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ABSTRACT. We study a class of fractional integrodifferential inclusions with nonlocal frac
tional integral boundary conditions and we establish a Filippov type existence result in the
case of nonconvex setvalued maps.

KEYWORDS : Differential inclusion; Fractional derivative; Boundary value problem.
AMS Subject Classification: 34A60, 34A08

1. INTRODUCTION

This note is concerned with the following problem

Dqx(t) ∈ F (t, x(t), Iγx(t)) a.e. ([1, e]), (1.1)

x(1) = 0,
m∑
i=1

λiI
αix(ηi) =

n∑
j=1

µi(I
βjx(e)− Iβjx(ξj)), (1.2)

where Dq is the Hadamard fractional derivative of order q, q ∈ (1, 2], Iγ is the
Hadamard integral of order γ, γ > 0, αi, βj > 0, ηi, ξj ∈ (1, e), λi ∈ R, µj ∈ R,
i = 1,m, j = 1, n, η1 < η2 < ... < ηm, ξ1 < ξ2 < ... < ξn and F : [1, e]×R×R −→
P(R) is a setvalued map.

If F is singlevalued and does not depend on the last variable, fractional inclusion
(1.1) reduces to the fractional equation

Dqx(t) = f(t, x(t)), (1.3)

where f : [1, e]×R −→ R.
In the last years we may see a strong development of the study of boundary

value problems associated to fractional differential equations and inclusions. Most
of the results in this framework are obtained for problems defined by Riemann
Liouville or Caputo fractional derivatives. Another type of fractional derivative is
the one introduced by Hadamard ([6]) which differs from the others in the sense
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that the kernel of the integral contains a logarithmic function of arbitrary expo
nent. Recently, several papers were devoted to fractional differential equations and
inclusions defined by Hadamard fractional derivative [1,2,4,9] etc.

The present note is motivated by a recent paper of Thiramanus, Ntouyas and
Taribon ([9]) where existence results for problem (1.3)(1.2) are obtained using fixed
point techniques.

Our aim is to extend the study in [9] to the setvalued framework; moreover, our
righthand side contains an integral term. We show that Filippov’s ideas ([5]) can be
suitably adapted in order to obtain the existence of solutions for problem (1.1)(1.2).
Recall that for a differential inclusion defined by a lipschitzian setvalued map with
nonconvex values, Filippov’s theorem ([5]) consists in proving the existence of a
solution starting from a given "quasi" solution. Moreover, the result provides an
estimate between the "quasi" solution and the solution obtained. In this way we
extend an existence result in [4].

The paper is organized as follows: in Section 2 we recall some preliminary results
that we need in the sequel and in Section 3 we prove our result.

2. PRELIMINARIES

Let (X, d) be a metric space. Recall that the PompeiuHausdorff distance of the
closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},
where d(x,B) = infy∈B d(x, y).

Let I = [1, e], we denote by C(I,R) the Banach space of all continuous functions
from I to R with the norm ||x(.)||C = supt∈I |x(t)| and L1(I,R) is the Banach space
of integrable functions u(.) : I −→ R endowed with the norm ||u(.)||1 =

∫ e

1
|u(t)|dt.

The Hadamard fractional integral of order q > 0 of a Lebesgue integrable function
f : [1,∞) −→ R is defined by

Iqf(t) =
1

Γ(q)

∫ t

1

(
ln

t

s

)q−1
f(s)

s
ds

provided the integral exists and Γ is the (Euler’s) Gamma function defined by Γ(q) =∫∞
0

tq−1e−tdt.
The Hadamard fractional derivative of order q > 0 of a function f : [1,∞) −→ R

is defined by

Dqf(t) =
1

Γ(n− q)

(
t
d

dt

)n ∫ t

1

(
ln

t

s

)n−q−1
f(s)

s
ds,

where n = [q] + 1, [q] is the integer part of q.
Details and properties of Hadamard fractional derivative may be found in [8,9].
The next technical result is proved in [9]. Set

Λ :=
m∑
i=1

λi
Γ(q)

Γ(q + αi)
(ln ηi)

q+αi−1 −
n∑

j=1

µi
Γ(q)

Γ(q + βj)
(1− (ln ξj)

q+βj−1).

Lemma 2.1. Assume that Λ ̸= 0. For a given f(.) ∈ C(I,R), the unique solution
x(.) of problem Dqx(t) = f(t) a.e. ([1, e]) with boundary conditions (1.2) is given
by

x(t) = Iqf(t) +
(ln t)q−1

Λ
[

n∑
j=1

µj(I
q+βjf(e)− Iq+βjf(ξj))−

m∑
i=1

λiI
q+αif(ηi)].
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Remark 2.2. If we denote A(t, s) = 1
Γ(q) (ln

t
s )

q−1 1
sχ[1,t](s), B(t, s) = (ln t)q−1

Λ ·∑n
j=1

µj

Γ(q+βj)
(ln e

s )
q+βj−1 1

s , Cj(t, s) = − (ln t)q−1

Λ
µj

Γ(q+βj)
(ln

ξj
s )

q+βj−1 1
sχ[1,ξj ](s), j =

1, n, Di(t, s) = − (ln t)q−1

Λ
λi

Γ(q+αi)
(ln ηi

s )
q+αi−1 1

sχ[1,ηi](s), i = 1,m, and G(t, s) =

A(t, s) + B(t, s) +
∑n

j=1 Cj(t, s) +
∑m

i=1 Di(t, s), where χS(·) is the characteristic
function of the set S, then the solution x(·) in Lemma 2.1 may be written as

x(t) =

∫ e

1

G(t, s)f(s)ds. (2.1)

Using the fact that, for fixed t, the function g(s) = (ln t
s )

q−1 1
s is decreasing and

g(1) = (ln t)q−1 we deduce that, for any t, s ∈ I,

|A(t, s)| ≤ 1

Γ(q)
(ln t)q−1 ≤ 1

Γ(q)
,

|B(t, s)| ≤
n∑

j=1

|µj |
|Λ|Γ(q + βj)

(ln t)q−1 ≤
n∑

j=1

|µj |
|Λ|Γ(q + βj)

,

|Cj(t, s)| ≤
(ln t)q−1

|Λ|
|µj |

Γ(q + βj)
(ln ξj)

q+βj−1 ≤ |µj |
|Λ|Γ(q + βj)

(ln ξj)
q+βj−1,

|Di(t, s)| ≤
(ln t)q−1

|Λ|
|λi|

Γ(q + αi)
(ln ηi)

q+αi−1 ≤ |λi|
|Λ|Γ(q + αi)

(ln ηi)
q+αi−1,

and therefore,

|G(t, s)| ≤ 1
Γ(q) +

∑n
j=1

|µj |
|Λ|Γ(q+βj)

(1 + (ln ξj)
q+βj−1)+∑m

i=1
|λi|

|Λ|Γ(q+αi)
(ln ηi)

q+αi−1 =: M1 ∀ t, s ∈ I.

Definition 2.3. A function x(.) ∈ C(I,R) with its Hadamard derivative of order
q existing on [1, e] is a solution of problem (1.1)(1.2) if there exists a function
f(.) ∈ L1(I,R) that satisfies f(t) ∈ F (t, x(t), Iγx(t)) a.e. (I), Dqx(t) = f(t) a.e.
(I) and conditions (1.2) are satisfied.

3. THE MAIN RESULT

First we recall a selection result ([3]) which is a version of the celebrated Kura
towski and RyllNardzewski selection theorem.

Lemma 3.1. Consider X a separable Banach space, B is the closed unit ball in X,
H : I −→ P(X) is a setvalued map with nonempty closed values and g : I −→
X,L : I −→ R+ are measurable functions. If

H(t) ∩ (g(t) + L(t)B) ̸= ∅ a.e.(I),

then the setvalued map t −→ H(t) ∩ (g(t) + L(t)B) has a measurable selection.

In order to prove our results we need the following hypotheses.

Hypothesis H1. i) F (., .) : I ×R×R −→ P(R) has nonempty closed values and is
L(I)⊗ B(R×R) measurable.

ii) There exists L(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F (t, ., .) is
L(t)Lipschitz in the sense that

dH(F (t, x1, y1), F (t, x2, y2)) ≤ L(t)(|x1 − x2|+ |y1 − y2|) ∀ x1, x2, y1, y2 ∈ R.
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We use next the following notations

M(t) := L(t)(1 +
1

Γ(γ)

∫ t

1

(
ln

t

s

)γ−1
1

s
ds) = L(t)(1 +

(ln t)γ

Γ(γ + 1)
), (3.1)

M0 =

∫ e

1

M(t)dt. (3.2)

Theorem 3.1. Assume that Hypothesis H1 is satisfied and M1M0 < 1. Consider
y(.) ∈ C(I,R) with its Hadamard derivative of order q existing on [1, e] such that
y(1) = 0,

∑m
i=1 λiI

αiy(ηi) =
∑n

j=1 µi(I
βjy(e) − Iβjy(ξj)) and there exists p(.) ∈

L1(I,R+) verifying d(Dqy(t), F (t, y(t), Iγy(t))) ≤ p(t) a.e. (I).
Then there exists x(.) a solution of problem (1.1)(1.2) satisfying for all t ∈ I

|x(t)− y(t)| ≤ M1

1−M1M0

∫ e

1

p(t)dt. (3.3)

Proof. The setvalued map t −→ F (t, y(t), Iγy(t)) is measurable with closed values
and

F (t, y(t), Iγy(t)) ∩ {Dqy(t) + p(t)[−1, 1]} ≠ ∅ a.e. (I).

It follows from Lemma 3.1 that there exists a measurable selection f1(t) ∈
F (t, y(t), Iγy(t)) a.e. (I) such that

|f1(t)−Dqy(t)| ≤ p(t) a.e. (I) (3.4)

Define x1(t) =
∫ e

1
G(t, s)f1(s)ds and one has

|x1(t)− y(t)| ≤ M1

∫ e

1

1p(t)dt.

We claim that it is enough to construct the sequences xn(.) ∈ C(I,R), fn(.) ∈
L1(I,R), n ≥ 1 with the following properties

xn(t) =

∫ e

1

G(t, s)fn(s)ds, t ∈ I, (3.5)

fn(t) ∈ F (t, xn−1(t), I
γxn−1(t)) a.e. (I), (3.6)

|fn+1(t)−fn(t)| ≤ L(t)(|xn(t)−xn−1(t)|+
1

Γ(γ)

∫ t

1

(
ln

t

s

)γ−1
1

s
|xn(s)−xn−1(s)|ds)

(3.7)
for almost all t ∈ I.

If this construction is realized then from (3.4)(3.7) we have for almost all t ∈ I

|xn+1(t)− xn(t)| ≤ M1(M1M0)
n

∫ e

1

p(t)dt ∀n ∈ N.

Indeed, assume that the last inequality is true for n − 1 and we prove it for n.
One has

|xn+1(t)− xn(t)| ≤
∫ e

1

|G(t, t1)|.|fn+1(t1)− fn(t1)|dt1 ≤

M1

∫ e

1

L(t1)[|xn(t1)− xn−1(t1)|+
1

Γ(γ)

∫ t1

1

(
ln

t1
s

)γ−1
1

s
|xn(s)− xn−1(s)|ds)

≤ M1

∫ 1

0

L(t1)(1 +
1

Γ(γ)

∫ t1

1

(
ln

t1
s

)γ−1
1

s
ds)dt1.M

n
1 M

n−1
0

∫ e

1

p(t)dt =

= M1(M1M0)
n

∫ e

1

p(t)dt
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Therefore {xn(.)} is a Cauchy sequence in the Banach space C(I,R), hence
converging uniformly to some x(.) ∈ C(I,R). Therefore, by (3.7), for almost all
t ∈ I, the sequence {fn(t)} is Cauchy in R. Let f(.) be the pointwise limit of fn(.).

Moreover, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
∑n−1

i=1 |xi+1(t)− xi(t)| ≤
M1

∫ e

1
p(t)dt+

∑n−1
i=1 (M1

∫ e

1
p(t)dt)(M1M0)

i =
M1

∫ e
1
p(t)dt

1−M1M0
.

(3.8)

On the other hand, from (3.4), (3.7) and (3.8) we obtain for almost all t ∈ I

|fn(t)−Dqy(t)| ≤∑n−1
i=1 |fi+1(t)− fi(t)|++|f1(t)−Dqy(t)| ≤ L(t)

M1

∫ e
1
p(t)dt

1−M1M0
+ p(t)

Hence the sequence fn(.) is integrably bounded and therefore f(.) ∈ L1(I,R).
Using Lebesgue’s dominated convergence theorem and taking the limit in (3.5),

(3.6) we deduce that x(.) is a solution of (1.1). Finally, passing to the limit in (3.8)
we obtained the desired estimate on x(.).

It remains to construct the sequences xn(.), fn(.) with the properties in (3.5)
(3.7). The construction will be done by induction.

Since the first step is already realized, assume that for some N ≥ 1 we al
ready constructed xn(.) ∈ C(I,R) and fn(.) ∈ L1(I,R), n = 1, 2, ...N satis
fying (3.5), (3.7) for n = 1, 2, ...N and (3.6) for n = 1, 2, ...N − 1. The set
valued map t −→ F (t, xN (t), IγxN (t)) is measurable. Moreover, the map t −→

L(t)(|xN (t) − xN−1(t)| + 1
Γ(γ)

∫ t

1

(
ln t

s

)γ−1
1
s |xN (s) − xN−1(s)|ds) is measurable.

By the lipschitzianity of F (t, ., .) we have that for almost all t ∈ I

F (t, xN (t), IγxN (t)) ∩ {fN (t) + L(t)(|xN (t)− xN−1(t)|+
1

Γ(γ)

∫ t

1

(
ln t

s

)γ−1
1
s |xN (s)− xN−1(s)|ds)[−1, 1]} ̸= ∅.

Lemma 3.1 yields that there exists a measurable selection fN+1(.) of F (., xN (.),
IγxN (.)) such that for almost all t ∈ I

|fN+1(t)− fN (t)| ≤

L(t)(|xN (t)− xN−1(t)|+ 1
Γ(γ)

∫ t

1

(
ln t

s

)γ−1
1
s |xN (s)− xN−1(s)|ds).

We define xN+1(.) as in (3.5) with n = N + 1. Thus fN+1(.) satisfies (3.6) and
(3.7) and the proof is complete. �

The assumption in Theorem 3.1 is satisfied, in particular, for y(.) = 0 and
therefore with p(.) = L(.). We obtain the following consequence of Theorem 3.1.

Corollary 3.2. Assume that Hypothesis H1 is satisfied, d(0, F (t, 0, 0) ≤ L(t) a.e.
(I) and M1M0 < 1. Then there exists x(.) a solution of problem (1.1)(1.2) satisfying
for all t ∈ I

|x(t)| ≤ M1

1−M1M0

∫ e

1

L(t)dt.

If F does not depend on the last variable, Hypothesis H1 became

Hypothesis H2. i) F (., .) : I × R −→ P(R) has nonempty closed values and is
L(I)⊗ B(R) measurable.
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ii) There exists L(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F (t, .) is
L(t)Lipschitz in the sense that

dH(F (t, x1), F (t, x2)) ≤ L(t)|x1 − x2| ∀ x1, x2 ∈ R.

Denote L0 =
∫ e

1
L(t)dt. and consider the fractional differential inclusion

Dqx(t) ∈ F (t, x(t)) a.e. ([1, e]), (3.9)

Corollary 3.3. Assume that Hypothesis H2 is satisfied, d(0, F (t, 0) ≤ L(t) a.e. (I)
and M1L0 < 1. Then there exists x(.) a solution of problem (3.9)(1.2) satisfying for
all t ∈ I

|x(t)| ≤ M1L0

1−M1L0
.

Remark 3.4. If in (1.2) λi = 0, i = 1,m, j = 1, µ1 = 1, then Theorem 3.1 yields
Theorem 3.1 in [4].
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