 $+$

ON THE EXISTENCE OF SOLUTIONS FOR A HADAMARD-TYPE FRACTIONAL INTEGRO-DIFFERENTIAL INCLUSION

AURELIAN CERNEA

Faculty of Mathematics and Computer Science, University of Bucharest, Academiei 14, 010014

$$
\text { Academy of Romanian Scientists, Splaiul Independenței 54, } 050094 \text { Bucharest, Romania }
$$

ABSTRACT. We study a class of fractional integro-differential inclusions with nonlocal fractional integral boundary conditions and we establish a Filippov type existence result in the case of nonconvex set-valued maps.

KEYWORDS : Differential inclusion; Fractional derivative; Boundary value problem.
AMS Subject Classification: 34A60, 34A08

1. INTRODUCTION

This note is concerned with the following problem

$$
\begin{gather*}
D^{q} x(t) \in F\left(t, x(t), I^{\gamma} x(t)\right) \quad \text { a.e. }([1, e]), \tag{1.1}\\
x(1)=0, \quad \sum_{i=1}^{m} \lambda_{i} I^{\alpha_{i}} x\left(\eta_{i}\right)=\sum_{j=1}^{n} \mu_{i}\left(I^{\beta_{j}} x(e)-I^{\beta_{j}} x\left(\xi_{j}\right)\right), \tag{1.2}
\end{gather*}
$$

where D^{q} is the Hadamard fractional derivative of order $q, q \in(1,2], I^{\gamma}$ is the Hadamard integral of order $\gamma, \gamma>0, \alpha_{i}, \beta_{j}>0, \eta_{i}, \xi_{j} \in(1, e), \lambda_{i} \in \mathbf{R}, \mu_{j} \in \mathbf{R}$, $i=\overline{1, m}, j=\overline{1, n}, \eta_{1}<\eta_{2}<\ldots<\eta_{m}, \xi_{1}<\xi_{2}<\ldots<\xi_{n}$ and $F:[1, e] \times \mathbf{R} \times \mathbf{R} \longrightarrow$ $\mathcal{P}(\mathbf{R})$ is a set-valued map.

If F is single-valued and does not depend on the last variable, fractional inclusion (1.1) reduces to the fractional equation

$$
\begin{equation*}
D^{q} x(t)=f(t, x(t)) \tag{1.3}
\end{equation*}
$$

where $f:[1, e] \times \mathbf{R} \longrightarrow \mathbf{R}$.
In the last years we may see a strong development of the study of boundary value problems associated to fractional differential equations and inclusions. Most of the results in this framework are obtained for problems defined by RiemannLiouville or Caputo fractional derivatives. Another type of fractional derivative is the one introduced by Hadamard ([6]) which differs from the others in the sense

[^0]that the kernel of the integral contains a logarithmic function of arbitrary exponent. Recently, several papers were devoted to fractional differential equations and inclusions defined by Hadamard fractional derivative [1,2,4,9] etc.

The present note is motivated by a recent paper of Thiramanus, Ntouyas and Taribon ([9]) where existence results for problem (1.3)-(1.2) are obtained using fixed point techniques.

Our aim is to extend the study in [9] to the set-valued framework; moreover, our right-hand side contains an integral term. We show that Filippov's ideas ([5]) can be suitably adapted in order to obtain the existence of solutions for problem (1.1)-(1.2). Recall that for a differential inclusion defined by a lipschitzian set-valued map with nonconvex values, Filippov's theorem ([5]) consists in proving the existence of a solution starting from a given "quasi" solution. Moreover, the result provides an estimate between the "quasi" solution and the solution obtained. In this way we extend an existence result in [4].

The paper is organized as follows: in Section 2 we recall some preliminary results that we need in the sequel and in Section 3 we prove our result.

2. PRELIMINARIES

Let (X, d) be a metric space. Recall that the Pompeiu-Hausdorff distance of the closed subsets $A, B \subset X$ is defined by

$$
d_{H}(A, B)=\max \left\{d^{*}(A, B), d^{*}(B, A)\right\}, d^{*}(A, B)=\sup \{d(a, B) ; a \in A\}
$$

where $d(x, B)=\inf _{y \in B} d(x, y)$.
Let $I=[1, e]$, we denote by $C(I, \mathbf{R})$ the Banach space of all continuous functions from I to \mathbf{R} with the norm $\|x(.)\|_{C}=\sup _{t \in I}|x(t)|$ and $L^{1}(I, \mathbf{R})$ is the Banach space of integrable functions $u():. I \longrightarrow \mathbf{R}$ endowed with the norm $\|u(.)\|_{1}=\int_{1}^{e}|u(t)| d t$.

The Hadamard fractional integral of order $q>0$ of a Lebesgue integrable function $f:[1, \infty) \longrightarrow \mathbf{R}$ is defined by

$$
I^{q} f(t)=\frac{1}{\Gamma(q)} \int_{1}^{t}\left(\ln \frac{t}{s}\right)^{q-1} \frac{f(s)}{s} d s
$$

provided the integral exists and Γ is the (Euler's) Gamma function defined by $\Gamma(q)=$ $\int_{0}^{\infty} t^{q-1} e^{-t} d t$.

The Hadamard fractional derivative of order $q>0$ of a function $f:[1, \infty) \longrightarrow \mathbf{R}$ is defined by

$$
D^{q} f(t)=\frac{1}{\Gamma(n-q)}\left(t \frac{d}{d t}\right)^{n} \int_{1}^{t}\left(\ln \frac{t}{s}\right)^{n-q-1} \frac{f(s)}{s} d s
$$

where $n=[q]+1,[q]$ is the integer part of q.
Details and properties of Hadamard fractional derivative may be found in [8,9]. The next technical result is proved in [9]. Set

$$
\Lambda:=\sum_{i=1}^{m} \lambda_{i} \frac{\Gamma(q)}{\Gamma\left(q+\alpha_{i}\right)}\left(\ln \eta_{i}\right)^{q+\alpha_{i}-1}-\sum_{j=1}^{n} \mu_{i} \frac{\Gamma(q)}{\Gamma\left(q+\beta_{j}\right)}\left(1-\left(\ln \xi_{j}\right)^{q+\beta_{j}-1}\right)
$$

Lemma 2.1. Assume that $\Lambda \neq 0$. For a given $f(.) \in C(I, \mathbf{R})$, the unique solution $x($.$) of problem D^{q} x(t)=f(t)$ a.e. ([1,e]) with boundary conditions (1.2) is given by

$$
x(t)=I^{q} f(t)+\frac{(\ln t)^{q-1}}{\Lambda}\left[\sum_{j=1}^{n} \mu_{j}\left(I^{q+\beta_{j}} f(e)-I^{q+\beta_{j}} f\left(\xi_{j}\right)\right)-\sum_{i=1}^{m} \lambda_{i} I^{q+\alpha_{i}} f\left(\eta_{i}\right)\right]
$$

Remark 2.2. If we denote $A(t, s)=\frac{1}{\Gamma(q)}\left(\ln \frac{t}{s}\right)^{q-1} \frac{1}{s} \chi_{[1, t]}(s), B(t, s)=\frac{(\ln t)^{q-1}}{\Lambda}$.
$\sum_{j=1}^{n} \frac{\mu_{j}}{\Gamma\left(q+\beta_{j}\right)}\left(\ln \frac{e}{s}\right)^{q+\beta_{j}-1} \frac{1}{s}, C_{j}(t, s)=-\frac{(\ln t)^{q-1}}{\Lambda} \frac{\mu_{j}}{\Gamma\left(q+\beta_{j}\right)}\left(\ln \frac{\xi_{j}}{s}\right)^{q+\beta_{j}-1} \frac{1}{s} \chi_{\left[1, \xi_{j}\right]}(s), j=$ $\overline{1, n}, D_{i}(t, s)=-\frac{(\ln t)^{q-1}}{\Lambda} \frac{\lambda_{i}}{\Gamma\left(q+\alpha_{i}\right)}\left(\ln \frac{\eta_{i}}{s}\right)^{q+\alpha_{i}-1} \frac{1}{s} \chi_{\left[1, \eta_{i}\right]}(s), i=\overline{1, m}$, and $G(t, s)=$ $A(t, s)+B(t, s)+\sum_{j=1}^{n} C_{j}(t, s)+\sum_{i=1}^{m} D_{i}(t, s)$, where $\chi_{S}(\cdot)$ is the characteristic function of the set S, then the solution $x(\cdot)$ in Lemma 2.1 may be written as

$$
\begin{equation*}
x(t)=\int_{1}^{e} G(t, s) f(s) d s \tag{2.1}
\end{equation*}
$$

Using the fact that, for fixed t, the function $g(s)=\left(\ln \frac{t}{s}\right)^{q-1} \frac{1}{s}$ is decreasing and $g(1)=(\ln t)^{q-1}$ we deduce that, for any $t, s \in I$,

$$
\begin{gathered}
|A(t, s)| \leq \frac{1}{\Gamma(q)}(\ln t)^{q-1} \leq \frac{1}{\Gamma(q)} \\
|B(t, s)| \leq \sum_{j=1}^{n} \frac{\left|\mu_{j}\right|}{|\Lambda| \Gamma\left(q+\beta_{j}\right)}(\ln t)^{q-1} \leq \sum_{j=1}^{n} \frac{\left|\mu_{j}\right|}{|\Lambda| \Gamma\left(q+\beta_{j}\right)}, \\
\left|C_{j}(t, s)\right| \leq \frac{(\ln t)^{q-1}}{|\Lambda|} \frac{\left|\mu_{j}\right|}{\Gamma\left(q+\beta_{j}\right)}\left(\ln \xi_{j}\right)^{q+\beta_{j}-1} \leq \frac{\left|\mu_{j}\right|}{|\Lambda| \Gamma\left(q+\beta_{j}\right)}\left(\ln \xi_{j}\right)^{q+\beta_{j}-1}, \\
\left|D_{i}(t, s)\right| \leq \frac{(\ln t)^{q-1}}{|\Lambda|} \frac{\left|\lambda_{i}\right|}{\Gamma\left(q+\alpha_{i}\right)}\left(\ln \eta_{i}\right)^{q+\alpha_{i}-1} \leq \frac{\left|\lambda_{i}\right|}{|\Lambda| \Gamma\left(q+\alpha_{i}\right)}\left(\ln \eta_{i}\right)^{q+\alpha_{i}-1},
\end{gathered}
$$

and therefore,

$$
\begin{aligned}
& |G(t, s)| \leq \frac{1}{\Gamma(q)}+\sum_{j=1}^{n} \frac{\left|\mu_{j}\right|}{|\Lambda| \Gamma\left(q+\beta_{j}\right)}\left(1+\left(\ln \xi_{j}\right)^{q+\beta_{j}-1}\right)+ \\
& \sum_{i=1}^{m} \frac{\left|i_{i}\right|}{|\Lambda| \Gamma\left(q+\alpha_{i}\right)}\left(\ln \eta_{i}\right)^{q+\alpha_{i}-1}=: M_{1} \quad \forall t, s \in I .
\end{aligned}
$$

Definition 2.3. A function $x(.) \in C(I, \mathbf{R})$ with its Hadamard derivative of order q existing on $[1, e]$ is a solution of problem (1.1)-(1.2) if there exists a function $f(.) \in L^{1}(I, \mathbf{R})$ that satisfies $f(t) \in F\left(t, x(t), I^{\gamma} x(t)\right)$ a.e. $(I), D^{q} x(t)=f(t)$ a.e. (I) and conditions (1.2) are satisfied.

3. THE MAIN RESULT

First we recall a selection result ([3]) which is a version of the celebrated Kuratowski and Ryll-Nardzewski selection theorem.

Lemma 3.1. Consider X a separable Banach space, B is the closed unit ball in X, $H: I \longrightarrow \mathcal{P}(X)$ is a set-valued map with nonempty closed values and $g: I \longrightarrow$ $X, L: I \longrightarrow \mathbf{R}_{+}$are measurable functions. If

$$
H(t) \cap(g(t)+L(t) B) \neq \emptyset \quad \text { a.e. }(I)
$$

then the set-valued map $t \longrightarrow H(t) \cap(g(t)+L(t) B)$ has a measurable selection.
In order to prove our results we need the following hypotheses.
Hypothesis H1. i) $F(.,):. I \times \mathbf{R} \times \mathbf{R} \longrightarrow \mathcal{P}(\mathbf{R})$ has nonempty closed values and is $\mathcal{L}(I) \otimes \mathcal{B}(\mathbf{R} \times \mathbf{R})$ measurable.
ii) There exists $L(.) \in L^{1}(I,(0, \infty))$ such that, for almost all $t \in I, F(t, .,$.$) is$ $L(t)$-Lipschitz in the sense that

$$
d_{H}\left(F\left(t, x_{1}, y_{1}\right), F\left(t, x_{2}, y_{2}\right)\right) \leq L(t)\left(\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|\right) \forall x_{1}, x_{2}, y_{1}, y_{2} \in \mathbf{R} .
$$

We use next the following notations

$$
\begin{gather*}
M(t):=L(t)\left(1+\frac{1}{\Gamma(\gamma)} \int_{1}^{t}\left(\ln \frac{t}{s}\right)^{\gamma-1} \frac{1}{s} d s\right)=L(t)\left(1+\frac{(\ln t)^{\gamma}}{\Gamma(\gamma+1)}\right) \tag{3.1}\\
M_{0}=\int_{1}^{e} M(t) d t \tag{3.2}
\end{gather*}
$$

Theorem 3.1. Assume that Hypothesis $H 1$ is satisfied and $M_{1} M_{0}<1$. Consider $y(.) \in C(I, \mathbf{R})$ with its Hadamard derivative of order q existing on $[1, e]$ such that $y(1)=0, \sum_{i=1}^{m} \lambda_{i} I^{\alpha_{i}} y\left(\eta_{i}\right)=\sum_{j=1}^{n} \mu_{i}\left(I^{\beta_{j}} y(e)-I^{\beta_{j}} y\left(\xi_{j}\right)\right)$ and there exists $p(.) \in$ $L^{1}\left(I, \mathbf{R}_{+}\right)$verifying $d\left(D^{q} y(t), F\left(t, y(t), I^{\gamma} y(t)\right)\right) \leq p(t)$ a.e. (I).

Then there exists x (.) a solution of problem (1.1)-(1.2) satisfying for all $t \in I$

$$
\begin{equation*}
|x(t)-y(t)| \leq \frac{M_{1}}{1-M_{1} M_{0}} \int_{1}^{e} p(t) d t \tag{3.3}
\end{equation*}
$$

Proof. The set-valued map $t \longrightarrow F\left(t, y(t), I^{\gamma} y(t)\right)$ is measurable with closed values and

$$
F\left(t, y(t), I^{\gamma} y(t)\right) \cap\left\{D^{q} y(t)+p(t)[-1,1]\right\} \neq \emptyset \quad \text { a.e. }(I) .
$$

It follows from Lemma 3.1 that there exists a measurable selection $f_{1}(t) \in$ $F\left(t, y(t), I^{\gamma} y(t)\right)$ a.e. (I) such that

$$
\begin{equation*}
\left|f_{1}(t)-D^{q} y(t)\right| \leq p(t) \quad \text { a.e. }(I) \tag{3.4}
\end{equation*}
$$

Define $x_{1}(t)=\int_{1}^{e} G(t, s) f_{1}(s) d s$ and one has

$$
\left|x_{1}(t)-y(t)\right| \leq M_{1} \int_{1}^{e} 1 p(t) d t
$$

We claim that it is enough to construct the sequences $x_{n}(.) \in C(I, \mathbf{R}), f_{n}(.) \in$ $L^{1}(I, \mathbf{R}), n \geq 1$ with the following properties

$$
\begin{gather*}
x_{n}(t)=\int_{1}^{e} G(t, s) f_{n}(s) d s, \quad t \in I \tag{3.5}\\
f_{n}(t) \in F\left(t, x_{n-1}(t), I^{\gamma} x_{n-1}(t)\right) \quad \text { a.e. }(I) \tag{3.6}\\
\left|f_{n+1}(t)-f_{n}(t)\right| \leq L(t)\left(\left|x_{n}(t)-x_{n-1}(t)\right|+\frac{1}{\Gamma(\gamma)} \int_{1}^{t}\left(\ln \frac{t}{s}\right)^{\gamma-1} \frac{1}{s}\left|x_{n}(s)-x_{n-1}(s)\right| d s\right) \tag{3.7}
\end{gather*}
$$

for almost all $t \in I$.
If this construction is realized then from (3.4)-(3.7) we have for almost all $t \in I$

$$
\left|x_{n+1}(t)-x_{n}(t)\right| \leq M_{1}\left(M_{1} M_{0}\right)^{n} \int_{1}^{e} p(t) d t \quad \forall n \in \mathbf{N}
$$

Indeed, assume that the last inequality is true for $n-1$ and we prove it for n. One has

$$
\begin{gathered}
\left|x_{n+1}(t)-x_{n}(t)\right| \leq \int_{1}^{e}\left|G\left(t, t_{1}\right)\right| \cdot\left|f_{n+1}\left(t_{1}\right)-f_{n}\left(t_{1}\right)\right| d t_{1} \leq \\
M_{1} \int_{1}^{e} L\left(t_{1}\right)\left[\left|x_{n}\left(t_{1}\right)-x_{n-1}\left(t_{1}\right)\right|+\frac{1}{\Gamma(\gamma)} \int_{1}^{t_{1}}\left(\ln \frac{t_{1}}{s}\right)^{\gamma-1} \frac{1}{s}\left|x_{n}(s)-x_{n-1}(s)\right| d s\right) \\
\leq M_{1} \int_{0}^{1} L\left(t_{1}\right)\left(1+\frac{1}{\Gamma(\gamma)} \int_{1}^{t_{1}}\left(\ln \frac{t_{1}}{s}\right)^{\gamma-1} \frac{1}{s} d s\right) d t_{1} \cdot M_{1}^{n} M_{0}^{n-1} \int_{1}^{e} p(t) d t= \\
=M_{1}\left(M_{1} M_{0}\right)^{n} \int_{1}^{e} p(t) d t
\end{gathered}
$$

Therefore $\left\{x_{n}().\right\}$ is a Cauchy sequence in the Banach space $C(I, \mathbf{R})$, hence converging uniformly to some $x(.) \in C(I, \mathbf{R})$. Therefore, by (3.7), for almost all $t \in I$, the sequence $\left\{f_{n}(t)\right\}$ is Cauchy in \mathbf{R}. Let $f($.$) be the pointwise limit of f_{n}($.$) .$

Moreover, one has

$$
\begin{align*}
& \left|x_{n}(t)-y(t)\right| \leq\left|x_{1}(t)-y(t)\right|+\sum_{i=1}^{n-1}\left|x_{i+1}(t)-x_{i}(t)\right| \leq \\
& M_{1} \int_{1}^{e} p(t) d t+\sum_{i=1}^{n-1}\left(M_{1} \int_{1}^{e} p(t) d t\right)\left(M_{1} M_{0}\right)^{i}=\frac{M_{1} \int_{1}^{e} p(t) d t}{1-M_{1} M_{0}} \tag{3.8}
\end{align*}
$$

On the other hand, from (3.4), (3.7) and (3.8) we obtain for almost all $t \in I$

$$
\begin{aligned}
& \left|f_{n}(t)-D^{q} y(t)\right| \leq \\
& \sum_{i=1}^{n-1}\left|f_{i+1}(t)-f_{i}(t)\right|++\left|f_{1}(t)-D^{q} y(t)\right| \leq L(t) \frac{M_{1} \int_{1}^{e} p(t) d t}{1-M_{1} M_{0}}+p(t)
\end{aligned}
$$

Hence the sequence $f_{n}($.$) is integrably bounded and therefore f(.) \in L^{1}(I, \mathbf{R})$.
Using Lebesgue's dominated convergence theorem and taking the limit in (3.5), (3.6) we deduce that $x($.$) is a solution of (1.1). Finally, passing to the limit in (3.8)$ we obtained the desired estimate on $x($.$) .$

It remains to construct the sequences $x_{n}(),. f_{n}($.$) with the properties in (3.5)-$ (3.7). The construction will be done by induction.

Since the first step is already realized, assume that for some $N \geq 1$ we already constructed $x_{n}(.) \in C(I, \mathbf{R})$ and $f_{n}(.) \in L^{1}(I, \mathbf{R}), n=1,2, \ldots N$ satisfying (3.5), (3.7) for $n=1,2, \ldots N$ and (3.6) for $n=1,2, \ldots N-1$. The setvalued map $t \longrightarrow F\left(t, x_{N}(t), I^{\gamma} x_{N}(t)\right)$ is measurable. Moreover, the map $t \longrightarrow$ $L(t)\left(\left|x_{N}(t)-x_{N-1}(t)\right|+\frac{1}{\Gamma(\gamma)} \int_{1}^{t}\left(\ln \frac{t}{s}\right)^{\gamma-1} \frac{1}{s}\left|x_{N}(s)-x_{N-1}(s)\right| d s\right)$ is measurable. By the lipschitzianity of $F(t, .,$.$) we have that for almost all t \in I$

$$
\begin{aligned}
& F\left(t, x_{N}(t), I^{\gamma} x_{N}(t)\right) \cap\left\{f_{N}(t)+L(t)\left(\left|x_{N}(t)-x_{N-1}(t)\right|+\right.\right. \\
& \left.\left.\frac{1}{\Gamma(\gamma)} \int_{1}^{t}\left(\ln \frac{t}{s}\right)^{\gamma-1} \frac{1}{s}\left|x_{N}(s)-x_{N-1}(s)\right| d s\right)[-1,1]\right\} \neq \emptyset .
\end{aligned}
$$

Lemma 3.1 yields that there exists a measurable selection $f_{N+1}($.$) of F\left(., x_{N}(\right.$.$) ,$ $\left.I^{\gamma} x_{N}().\right)$ such that for almost all $t \in I$

$$
\begin{aligned}
& \left|f_{N+1}(t)-f_{N}(t)\right| \leq \\
& L(t)\left(\left|x_{N}(t)-x_{N-1}(t)\right|+\frac{1}{\Gamma(\gamma)} \int_{1}^{t}\left(\ln \frac{t}{s}\right)^{\gamma-1} \frac{1}{s}\left|x_{N}(s)-x_{N-1}(s)\right| d s\right)
\end{aligned}
$$

We define $x_{N+1}($.$) as in (3.5) with n=N+1$. Thus $f_{N+1}($.$) satisfies (3.6) and$ (3.7) and the proof is complete.

The assumption in Theorem 3.1 is satisfied, in particular, for $y()=$.0 and therefore with $p()=.L($.$) . We obtain the following consequence of Theorem 3.1.$

Corollary 3.2. Assume that Hypothesis H1 is satisfied, $d(0, F(t, 0,0) \leq L(t)$ a.e. (I) and $M_{1} M_{0}<1$. Then there exists $x($.$) a solution of problem (1.1)-(1.2) satisfying$ for all $t \in I$

$$
|x(t)| \leq \frac{M_{1}}{1-M_{1} M_{0}} \int_{1}^{e} L(t) d t
$$

If F does not depend on the last variable, Hypothesis H1 became
Hypothesis H2. i) $F(.,):. I \times \mathbf{R} \longrightarrow \mathcal{P}(\mathbf{R})$ has nonempty closed values and is $\mathcal{L}(I) \otimes \mathcal{B}(\mathbf{R})$ measurable.
ii) There exists $L(.) \in L^{1}(I,(0, \infty))$ such that, for almost all $t \in I, F(t,$.$) is$ $L(t)$-Lipschitz in the sense that

$$
d_{H}\left(F\left(t, x_{1}\right), F\left(t, x_{2}\right)\right) \leq L(t)\left|x_{1}-x_{2}\right| \quad \forall x_{1}, x_{2} \in \mathbf{R} .
$$

Denote $L_{0}=\int_{1}^{e} L(t) d t$. and consider the fractional differential inclusion

$$
\begin{equation*}
D^{q} x(t) \in F(t, x(t)) \quad \text { a.e. }([1, e]) \tag{3.9}
\end{equation*}
$$

Corollary 3.3. Assume that Hypothesis H2 is satisfied, $d(0, F(t, 0) \leq L(t)$ a.e. (I) and $M_{1} L_{0}<1$. Then there exists $x($.$) a solution of problem (3.9)-(1.2) satisfying for$ all $t \in I$

$$
|x(t)| \leq \frac{M_{1} L_{0}}{1-M_{1} L_{0}}
$$

Remark 3.4. If in (1.2) $\lambda_{i}=0, i=\overline{1, m}, j=1, \mu_{1}=1$, then Theorem 3.1 yields Theorem 3.1 in [4].

References

[1] B. Ahmad, S.K. Ntouyas, A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations, Fract. Calc. Appl. Anal. 17(2014), 348-360.
[2] B. Ahmad, S.K. Ntouyas, A. Alsaedi, New results for boundary value problems of Hadamard-type fractional differential inclusions and integral boundary conditions, Boundary Value Problems 2013, No. 275, (2013) 1-14.
[3] J.P. Aubin, H. Frankowska, Set-valued Analysis. Birkhauser, Basel, (1990).
[4] A. Cernea, Filippov lemma for a class of Hadamard-type fractional differential inclusions, Fract. Calc. Appl. Anal. 18(2015), 163-171.
[5] A.F. Filippov, Classical solutions of differential equations with multivalued right hand side, SIAM J. Control 5(1967), 609-621.
[6] J. Hadamard, Essai sur l'etude des fonctions donnees par leur development de Taylor, J. Math. Pures Appl. 8(1892), 101-186.
[7] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, (2006).
[8] A.A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc. 38(2001), 1191-1204.
[9] P. Thiramanus, S.K. Ntouyas, J. Taribon, Existence and uniqueness results for Hadamard-type fractional differential equations with nonlocal fractional integral boundary conditions, Abstract Appl. Anal. 2014(2014), ID 902054, 1-9.

[^0]: Email address : acernea@fmi.unibuc.ro.
 Article history : Received August 12, 2015. Accepted November 30, 2015.

