

 $oldsymbol{J}$ ournal of $oldsymbol{N}$ onlinear $oldsymbol{A}$ nalysis and $oldsymbol{O}$ ptimization

Vol.6, No.2, (2015), 103-114

ISSN: 1906-9685

http://www.math.sci.nu.ac.th

SET-VALUED PREŠIĆ-REICH TYPE CONTRACTIONS IN CONE METRIC SPACES AND FIXED POINT THEOREMS

SATISH SHUKLA

Department of Applied Mathematics, Shri Vaishnav Institute of Technology & Science, Gram Baroli, Sanwer Road, Indore, 453331, (M.P.) India

ABSTRACT. The purpose of this paper is to prove some fixed point theorems for set-valued mappings satisfying Prešić-Reich type contractive condition in cone metric spaces, without assuming the normality of cone. Our results generalize some known results in metric and cone metric spaces.

KEYWORDS: Prešić-Reich type; Point-set-cone metric; Cone metric space; Fixed point. **AMS Subject Classification**: 47H10; 54H25

1. Introduction

Let (X,d) be a metric space and f be a self-map on X. The mapping f is called a Banach contraction if, there exists $\lambda \in [0,1)$ such that

$$d(fx, fy) \le \lambda d(x, y)$$
 for all $x, y \in X$. (1.1)

The Banach contraction principle states that every Banach contraction on a complete metric space has a fixed point, i.e., there exists a point $x^* \in X$ such that $fx^* = x^*$.

Let X be a nonempty set, 2^X the collection of all possible subsets of X and $f\colon X\longrightarrow 2^X$ be a mapping. Then, f is called a set-valued mapping. Let $x\in X$ be such that $fx\neq\emptyset$, then x is called a fixed point of f if $x\in fx$.

Let A be any nonempty subset of a metric space (X, d). For $x \in X$, define

$$d(x, A) = \inf\{d(x, y) : y \in A\}.$$

Let CB(X) denotes the set of all nonempty closed bounded subset of X. For $A,B\in CB(X),$ define

$$\delta(A, B) = \sup\{d(x, B) : x \in A\},$$

$$H(A, B) = \max\{\delta(A, B), \delta(B, A)\}.$$

Email address: satishmathematics@yahoo.co.in.

Article history: Received September 4, 2015. Accepted February 16, 2016.

Then H is a metric on CB(X) and called Pompeiu-Hausdorff (or Hausdorff) metric. A mapping $f\colon X\longrightarrow CB(X)$ is called a Nadler contraction (or a set-valued Banach contraction), if there exists $\lambda\in[0,1)$ such that

$$H(fx, fy) \le \lambda d(x, y)$$
 for all $x, y \in X$. (1.2)

In 1969, Nadler [10] generalized the famous Banach contraction principle for the set-valued mappings defined from a complete metric space X into the set CB(X). Nadler [10] proved the following theorem:

Theorem 1.1. Let (X,d) be a complete metric space and let f be a set-valued Banach contraction. Then there exists a point $x^* \in X$ such that $x^* \in fx^*$, i.e., f has a fixed point in X.

On the other hand, for mappings $f:X\to X$ Kannan [6] introduced the contractive condition:

$$d(fx, fy) \le \lambda [d(x, fx) + d(y, fy)] \tag{1.3}$$

for all $x, y \in X$, where $\lambda \in [0, 1/2)$ is a constant, and proved a fixed point theorem using (1.3) instead of contractive condition (1.1). The conditions (1.3) and (1.1) are independent, as it was shown by two examples in [7].

Reich [14], generalized the fixed point theorems of Banach and Kannan, using contractive condition: for all $x, y \in X$,

$$d(fx, fy) \le \alpha d(x, y) + \beta d(x, fx) + \gamma d(y, fy) \tag{1.4}$$

where α, β, γ are nonnegative reals with $\alpha + \beta + \gamma < 1$. An example in [14] shows that the Reich's contractive condition is a proper generalization of contractive conditions of Banach and Kannan.

In 1965, Prešić [12, 13] generalized the Banach contraction principle in product spaces and proved the following theorem.

Theorem 1.2. Let (X,d) be a complete metric space, k a positive integer and $f: X^k \to X$ be a mapping satisfying the following contractive type condition:

$$d(f(x_1, x_2, \dots, x_k), f(x_2, x_3, \dots, x_{k+1})) \le \sum_{i=1}^k q_i d(x_i, x_{i+1}), \tag{1.5}$$

for every $x_1, x_2, \ldots, x_k, x_{k+1} \in X$, where q_1, q_2, \ldots, q_k are nonnegative constants such that $q_1 + q_2 + \cdots + q_k < 1$. Then there exists a unique point $x \in X$ such that $f(x, x, \ldots, x) = x$. Moreover, if x_1, x_2, \ldots, x_k are arbitrary points in X and for $n \in \mathbb{N}, x_{n+k} = f(x_n, x_{n+1}, \ldots, x_{n+k-1})$, then the sequence $\{x_n\}$ is convergent and $\lim x_n = f(\lim x_n, \lim x_n, \ldots, \lim x_n)$.

A mapping $f: X^k \to X$ is called a Prešić type contraction if it satisfies (1.5). The mapping f is called a Prešić-Kannan type contraction if,

$$d(f(x_0, \dots, x_{k-1}), f(x_1, \dots, x_k)) \le a \sum_{i=0}^k d(x_i, f(x_i, \dots, x_i)),$$
(1.6)

for all $x_0, x_1, \ldots, x_k \in X$, where the real constant a is such that $0 \le ak(k+1) < 1$. In a similar manner to that used by S.B. Prešić [12, 13], when extending Banach contractions to product spaces, Păcurar [11] generalized the Kannan's theorem in product spaces and proved a fixed point theorem for Prešić-Kannan type contractions.

f is called a Prešić-Reich type contraction if,

$$d(f(x_0, \dots, x_{k-1}), f(x_1, \dots, x_k)) \le \sum_{i=1}^k \alpha_i d(x_{i-1}, x_i) + \sum_{i=0}^k \beta_i d(x_i, f(x_i, \dots, x_i)),$$

$$(1.7)$$

for all $x_0, x_1, \ldots, x_k \in X$, where α_i, β_i are nonnegative constants such that

$$\sum_{i=1}^{k} \alpha_i + k \sum_{i=0}^{k} \beta_i < 1.$$

Note that, for k=1 the above definition reduces into the definition due to Reich [14]. Also, Prešić-Banach type contraction (i.e., a mapping f satisfying (1.5)) and Prešić-Kannan type contraction are particular cases of Prešić-Reich type contractions. Malhotra et al. [9] first introduced the notion of Prešić-Reich type contractions (for single-valued case) in cone metric spaces and proved some common fixed point and fixed point results for such mappings.

In 2011, Wardowski [16] introduced the set-valued mappings in cone metric spaces and proved the cone metric version of the result of Nadler [10] (see also [1, 8, 15]). In this paper, we introduced the notion of set-valued Prešić-Reich type contractions in cone metric spaces and prove some fixed point results for such mappings, using the definitions due to Wardowski [16]. Our results generalize and extend the results of Nadler [10], Kannan [6], Reich [14], Prešić [12], Malhotra et al. [9] and Wardowski [16] in the setting of cone metric spaces for set-valued mappings. An example is provided which illustrate the main theorem of this paper.

2. Preliminaries

We use the following definitions and results, consistent with [2] and [3].

Definition 2.1. [3] Let E be a real Banach space and P be a subset of E. The set P is called a cone if

- (i) P is closed, nonempty and $P \neq \{\theta\}$, here θ is the zero vector of E;
- (ii) $a, b \in \mathbb{R}, \ a, b \ge 0, \ x, y \in P \implies ax + by \in P$;
- (iii) $x \in P$ and $-x \in P \implies x = \theta$.

Given a cone $P \subset E$, we define a partial ordering " \preceq " with respect to P by $x \preceq y$ if and only if $y - x \in P$. We write $x \prec y$ to indicate that $x \preceq y$ but $x \neq y$. While $x \ll y$ if and only if $y - x \in P^{\circ}$, where P° denotes the interior of P.

Let P be a cone in a real Banach space E, then P is called normal, if there exist a constant K > 0 such that for all $x, y \in E$,

$$\theta \leq x \leq y$$
 implies $||x|| \leq K||y||$.

The least positive number K satisfying the above inequality is called the normal constant of P. A cone P is called solid if $P^{\circ} \neq \emptyset$.

Definition 2.2. [3] Let X be a nonempty set, E be a real Banach space with cone P. Suppose that the mapping $d: X \times X \to E$ satisfies:

- 1. $\theta \leq d(x,y)$, for all $x,y \in X$ and $d(x,y) = \theta$ if and only if x = y;
- 2. d(x,y) = d(y,x) for all $x,y \in X$;
- 3. $d(x,y) \leq d(x,z) + d(y,z)$, for all $x, y, z \in X$.

Then d is called a *cone metric* on X, and (X, d) is called a cone metric space. If the underlying cone is normal, then (X,d) is called a normal cone metric space.

The following lemma will be useful in the sequel.

Lemma 2.3. [4, 5] Let E be a real Banach space, P a solid cone in E. Then:

- (i) If $\{a_n\}$ is a sequence in P, $a_n \to \theta$ then, for every $c \in P^{\circ}$ there exists $n \in \mathbb{N}$ such that, $a_n \ll c$ for all $n > n_0$.
- (ii) If $u, v, w \in P$ and $u \prec v, v \ll w$ then $u \ll w$.
- (iii) If $u, v, w \in P$ and $u \ll v, v \preceq w$ then $u \ll w$.
- (iv) If $u \in P$ and $u \ll c$ for each $c \in P^{\circ}$, then $u = \theta$.

Let (X, d) be a cone metric space with cone P. A subset $A \subset X$ is called closed if for any sequence $\{x_n\} \subset A$ convergent to x, we have $x \in A$.

Denote by N(X) a collection of all nonempty subsets of X and by C(X) a collection of all nonempty closed subsets of X.

The following definitions can be found in [16].

Definition 2.4. [16] Let (X,d) be a cone metric space and let \mathcal{A} be a collection of nonempty subsets of X. A map $H: \mathcal{A} \times \mathcal{A} \longrightarrow E$ is called a H-cone metric with respect to d if for any $A_1, A_2 \in \mathcal{A}$ the following conditions hold:

- (H1) $H(A_1, A_2) = \theta \implies A_1 = A_2;$
- (H2) $H(A_1, A_2) = H(A_2, A_1);$
- (H3) $\forall_{c \in E, \theta \ll c} \ \forall_{x \in A_1} \ \exists_{y \in A_2} \ d(x, y) \preceq H(A_1, A_2) + c;$
- (H4) One of the following is satisfied:
 - $\begin{array}{ll} \text{(i)} \ \forall_{c \in E, \theta \ll c} \ \exists_{x \in A_1} \ \forall_{y \in A_2} \ H(A_1, A_2) \preceq d(x,y) + c; \\ \text{(ii)} \ \forall_{c \in E, \theta \ll c} \ \exists_{x \in A_2} \ \forall_{y \in A_1} \ H(A_1, A_2) \preceq d(x,y) + c. \end{array}$

The following are some examples of H-cone metrics.

Example 2.5. [16] Let (X,d) be a cone metric space and let $\mathcal{A} = \{\{x\} : x \in X\}$. Define the mapping $H: \mathcal{A} \times \mathcal{A} \longrightarrow E$ by the formula

$$H(\{x\},\{y\})=d(x,y) \text{ for all } x,y\in X,$$

is a H-cone metric with respect to d.

Example 2.6. [16] Let (X,d) be a metric space and let \mathcal{A} be the family of all nonempty, closed bounded subsets of X. Then the mapping $H: \mathcal{A} \times \mathcal{A} \longrightarrow \mathbb{R}^+$ given by the formula

$$H(A,B) = \max \left\{ \sup_{x \in A} d(x,B), \ \sup_{y \in B} d(y,A), A, B \in \mathcal{A} \right\}$$

which is called a Hausdorff metric, is a H-cone metric with respect to d.

The following lemma shows that a H-cone metric with respect to the cone metric d, is itself a cone metric when $\mathcal{A} \subset N(X)$.

Lemma 2.7. [16] Let (X,d) be a cone metric space and let $A \subset N(X)$, $A \neq \emptyset$. If $H: \mathcal{A} \times \mathcal{A} \longrightarrow E$ is a H-cone metric with respect to d then a pair (\mathcal{A}, H) is a cone metric space.

Wardowski [16] proved the following cone metric version of result of Nadler [10].

Theorem 2.1. [16] Let (X, d) be a complete cone metric space with a normal cone Pwith a normal constant K, A be a nonempty collection of nonempty closed subsets of X and let $H: \mathcal{A} \times \mathcal{A} \longrightarrow E$ be a H-cone metric with respect to d. If for a map $f: X \longrightarrow \mathcal{A}$ there exists $\lambda \in (0,1)$ such that

$$H(fx, fy) \leq \lambda d(x, y) \text{ for all } x, y \in X,$$
 (2.1)

then the set of all fixed points of f is nonempty.

3. Main results

In this section, we introduce various types of set-valued Prešić type contractions, the point-set-cone metric and prove some fixed point results for set-valued Prešić type contractions in cone metric spaces. In further discussion, we assume that the cones under consideration are solid cones, i.e., $P^{\circ} \neq \emptyset$.

First, we define the point-set-cone metric between a point and a subset of cone metric spaces which is an extension and generalization of the distance of point from a set in ordinary metric spaces.

Definition 3.1. Let (X,d) be a cone metric space and let \mathcal{A} be a nonempty collection of nonempty subsets of X. A map $d_s \colon X \times \mathcal{A} \longrightarrow E$ is called the point-set-cone metric with respect to d if for all $x \in X$, $A \in \mathcal{A}$ the following conditions hold:

(PS1)
$$\theta \leq d_s(x,A)$$
 and $d_s(x,A) = \theta \implies x \in A;$
(PS2) $\forall_{a \in A} d_s(x,A) \leq d(x,a).$

Let us observe that for each cone metric d the family of point-set-cone metrics with respect to d is nonempty and each point-set-cone metric depends on the shape of the family \mathcal{A} . See the following examples:

Example 3.2. Let (X, d) be a cone metric space and let

$$\mathcal{A} = \{\{x\} \colon x \in X\} .$$

Then, the mapping $d_s \colon X \times \mathcal{A} \longrightarrow E$ defined by the formula

$$d_s(x, \{y\}) = d(x, y)$$
 for all $x, y \in X$,

is a point-set-cone metric with respect to d.

Example 3.3. Let (X, d) be a metric space and let \mathcal{A} be the family of all nonempty, closed and bounded subsets of X. Then the mapping $d_s \colon X \times \mathcal{A} \longrightarrow \mathbb{R}^+$ given by the formula

$$d_s(x, A) = \inf\{d(x, a) \colon a \in A\}$$

which is called the distance of point x from the set A, is a point-set-cone metric with respect to d.

Example 3.4. Let $E=\mathbb{R}^2$, the Euclidean plane, $P=\{(x,y)\in\mathbb{R}^2\colon x,y\geq 0\}$ be the cone in E and $X=\{(x,0)\in\mathbb{R}^2\colon 0\leq x\leq 1\}\cup\{(0,x)\in\mathbb{R}^2\colon 0\leq x\leq 1\}$ Let $X=\{(x,0),(0,x)\colon 0\leq x\leq 1\}$ and the mapping $d\colon X\times X\longrightarrow E$ by defined by

$$d((x,0),(y,0)) = \mid x-y \mid (0,1)\,, d((0,x),(0,y)) = \mid x-y \mid (1,0)\,,$$

$$d((x,0),(0,y)) = d((0,y),(x,0)) = (y,x).$$

Then (X,d) is a cone metric space. Let $\mathcal{A} = \{\{(0,0),(x,0),(0,x)\}: 0 \leq x \leq 1\}$, then the mapping $d_s \colon X \times \mathcal{A} \longrightarrow \mathbb{R}^+$ given by the formula

$$d_s((z,0),\{(0,0),(x,0),(0,x)\}) = (0,[z \mid z-x \mid]^p),$$

$$d_s((0,z),\{(0,0),(x,0),(0,x)\}) = ([z \cdot |z-x|]^p,0)$$

where $p \in \mathbb{N}$, is a point-set-cone metric with respect to d.

Remark 3.5. It is obvious from (PS2) that if $x \in A$, then $d_s(x, A) = \theta$. Therefore, from (PS1) we conclude the double implication: $d_s(x, A) = \theta \iff x \in A$.

Lemma 3.6. Let (X,d) be a cone metric space and let A be a collection of nonempty subsets of X. Let H be a H-cone metric and d_s be a point-set-cone metric with respect to d. Then

$$\forall_{A,B\in\mathcal{A}}\ \forall_{a\in A}\ d_s(a,B) \leq H(A,B).$$

Proof. Let $A,B\in\mathcal{A}$ and $a\in A$. Suppose, $\{c_n\}$ be a sequence in P° such that $c_n\longrightarrow\theta$ as $n\longrightarrow\infty$ and $\theta\ll c_n$ for all $n\in\mathbb{N}$. Then, by (H3) we have there exists $b\in B$ such that

$$d(a,b) \leq H(A,B) + c_n$$
 for all $n \in \mathbb{N}$.

By (PS2) we have $d_s(a,B) \leq d(a,b)$, so by the above inequality we obtain $d_s(a,B) \leq H(A,B) + c_n$ for all $n \in \mathbb{N}$, i.e., $H(A,B) + c_n - d_s(a,B) \in P$ for all $n \in \mathbb{N}$. Since P is closed, by choice of the sequence $\{c_n\}$ we have $H(A,B) - d_s(a,B) \in P$, i.e., $d_s(a,B) \leq H(A,B)$.

Let (X,d) be a cone metric space and \mathcal{A} be a nonempty collection of nonempty subsets of X. In further discussion, $H \colon \mathcal{A} \times \mathcal{A} \longrightarrow E$ will represent the H-cone metric and $d_s \colon X \times \mathcal{A} \longrightarrow E$ will represent the point-set-cone metric with respect to d.

Now we can define various set-valued Prešić type contractions in cone metric spaces.

Let (X,d) be a cone metric space, k a positive integer, \mathcal{A} a nonempty collection of nonempty closed subsets of X and let $f\colon X^k\to \mathcal{A}$ be a mapping. Then, f is said to be Lipschitzian on X if there exist nonnegative constants α_i such that

$$H(f(x_0, x_1, \dots, x_{k-1}), f(x_1, x_2, \dots, x_k)) \le \sum_{i=1}^k \alpha_i d(x_{i-1}, x_i),$$
 (3.1)

for all $x_0, x_1, \ldots, x_k \in X$. If $\sum_{i=1}^k \alpha_i < 1$, then the mapping f is said to be a set-valued Prešić type contractions on X.

The mapping f is called a set-valued Prešić-Kannan type contraction on X if,

$$H(f(x_0, \dots, x_{k-1}), f(x_1, \dots, x_k)) \le a \sum_{i=0}^k d_s(x_i, f(x_i, \dots, x_i))$$
 (3.2)

for all $x_0, x_1, \dots, x_k \in X$, where the real constant a is such that $0 \le ak(k+1) < 1$.

The mapping f is called a set-valued Prešić-Reich type contraction on X if,

$$H(f(x_0, \dots, x_{k-1}), f(x_1, \dots, x_k)) \leq \sum_{i=1}^k \alpha_i d(x_{i-1}, x_i) + \sum_{i=0}^k \beta_i d_s(x_i, f(x_i, \dots, x_i)),$$
(3.3)

for all $x_0, x_1, \dots, x_k \in X$, where α_i, β_i are nonnegative constants such that

$$\sum_{i=1}^{k} \alpha_i + k \sum_{i=0}^{k} \beta_i < 1. \tag{3.4}$$

We denote the set of all fixed points of f by Fixf and

$$Fix f = \{x \in X : x \in f(x, \dots, x)\}.$$

The following theorem is the main result of this paper.

Theorem 3.1. Let (X,d) be a complete cone metric space, k a positive integer and \mathcal{A} be a nonempty collection of nonempty closed subsets of X. If $f: X^k \longrightarrow \mathcal{A}$ be a set-valued Prešić-Reich type contraction, then $\operatorname{Fix} f \neq \emptyset$.

Proof. Let $\{c_n\}$ be an arbitrary sequence in E which satisfies $\theta \ll c_n$ for all $n \in \mathbb{N}$. Let x_0 be an arbitrary point of X. Because $f(x_0, \ldots, x_0) \in \mathcal{A}$, let $x_1 \in f(x_0, \ldots, x_0)$. From (H3) there exists $x_2 \in f(x_1, \ldots, x_1)$ such that

$$d(x_1, x_2) \leq H(f(x_0, \dots, x_0), f(x_1, \dots, x_1)) + c_1.$$

Similarly, there exists $x_3 \in f(x_2, ..., x_2)$ such that

$$d(x_2, x_3) \leq H(f(x_1, \dots, x_1), f(x_2, \dots, x_2)) + c_2.$$

Continuing this procedure we obtain $x_{n+1} \in f(x_n, \dots, x_n)$ and

$$d(x_n, x_{n+1}) \le H(f(x_{n-1}, \dots, x_{n-1}), f(x_n, \dots, x_n)) + c_n$$
(3.5)

for all $n \in \mathbb{N}$.

As H is a metric on N(X), for any $n \in \mathbb{N}$ it follows from (3.5) that

$$d(x_{n}, x_{n+1}) \leq H(f(x_{n-1}, \dots, x_{n-1}), f(x_{n}, \dots, x_{n})) + c_{n}$$

$$\leq H(f(x_{n-1}, \dots, x_{n-1}), f(x_{n-1}, \dots, x_{n-1}, x_{n}))$$

$$+H(f(x_{n-1}, \dots, x_{n-1}, x_{n}), f(x_{n-1}, \dots, x_{n-1}, x_{n}, x_{n}))$$

$$+ \dots + H(f(x_{n-1}, x_{n}, \dots, x_{n}), f(x_{n}, \dots, x_{n})) + c_{n}.$$

Since f is a set-valued Prešić-Reich type contraction, it follows from the above inequality that

$$d(x_{n}, x_{n+1}) \leq \alpha_{k} d(x_{n-1}, x_{n}) + \beta_{0} d_{s}(x_{n-1}, f(x_{n-1}, \dots, x_{n-1})) + \dots$$

$$+ \beta_{k-1} d_{s}(x_{n-1}, f(x_{n-1}, \dots, x_{n-1})) + \beta_{k} d_{s}(x_{n}, f(x_{n}, \dots, x_{n}))$$

$$+ \alpha_{k-1} d(x_{n-1}, x_{n}) + \beta_{0} d_{s}(x_{n-1}, f(x_{n-1}, \dots, x_{n-1})) + \dots$$

$$+ \beta_{k-1} d_{s}(x_{n}, f(x_{n}, \dots, x_{n})) + \beta_{k} d_{s}(x_{n}, f(x_{n}, \dots, x_{n}))$$

$$+ \dots + \alpha_{1} d(x_{n-1}, x_{n}) + \beta_{0} d_{s}(x_{n-1}, f(x_{n-1}, \dots, x_{n-1}))$$

$$+ \beta_{1} d_{s}(x_{n}, f(x_{n}, \dots, x_{n})) + \dots + \beta_{k} d_{s}(x_{n}, f(x_{n}, \dots, x_{n}))$$

$$+ c_{n}$$

Since $x_n \in f(x_{n-1}, \dots, x_{n-1})$ for all $n \in \mathbb{N}$, it follows from the definition of point-set-cone metric and the above inequality that

$$d(x_n, x_{n+1}) \preceq \left[\sum_{i=1}^k \alpha_i\right] d(x_{n-1}, x_n) + \beta_0 d(x_{n-1}, x_n) + \cdots$$

$$+ \beta_{k-1} d(x_{n-1}, x_n) + \beta_k d(x_n, x_{n+1}) + \beta_0 d(x_{n-1}, x_n) + \cdots$$

$$+ \beta_{k-1} d(x_n, x_{n+1}) + \beta_k d(x_n, x_{n+1}) + \cdots + \beta_0 d(x_{n-1}, x_n)$$

$$+ \beta_1 d(x_n, x_{n+1}) + \cdots + \beta_k d(x_n, x_{n+1}) + c_n.$$

Rearranging the terms in the above expression, we obtain

$$d(x_n, x_{n+1}) \leq \left[\sum_{i=1}^k \alpha_i + \sum_{i=0}^{k-1} (k-i)\beta_i \right] d(x_{n-1}, x_n) + \left[\sum_{i=1}^k i\beta_i \right] d(x_n, x_{n+1}) + c_n.$$

Thus, we have

$$d(x_n, x_{n+1}) \leq \frac{\sum_{i=1}^k \alpha_i + \sum_{i=0}^k (k-i)\beta_i}{1 - \sum_{i=0}^k i\beta_i} d(x_{n-1}, x_n) + \frac{1}{1 - \sum_{i=0}^k i\beta_i} c_n.$$
 (3.6)

For simplicity, set $A=\sum_{i=1}^k\alpha_i, B=k\sum_{i=0}^k\beta_i, C=\sum_{i=0}^ki\beta_i$ and $\lambda=\frac{A+B-C}{1-C}$, then in view of (3.4) we have,

$$A + B = \sum_{i=1}^{k} \alpha_i + k \sum_{i=0}^{k} \beta_i < 1, \ C < 1, \text{ also } C \le B,$$

and so, $0 \le \lambda < 1$. Thus, from (3.6) it follows that

$$d(x_n, x_{n+1}) \le \lambda d(x_{n-1}, x_n) + \frac{c_n}{1 - C} \text{ for all } n \in \mathbb{N}.$$
 (3.7)

From the successive applications of the inequality (3.7) we obtain

$$d(x_{n}, x_{n+1}) \leq \lambda d(x_{n-1}, x_{n}) + \frac{c_{n}}{1 - C}$$

$$\leq \lambda \left[\lambda d(x_{n-2}, x_{n-1}) + \frac{c_{n-1}}{1 - C} \right] + \frac{c_{n}}{1 - C}$$

$$= \lambda^{2} d(x_{n-2}, x_{n-1}) + \lambda \frac{c_{n-1}}{1 - C} + \frac{c_{n}}{1 - C}$$

$$\leq \lambda^{2} \left[\lambda d(x_{n-3}, x_{n-2}) + \frac{c_{n-2}}{1 - C} \right] + \lambda \frac{c_{n-1}}{1 - C} + \frac{c_{n}}{1 - C}$$

$$= \lambda^{3} d(x_{n-3}, x_{n-2}) + \lambda^{2} \frac{c_{n-2}}{1 - C} + \lambda \frac{c_{n-1}}{1 - C} + \frac{c_{n}}{1 - C},$$

which yields

$$d(x_n, x_{n+1}) \le \lambda^n d(x_0, x_1) + \frac{1}{1 - C} \sum_{i=0}^{n-1} \lambda^i c_{n-i}.$$

Let $\omega \in P^{\circ}$, i.e., $\omega \in E, \theta \ll \omega$ be given. Since the sequence $\{c_n\}$ was arbitrary, choose c_n such that $\theta \ll c_n \ll \lambda^n \omega$ for all $n \in \mathbb{N}$. Therefore, it follows from the above inequality that

$$d(x_n, x_{n+1}) \ll \lambda^n d(x_0, x_1) + \frac{n\lambda^n}{1 - C} \omega.$$
 (3.8)

Let $n, m \in \mathbb{N}$ be such that m > n, then using inequality (3.8) we obtain

$$d(x_{n}, x_{m}) \leq d(x_{n}, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_{m})$$

$$= \sum_{j=n}^{m-1} d(x_{j}, x_{j+1})$$

$$\ll \sum_{j=n}^{m-1} \left[\lambda^{j} d(x_{0}, x_{1}) + \frac{j\lambda^{j}}{1 - C} \omega \right]$$

$$= d(x_{0}, x_{1}) \sum_{j=n}^{m-1} \lambda^{j} + \frac{\omega}{1 - C} \sum_{j=n}^{m-1} j\lambda^{j}.$$

Since $0 \le \lambda < 1$, therefore both the series $\sum\limits_{n=1}^{\infty} \lambda^n$ and $\sum\limits_{n=1}^{\infty} n\lambda^n$ are convergent series of nonnegative terms, and so, we have $\sum\limits_{j=n}^{m-1} \lambda^j \longrightarrow 0$ and $\sum\limits_{j=n}^{m-1} j\lambda^j \longrightarrow 0$ as $n \longrightarrow \infty$.

Therefore, the quantity on the right of the above inequality must tends to θ as $n \longrightarrow \infty$. Now, using Lemma 2.3 and the last inequality we obtain, for each $c \in P^{\circ}$ there exists $n_0 \in \mathbb{N}$ such that $d(x_n, x_m) \ll c$ for all $n > n_0$. Therefore, $\{x_n\}$ is a Cauchy sequence.

By completeness of X, there exists $x^* \in X$ such that $x_n \longrightarrow x^*$ as $n \longrightarrow \infty$. We shall show that x^* is a fixed point of f. Using similar calculations to the previous one we obtain

$$H(f(x_n, ..., x_n), f(x^*, ..., x^*))$$

$$\leq Ad(x_n, x^*) + (B - C)d_s(x_n, f(x_n, ..., x_n)) + Cd_s(x^*, f(x^*, ..., x^*))$$

which with the fact $x_{n+1} \in f(x_n, \dots, x_n)$ and the definition of point-set-cone metric gives

$$H(f(x_n, \dots, x_n), f(x^*, \dots, x^*)) \leq Ad(x_n, x^*) + (B - C)d_s(x_n, x_{n+1}) + Cd_s(x^*, f(x^*, \dots, x^*)).$$
 (3.9)

Suppose $c \in P^{\circ}$ be given, then since $x_{n+1} \in f(x_n, \dots, x_n)$, by (H3) for all $n \in \mathbb{N}$, there exists $y_n \in f(x^*, ..., x^*)$ such that

$$d(x_{n+1}, y_n) \le H(f(x_n, \dots, x_n), f(x^*, \dots, x^*)) + c'_n, \tag{3.10}$$

where $\{c_n'\}$ is a sequence in P° such that $c_n' \ll \frac{(1-C)c}{4}$ for all $n \in \mathbb{N}$. Again, since $y_n \in f(x^*, \dots, x^*)$ we have

$$d_s(x^*, f(x^*, \dots, x^*)) \leq d(x^*, y_n) \leq d(x^*, x_{n+1}) + d(x_{n+1}, y_n)$$

which with (3.9) and (3.10) gives

$$d_s(x^*, f(x^*, \dots, x^*)) \leq d(x^*, x_{n+1}) + Ad(x_n, x^*) + (B - C)d(x_n, x_{n+1}) + Cd_s(x^*, f(x^*, \dots, x^*)) + c'_n.$$

Since $x_n \longrightarrow x^*$ as $n \longrightarrow \infty$ and $c'_n \ll \frac{(1-C)c}{4}$ for all $n \in \mathbb{N}$, we can choose $n_1 \in \mathbb{N}$ \mathbb{N} such that $d(x^*, x_{n+1}) \ll \frac{(1-C)c}{4}, d(x_n, x^*) \ll \frac{(1-C)c}{4A}$ and $d(x_n, x_{n+1}) \ll \frac{(1-C)c}{4A}$ $\frac{(1-C)c}{4(B-C)}$ for all $n>n_1$. Therefore, the above inequality yields

$$d_s(x^*, f(x^*, \dots, x^*)) \ll c \text{ for all } n > n_1.$$

Therefore, it follows from Lemma 2.3 and the above inequality that

$$d_s(x^*, f(x^*, \dots, x^*)) = \theta.$$

Thus,
$$x^* \in f(x^*, \dots, x^*)$$
, i.e., x^* if a fixed point of f .

Taking k = 1 in the above theorem, we obtain the following fixed point theorem which generalize the result of Wardowski [16] without assuming the normality of the underlying cone.

Corollary 3.7. Let (X,d) be a complete cone metric space and A be a nonempty collection of nonempty closed subsets of X. If for a map $f: X \longrightarrow A$ there exist nonnegative constants α, β_0, β_1 such that $\alpha + \beta_0 + \beta_1 < 1$ and

$$H(fx, fy) \leq \alpha d(x, y) + \beta_0 d_s(x, fx) + \beta_1 d_s(y, fy)$$

for all $x, y \in X$, then $Fixf \neq \emptyset$.

Corollary 3.8. Let (X,d) be a complete cone metric space and \mathcal{A} be a nonempty collection of nonempty closed subsets of X. If for a map $f: X \longrightarrow \mathcal{A}$ there exist nonnegative constants β_0, β_1 such that $\beta_0 + \beta_1 < 1$ and

$$H(fx, fy) \leq \beta_0 d_s(x, fx) + \beta_1 d_s(y, fy)$$

for all $x, y \in X$, then $Fixf \neq \emptyset$.

Corollary 3.9. Let (X,d) be a complete cone metric space and \mathcal{A} be a nonempty collection of nonempty closed subsets of X. If for a map $f \colon X \longrightarrow \mathcal{A}$ there exists $\alpha \in [0,1)$ such that

$$H(fx, fy) \leq \alpha d(x, y)$$

for all $x, y \in X$, then $Fix f \neq \emptyset$.

Corollary 3.10. Let (X,d) be a complete cone metric space, k a positive integer and \mathcal{A} be a nonempty collection of nonempty closed subsets of X. If $f: X^k \longrightarrow \mathcal{A}$ be a set-valued Prešić-Kannan type contraction, then $\operatorname{Fix} f \neq \emptyset$.

Proof. Taking $\alpha_i = 0$ for i = 1, 2, ..., k and $\beta_i = a$ (say) for i = 0, 1, ..., k in Theorem 3.1, we obtain the desired result.

Corollary 3.11. Let (X,d) be a complete cone metric space, k a positive integer and \mathcal{A} be a nonempty collection of nonempty closed subsets of X. If $f: X^k \longrightarrow \mathcal{A}$ be a set-valued Prešić type contraction, then $\mathrm{Fix} f \neq \emptyset$.

Proof. Taking $\beta_i=0$ for $i=0,1,\ldots,k$ in Theorem 3.1, we obtain the desired result.

Example 3.12. Let $X=[0,1], E=C^1_{\mathbb{R}}[0,1]$ with the norm $\|\psi\|=\|\psi\|_{\infty}+\|\psi'\|_{\infty}$ and $P=\{\psi\in E\colon \psi(t)\geq 0, t\in [0,1]\}$. Define $d\colon X\times X\longrightarrow E$ by

$$d(x,y) = |x-y| \phi(t)$$
 for all $x, y \in X$,

where $\phi(t)=e^t,\,t\in[0,1]$. Then, (X,d) is a complete cone metric space. Let $\mathcal A$ be the family of subsets of X of the form $\mathcal A=\{[0,x]\colon x\in X\}\cup\{\{x\}\colon x\in X\}$, and define the functions $H\colon \mathcal A\times\mathcal A\longrightarrow E$ and $d_s\colon X\times\mathcal A\longrightarrow E$ by

$$H(A,B) = \begin{cases} \mid x - y \mid \cdot e^t, & \text{for } A = [0, x], B = [0, y]; \\ \mid x - y \mid \cdot e^t, & \text{for } A = \{x\}, B = \{y\}; \\ \max\{y, \mid x - y \mid\} \cdot e^t, & \text{for } A = [0, x], B = \{y\}; \\ \max\{x, \mid x - y \mid\} \cdot e^t, & \text{for } A = \{x\}, B = [0, y] \end{cases}$$

and

$$d_s(x, A) = \min\{|x - a| : a \in A\} \cdot e^t, t \in [0, 1] \text{ for all } x \in X.$$

Then, H is a H-cone metric and d_s is a point-set-cone metric with respect to d. For k=2, define a mapping $f\colon X^2\longrightarrow \mathcal{A}$ as follows:

$$f(x,y) = \left\{ \begin{array}{ll} \left[0,\frac{1}{5}(x+y-1)^2\right], & \text{ if } x,y \in \left(\frac{1}{2},1\right]; \\ \{0\}, & \text{ otherwise.} \end{array} \right.$$

Now, by some routine calculations one can see that the mapping f is a set-valued Prešić-Reich type contraction on X^2 with $\alpha_1=\alpha_2=\frac{2}{5}$ and $\beta_1=\beta_2=\beta_3=\frac{1}{36}$. All the conditions of Theorem 3.1 are satisfied and $0\in \operatorname{Fix} f$.

In the next theorem, we replace the completeness of cone metric space by an additional condition on the set-valued Prešić-Reich type contractions.

Theorem 3.2. Let (X,d) be a cone metric space, k a positive integer, \mathcal{A} a nonempty collection of nonempty closed subsets of X and $f \colon X^k \longrightarrow \mathcal{A}$ be a set-valued Prešić-Reich type contraction. Suppose there exists $x^* \in X$ such that

$$d_s(x^*, f(x^*, \dots, x^*)) \leq d_s(x, f(x, \dots, x))$$
 for all $x \in X$.

Then Fix $f \neq \emptyset$.

Proof. Let $D(x) = d_s(x, f(x, ..., x))$ for all $x \in X$. Then by assumption we have

$$D(x^*) \leq D(x)$$
 for all $x \in X$. (3.11)

If $x^* \in f(x^*, \dots, x^*)$, then $u \in \text{Fix} f$. Suppose $x^* \notin f(x^*, \dots, x^*)$, then $D(x^*) = d_s(x^*, f(x^*, \dots, x^*)) \neq \theta$. Let $x_0 = x^*$, then following similar arguments to those in Theorem 3.1, the sequence $\{x_n\}$, where $x_n \in f(x_{n-1}, \dots, x_{n-1})$ for all $n \in \mathbb{N}$ is a Cauchy sequence in X. Now, by Lemma 3.6, we have

$$D(x_{n}) = d_{s}(x_{n}, f(x_{n}, \dots, x_{n}))$$

$$\leq H(f(x_{n-1}, \dots, x_{n-1}), f(x_{n}, \dots, x_{n}))$$

$$\leq H(f(x_{n-1}, \dots, x_{n-1}), f(x_{n-1}, \dots, x_{n-1}, x_{n}))$$

$$+ H(f(x_{n-1}, \dots, x_{n-1}, x_{n}), f(x_{n-1}, \dots, u, x_{n}, x_{n}))$$

$$+ \dots + H(f(x_{n-1}, x_{n}, \dots, x_{n}), f(x_{n}, \dots, x_{n}))$$

$$\leq Ad(x_{n-1}, x_{n}) + (B - C)d_{s}(x_{n-1}, f(x_{n-1}, \dots, x_{n-1}))$$

$$+ Cd_{s}(x_{n}, f(x_{n}, \dots, x_{n})),$$

where $A = \sum_{i=1}^k \alpha_i$, $B = k \sum_{i=0}^k \beta_i$ and $C = \sum_{i=0}^k i\beta_i$.

Since $x_n \in f(x_{n-1}, \dots, x_{n-1})$ for all $n \in \mathbb{N}$, by (PS2) we have

$$d_s(x_{n-1}, f(x_{n-1}, \dots, x_{n-1})) \leq d(x_{n-1}, x_n)$$
 for all $n \in \mathbb{N}$.

Therefore, it follows from the above inequality that

$$D(x_n) \leq \frac{A+B-C}{1-C} d(x_{n-1},x_n)$$
 for all $n \in \mathbb{N}$.

As, $A+B<1, C\leq B$, and $\{x_n\}$ is a Cauchy sequence, for each $c\in P$ with $\theta\ll c$ there exists $n_0\in\mathbb{N}$ such that $d(x_{n-1},x_n)\ll\frac{(1-C)c}{A+B-C}$ for all $n>n_0$. So, it follows from the above inequality that $D(x_n)\ll c$ for all $n>n_0$. Using the inequality (3.11) and the Remark 2.3 we have

$$D(x^*) \ll c$$
 for all $n \in \mathbb{N}$.

Therefore, we must have
$$D(x^*) = \theta$$
, i.e., $d_s(x^*, f(x^*, \dots, x^*)) = \theta$, or, $x^* \in f(x^*, \dots, x^*)$. Thus $x^* \in \text{Fix} f$.

Acknowledgements. The author is thankful to the reviewers for their useful comments and remarks on this paper. I am also thankful to Professor Stojan Radenović and Professor M.K. Dube for their regular encouragements and motivation for research.

REFERENCES

- M. Arshad, J. Ahmad, On multivalued contractions in cone metric spaces without normality, The Scientific World Journal 2013, (2013) Article ID 481601, 3 pages.
- 2. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985
- L. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332(2), (2007) 1468-1476.

- G. Jungck, S. Radenović, S. Radojević, V. Rakočević, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl., 57, (2009) article ID 643840, 13 pages.
- Z. Kadelburg, S. Radenović, V. Rakočević, Topological Vector Space-Valued Cone Metric Spaces and Fixed Point Theorems, Fixed Point Theory Appl., 2010, (2010) Article ID 170253, 17 pages.
- 6. R. Kannan, Some results on fixed point, Bull. Calcutta Math. Soc., 60, (1968) 71-76.
- 7. R. Kannan, Some results on fixed point-II, Amer. Math. Monthly, 76, (1969) 405-408.
- 8. D. Klim, D. Wardowski, Dynamic processes and fixed points of set-valued nonlinear contractions in cone metric spaces, Nonlinear Anal., 71, (2009) 5170-5175.
- S.K. Malhotra, S. Shukla, R. Sen, Some coincidence and common fixed point theorems for Prešić-Reich type mappings in cone metric spaces, Rend. Sem. Mat. Univ. Politec. Torino., 70(3) (2012), 247-260.
- 10. S.B. Nadler Jr., Multi-valued contraction mappings. Pacific J. Math., 30, (1969) 475-488.
- M. Păcurar, Approximating common fixed points of Prešić-Kannan type operators by a multi-step iterative method, An. Șt. Univ. Ovidius Constanța, 17(1), (2009) 153-168.
- S.B. Prešić, Sur la convergence des suites, Comptes. Rendus. de l'Acad. de Paris, 260, (1965) 3828-3830.
- 13. S.B. Prešić, Sur une classe dinéquations aux différences finite et sur la convergence de certaines suites, Publ. de l'Inst. Math. Belgrade, 5(19), (1965) 75-78.
- S. Reich, Some remarks concerning contraction mappings, Canad. Nth. Bull., 14 (1971) 121-124, MR 45# 1145.
- D. Wardowski, Endpoints and fixed points of set-valued contractions in cone metric spaces, Nonlinear Anal., 71, (2009) 512-516.
- 16. D. Wardowski, On set valued contraction of Nadler type in cone metric spaces, Appl. Math. Lett., 24(3), (2011) 275-278.