z |€+ m’p> |l |?
=1 =1

forall z € X \ {0} and all £ € YX\MC}, The inequality (2.3) now takes the following
form

[T f (@) = f(@)]| < em(2), z € X\ {0}.
The following operator
Amd(z) == 5(((2r F)m+ 1)90) +6(—mz)+ Y 6((~m+0)z) + 3 8((—m — O)x)
(=1 £=1

forallz € X\{0}andallé € Rf\{o}, has the form described in (H3) with k = 2r+2,
and
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file) = (-mEi)z, i=1,2,..,r
fersn(@) = (@r+1)m+ 1)z,
2r+2)($) = —mx,
Li(z) = 1, i=1,2,..,(2r +2).
Moreover, for every &, u € Y X\0}
|7t @) = Tnta)]| = Hg( 27’+1)m+1m>+§ —mz)
+ Z& —m+Oz) + Y &((~m — O)z)

=1
- (((2r+1)m+1 x) u(—mz)

- Z,u((—m—i—()x) - u((—m—f)x)H

<
<

IN
~
\
E
/N
N
[\
3
+
N
3

@H+H€*MX*mMH
+ D lE=m(=m+ 02 H+§sz ) ((=m = 0))) |

= Li(z) ||€(fi(x)) — p(fi(2)) ]|,
and so (H2) is valid. Next, we can find mg € N such that

= (Cr e 1) 3 (s ) <
=1
for all m > mg. Therefore, we have

er(x) = Z AS em ()
s=0

oo
= candanlal’

ca
= 1 m|| 7, z € X\ {0},m >m > my.
— Qi
Thus, according to Theorem 1.1, for each m > mg there exists a unique solution

F,, : X\ {0} — Y of the equation

Fm(as):Fm(((2r+1)m+1)x>+Fm(fmx)+iFm —m+l)z +ZF 0)z)
/=1

such that

/() = Fno)] < 12

lelP,  xeX\{0},m>m > mo.

Moreover,
Fo(z) = lim T3f(x), o€ X\ {0}
§—00
To prove that F,(x) satisfies the Cauchy equation (1.1) on X \ {0} observe that



HYPERSTABILITY OF A CAUCHY FUNCTIONAL EQUATION 131

/ (Z m> =S T ()
i=1 i=1
for every z1, 22, ..., € X \ {0} and s € Ny.

Indeed, if s = 0, then (2.4) is simply (2.1). So, take t € Ny and suppose that (2.4)
holds for s = t and z1, 2, ...,z, € X \ {0}. Then

() o
+7:£Lf< y (mx») T (Z (mw)xi) P T (Z (=m—0)
=1 =1 i=1 i

<caj, (Z ||xz||p> (2.4)
i=1

Thf <i ((27‘ +1)m+ 1)5@)

i=1

{=1

n

Z f( 2r+1 )m+1)xi)—§:7;if(—mxi)

IN

Zn: 2r—|—1m+1)xz> z”: f( 2r+1)m—|—1)$i)

i=1

<cal, (((2r+1)m+1)p+mp+Z|€—m|p+Z| —m—€|p> ZH%HP
i=1

(=1 =1
n
alrt Y .
i=1

By induction, we have shown that (2.4) holds for all z1, z3, ...,z, € X \ {0} and
s € Ny. Letting s — oo in (2.4), we obtain that

F,, (sz> = ZFm(xi), Z1,Ta,...,x, € X \ {0}.
i=1 i=1

Thus, we have proved that for every m > my there exists a unique function F,,
X \ {0} — Y such that F}, is a solution of the Cauchy equation (1.1) on X \ {0}
and

1f(2) = F(@)]] <

Since p < 0, the sequence
ca
{222 o}
m>mg

xz e X\ {0}.
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tends to zero when m — co. Consequently, f satisfies the Cauchy equation (1.1)
on X \ {0} as the pointwise of (F,;,)m>m,-

Case 2: n is odd
Letting n = 2r + 1 where r € N, we can rewrite the inequality (2.1) as follows

2r+1 2r+1 2r+1
(Z ) Z i) C<Z ||xﬂ”>- (2.5)
=1

=1
Replacing 5,41 by (2rm + 1)z, x; by (—m — %)x where i = 2,4, ..., 2r and z; by
(—m + %) where j = 1,3,...,(2r — 1) and m € N in (2.5), we get that

Hf(x) f((2rm+1 ) Zf( m+1z) Zf( )
(=1
c <|2rm+1\p+i| —m+€|p+z |m+€|p> Bk (2.6)

{=1 {=1

for all z € X \ {0}.

Further put
Tmé(z) = f((?rm + l)m) + Zf((—m + €)x> + Zf((—m — €)x>
nd =1 =1
em(x) :=c <‘2Tm + 1’p + Z | —m+ Z‘p + Z |m + é‘p> | z|?
=1 =1

forall z € X \ {0} and all ¢ € YX MO}, Then the inequality (2.6) takes the form

[T f (@) = f(@)]] < em (@), z e X \{0}.

The following operator

And(z) = 6((2rm + 1) )+Z§( —m + 0) )+Z§( ~0)z)

forallz € X\{0}andall§ € Rf\{o}, has the form described in (H3) with k = 2r+1,
and

fi(x) = (—m+i)x, 1=1,2,...,r1,
forpa(z) = (2rm+ D),
Li(z) =1, i=1,2,...,(2r+1).
Moreover, for every &, i € yX\{0}
[ Tmé () = Tonpa(2)|| E(@rm+1)z) + ) &((=m+0z) + ) &((—m —O)z)
=1 /=1
—u(@rm+1)z) =3 p((=m+ 0z) = p((=m —O)z)
(=1 =1

<€ = ) ((2rm + 1y H+ZH§ W) ((m+ 02) | + 3 € - ) ((-m - 32)|
=1
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|,

so (H2) is valid. Now,we can find mg € N such that

= > Li@)||¢(fil@) ~ n(fil@)

Oy, = 2rm+1‘p—|—2|—m+€|p+Z’m+£|p<1
/=1 =1

for all m > mg. Therefore, we have

@) = Y Ane(@)
s=0

oo
= camy oz
s=0

ca
= S8, e X\{0hmzmo
m
The rest of the proof is similar to the proof of case 1. U

Corollary 2.2. Let X be a normed space, Y be a Banach space, ¢ > 0, p < 0 and
let f: X — Y satisfy

1f (@ +y) = f(z) = fF)ll < 0(ll=l” + [ly]]7) 2.7)
forallz,y € X \ {0} wheren € Ny. Then f is additive on X \ {0}.

Theorem 2.3. Let X be a normed space, Y be a Banach space, ¢ > 0, p; € R with
Yiipi<Oandlet f: X — Y satisfy

Hf <Zl‘z> - Zf(xi) <c (H ||$i|pi> (2.8)

forallzq,xa,...,x, € X \ {0} wheren € Ny. Then f is additive on X \ {0}.

Proof. Since Y ", p; < 0, some of p; must be negative. Assume that these are
p; < 0where 1 < j < n. By using the same technic of the proof of Theorem 2.1, we
study two cases as follows:

Case 1: n is even

In this case, suppose that n = 2r + 2 where r € N. Then the inequality (2.8) can

be written as follows
2r+2
<c (H 2 Pi) . 2.9)
i=1

2r+4+2 2r+4+2
H(3) -3 e
i=1 i=1

Replacing z(z,42y by ((2r + 1)m + 1) z, z; by (—m - %) x where 1 = 2,4, ..., 2r and
x; by (—m + %) x where j =1,3,...,(2r + 1) and m € N in (2.9), we obtain that
<clml |2 + Dm+ 17 T (|m + 07 [ = m+ e|”2’~’+1) lz|”  (2.10)

=1

forall z € X \ {0} where 8 =>""_, pi.

f(z) — f(((?r + 1)m + 1)x> — f(—mz) — Xr:f((—m—kﬁ)x) - Zr:f((—m - E)x) H
=1 =1

T
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Further put

Tmé(z) == 5(((27"4- 1)ym + 1)SL‘) +&(—ma) —l—Zﬁ((—m-ﬁ-Z)x) + ZE((—m—f)x)

and

e | (]m+£|p2’-’ |- m+£]”2“1)||x|\6
=1

forall z € X \ {0} and all ¢ € YX. Thus, the inequality (2.10) takes the following
form

em(x) = Olm[P* - |(2r + 1)m + 1

[T f (@) = f(@)|| < em(w), z € X\ {0}.
The following operator
Amd(z) == 5(((2r Fm+ l)x) +6(—ma)+ Y 6((~m+0)z) + > 8((—m — O)x)
=1 =1

forallz € X\{0}andall§ € Rf\{o}, has the form described in (H3) with k = 2r+2
and

fi(z) = (—m ti)zx, 1=1,2,...,r,
Jers(x) = ((2r +1)m+ 1);10,
2r+2)(1‘) = —mx,
Li(z) =1, i=1,2,...,(2r+2).
Moreover, for every &, ;i € YX\0}

o) 7] -

‘5(((27" +1)m + l)x) +&(—max) + Zﬁ((—m + O)x)

(=1

+Zf((—m —0)z) — u(((2r +1)m + 1)1‘) — p(—mx)

—Zu —m+ )z p((=m — 0)z)

=1
§H§—M(((2r—|— )m—l—lx)H—l—Hf—u(—mm)H
+Z||(€—M> —m+ ) ||+ZH§ ) ((=m—0z)|
(2r+2

)

= X I 2) |¢(£@) - n(fi@)

and so (H2) is valid. Next, we can find mg € N such that

T

Pt I (Jm [ =m0 ) <1
(=1

Am = [m|P* - |(2r + 1)m + 1

for all m > myg. Therefore, we have

i A em ()
s=0
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0 /\
— e 17,

1-

forall z € X \ {0} where m > my.
The rest of the proof is similar to the proof of Theorem 2.1.

Case 2: n is odd
Let n = 2r 4+ 1 where r € N. Then, we can rewrite the inequality (2.8) as follows

2r+1 2r+1 2741
f (Z xz> - Z f(z:) ¢ < H ||ml||”> . (2.11)
i=1 i=1 i=1

Replacing x2, 41 by (2rm + 1)z, z; by (—m — %)z where i = 2,4, ..., 2r and z; by

(—m+ %)m where j = 1,3,...,(2r — 1) and m € N in (2.13), we get that

Hf(ac) f(@2rm+1)z) Zf —m+ )z Zf

<clerm 1 I (jmr ™ | =m0 Yol @a2)
=1

where Y27 p, = B forall z € X \ {0}.
Further put

T +Z£ —m+{)x Zf((—m—ﬂ)x)

and

em(@) 3= 0 [2rm + 17T (fm [ =m0 ) o
(=1

forall z € X \ {0} and all ¢ € YX M0} Then the inequality (2.12) takes the form

[T f () = f(2)]| < em(2), z e X\ {0}.

The following operator

Apd(z) = 6((2rm + 1)z +Za —m + 0z +Z(5

forallz € X\{0}andallé € Rf\{o}, has the form described in (H3) with k = 2r+1,
and

fi(x) = (—m i)z, 1=1,2,...,1,
forga(z) = (@2rm+ 1)z,
Li(z) =1, i=1,2,..,(2r +1).

Moreover, for every &, i € Y X\0}

|Tont@) — Trutle)| €((2rm + 1)) + 3 ¢((Cmt ) + 3 ¢((-m - )
=1

(=1

—u((2rm+ 1)3:) - u((—m—I—é)x)

(=1
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- fju(<—m ~ )
=1
< [t~ w(@rm+va)| + 3 |- ((=m+0a)|
=1

- (im-0)]
=1

(2r+1)

= > L@ [e(5@) - w(fi@)

9

1=

and so (H2) is valid. Now,we can find mg € N such that

-
A = [2rm+ 177 ] (‘m+€’mz | = m+€\pml) <1
=1
for all m > mg. Therefore, we have

en(@) = > Alem()
s=0

T

o0
- . |2rm+ 1‘P27v+1 H <|m+€’p2z . | _ m+£|p22+1) ZAZ@H:BHB
s=0

=1
cA
= ﬁ”xﬂﬁ, x € X\ {0}, m > my.
m
The rest of the proof is similar to the proof of case 1. O

Corollary 2.4. Let X be a normed space, Y be a Banach space, ¢ > 0, p,q € R,
p+g<Oandlet f: X — Y satisfy

1f(x+y) = f(@) = f)l < c(ll=I” - lyl?) (2.13)
Jorallz,y € X \ {0} wheren € Ny. Then f is additive on X \ {0}.
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