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ABSTRACT. We study a class of fractional integro-differential inclusions with nonlocal frac-

tional integral boundary conditions and we establish a Filippov type existence result in the
case of nonconvex set-valued maps.

KEYWORDS : Differential inclusion; Fractional derivative; Boundary value problem.
AMS Subject Classification: 34A60, 34A08

1. INTRODUCTION
This note is concerned with the following problem

Dix(t) € F(t,z(t),["z(t)) a.e. ([1,€]), (1.1)

(1) =0, Y AITa(n) = 3w~ Pag).  (12)

where DY is the Hadamard fractional derivative of order ¢, ¢ € (1,2], I” is the
Hadamard integral of order v, v > 0, o;,5; > 0, 7;,& € (1,e), Ay € R, p; € R,
i=1Im,j=1Lnm<m<.<npgp&E<&L<.<&andF:[lef x RxR —
P(R) is a set-valued map.

If F' is single-valued and does not depend on the last variable, fractional inclusion
(1.1) reduces to the fractional equation

Dix(t) = f(t,x(t)), (1.3)

where f:[1,e] x R — R.

In the last years we may see a strong development of the study of boundary
value problems associated to fractional differential equations and inclusions. Most
of the results in this framework are obtained for problems defined by Riemann-
Liouville or Caputo fractional derivatives. Another type of fractional derivative is
the one introduced by Hadamard ([6]) which differs from the others in the sense
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that the kernel of the integral contains a logarithmic function of arbitrary expo-
nent. Recently, several papers were devoted to fractional differential equations and
inclusions defined by Hadamard fractional derivative [1,2,4,9] etc.

The present note is motivated by a recent paper of Thiramanus, Ntouyas and
Taribon ([9]) where existence results for problem (1.3)-(1.2) are obtained using fixed
point techniques.

Our aim is to extend the study in [9] to the set-valued framework; moreover, our
right-hand side contains an integral term. We show that Filippov’s ideas ([5]) can be
suitably adapted in order to obtain the existence of solutions for problem (1.1)-(1.2).
Recall that for a differential inclusion defined by a lipschitzian set-valued map with
nonconvex values, Filippov’s theorem ([5]) consists in proving the existence of a
solution starting from a given "quasi" solution. Moreover, the result provides an
estimate between the "quasi" solution and the solution obtained. In this way we
extend an existence result in [4].

The paper is organized as follows: in Section 2 we recall some preliminary results
that we need in the sequel and in Section 3 we prove our result.

2. PRELIMINARIES

Let (X, d) be a metric space. Recall that the Pompeiu-Hausdorff distance of the
closed subsets A, B C X is defined by

di (A, B) = max{d*(A, B),d* (B, A)}, d" (4, B) = sup{d(a, B);a € A},

where d(z, B) = inf cp d(x,y).

Let I = [1, e], we denote by C'(I, R) the Banach space of all continuous functions
from I to R with the norm ||z(.)||c = sup,¢; |=(¢)| and L' (I, R) is the Banach space
of integrable functions u(.) : I — R endowed with the norm |[u(.)|[; = [, [u(t)|dt.

The Hadamard fractional integral of order ¢ > 0 of a Lebesgue integrable function
f:[1,00) — R is defined by

If() = F(lq)/lt (mi)q_lfis)ds

provided the integral exists and I is the (Euler’s) Gamma function defined by F(q) =
Jootr e dt.
The Hadamard fractional derivative of order ¢ > 0 of a function f : [1,00) — R

is defined by
1 d\" [t " ()
s =g () [ (ms) T

where n = [¢] + 1, [¢] is the integer part of q.
Details and properties of Hadamard fractional derivative may be found in [8,9].
The next technical result is proved in [9]. Set

& T e T o
A._;Azm(lnm)Jr —;uzp(q )(1—(ln§J) +B;-1,

+ﬁj

Lemma 2.1. Assume that A # 0. For a given f(.) € C(I,R), the unique solution
x(.) of problem Dx(t) = f(t) a.e. ([1,e]) with boundary conditions (1.2) is given
by

n

o(t) = 1950 + S (17 ) = 17 7(6)) = YA )

j=1
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Remark 2.2. If we denote A(t, s) = —)(ln )q Yyxug(s). B(t,s) = % .

n In )™ J J i— g
Xt (815 Co(6) = B g (n 0D g 0 =
T Dy(ts) = =2 pes (207 (), § = T, and Gl(.s) =

A(t,s) + B(t,s) + 25—, Cj(t,s) + 221~ Di(t, s), where xs(-) is the characteristic
function of the set S, then the solution z(+) in Lemma 2.1 may be written as

£ = /1 G(t, 5)f(s)ds. (2.1)

Using the fact that, for fixed ¢, the function g(s) = (In £)?7*1 is decreasing and
g(1) = (Int)7~! we deduce that, for any ¢, s € I,

1 _ 1
|A(t,s)| < m(lnt)q I < )
- |15 1451
B
B9 < 2 AT ) Sgquw
(Int)=t ) 18;,-1 |15 18,-1
. 1 \4TPj — 4 (] N\ TP
IS TR T e M S Ay M
. (lnt)q_l |>\’L‘ Ngt+a;—1 |)\’L‘ Ng+a;—1
Dt ) < T g g o T S ARG ey )

and therefore,

G 9)| < gy + i Gy (L + (0627

Z?le(lnm) atei=l — My Vtsel

Definition 2.3. A function z(.) € C(I,R) with its Hadamard derivative of order
q existing on [1, e] is a solution of problem (1.1)-(1.2) if there exists a function
f(.) € LY(I,R) that satisfies f(t) € F(t,z(t), ["z(t)) a.e. (I), Diz(t) = f(t) a.e
(I) and conditions (1.2) are satisfied.

3. THE MAIN RESULT

First we recall a selection result ([3]) which is a version of the celebrated Kura-
towski and Ryll-Nardzewski selection theorem.

Lemma 3.1. Consider X a separable Banach space, B is the closed unit ball in X,
H : I — P(X) is a set-valued map with nonempty closed values and g : I —
X, L : I — R, are measurable functions. If

Ht)N(gt)+ L{t)B) #0 a.e.(I),
then the set-valued map t — H(t) N (g(t) + L(t)B) has a measurable selection.

In order to prove our results we need the following hypotheses.

Hypothesis H1. i) F'(.,.) : I x R x R — P(R) has nonempty closed values and is
L(I) ® B(R x R) measurable.

ii) There exists L(.) € L'(I,(0,00)) such that, for almost all t € I, F(t,.,.) is
L(t)-Lipschitz in the sense that

dH(F(tvxlayl)vF(tvx%yZ)) < L(t)(|$1 - x2| + |y1 - y2|) v‘r17x27y1ay2 € R.
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We use next the following notations

M) = L) + ﬁ/l (m z> ) %ds) — L+ 1%), (3.1)

Mo = / "Mt (3.2)

Theorem 3.1. Assume that Hypothesis H1 is satisfied and MM, < 1. Consider
y(.) € C(I,R) with its Hadamard derivative of order q existing on [1,e] such that
y(1) = 0, 350, Nl ®y(ni) = 200, wi(I%y(e) — IPiy(&;)) and there exists p(.) €
LY(I,Ry) verifying d(Dy(t), F(t,y(t), I"y(t))) < p(t) a.e. ().

Then there exists x(.) a solution of problem (1.1)-(1.2) satisfying for allt € T

o) =901 < v | p()dt. (3.3)

Proof. The set-valued map t — F(¢,y(t), I7y(t)) is measurable with closed values
and

F(t,y (@), Iy(1) N {D%(t) + p(H)[=1,1]} # 0 a.e. (I).
It follows from Lemma 3.1 that there exists a measurable selection fi(t) €
F(t,y(t),["y(t)) a.e. (I) such that

[f1(t) = DUy(t)] < p(t) a.e. (I) (3.4)
Define z(t) = [ G(t, s) fi(s)ds and one has

a1 (1) — y(8)] < M, / ()t

We claim that it is enough to construct the sequences x,(.) € C(I,R), f.(.) €
LY(I,R), n > 1 with the following properties

Tn(t) = /16 G(t,s)fn(s)ds, tel, (3.5)
fut) € Ft,zp1(t),"zp_1(t)) a.e.(I), (3.6)
t y—1
Frir 0= £01 < LOa -0 O [ () Sanlo)-0a(0)las)
(3.7)

for almost all ¢ € 1.
If this construction is realized then from (3.4)-(3.7) we have for almost all ¢t € [

e

1 (£) — ()] < Ml(MlMO)"/l p(t)dt Vn e N.

Indeed, assume that the last inequality is true for n — 1 and we prove it for n.
One has

(1) — 2 (0)] < / G ) farr (B1) — Fult)ldtr <

s [ wetente) —zns@l + s [ (08) L) e st

L'(v) s
1 1 t1 t 7711 L e
< - . - . n n— _
< M1/0 L(t)(1+ F(v)/l <ln S) Sds)dtl MM} /1 p(t)dt

= Ml(MlMo)n /1€p(t)dt
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Therefore {x,(.)} is a Cauchy sequence in the Banach space C(I,R), hence
converging uniformly to some z(.) € C(I,R). Therefore, by (3.7), for almost all
t € I, the sequence { f,,(t)} is Cauchy in R. Let f(.) be the pointwise limit of f,(.).

Moreover, one has

|$n()_ ()|<|531() ()|+Zn 1|$1+1() ()|< (38)
M, [} p(t)dt + 32750 (M ) p( dt(MlM)i:w :

1—Mi Mo *
On the other hand, from (3.4), (3.7) and (3.8) we obtain for almost all t € 1

|Fu(t) — DIy(t)| < -
S () = £+ +Fu(8) — Diy(#)] < Lip) MLirDdt )

Hence the sequence f,(.) is integrably bounded and therefore f(.) € L'(I,R).

Using Lebesgue’s dominated convergence theorem and taking the limit in (3.5),
(3.6) we deduce that J;() is a solution of (1.1). Finally, passing to the limit in (3.8)
we obtained the desired estimate on z(.).

It remains to construct the sequences z,(.), f,(.) with the properties in (3.5)-
(3.7). The construction will be done by induction.

Since the first step is already realized, assume that for some N > 1 we al-
ready constructed z,(.) € C(I R) and f,(.) € L! (I R), n = 1,2,..N satis-

fying (3.5), (8.7) for n = 1,2,...N and (3.6) for n = 1,2,...N — 1. The set-

valued map t — F(t,zn(t ) I"zn(t)) is measurable. Moreover, the map ¢ —
~y—1

Lt)(|len(t) —xn-1(t)| + F( f (ln L Llzn(s) — xy_1(s)|ds) is measurable.

By the lipschitzianity of F'(t, .,.) we have that for almost all ¢ €
Ftan (), Mon () 0 {fn () + L) (e () — v ()4
H%];OnJ L(s) — ox1(9)ds)[~1, 1]} £ 0.

Lemma 3.1 yields that there exists a measurable selection fy1(.) of F'(.,xn(.),
I"2zn(.)) such that for almost all ¢ € T

() — Fa0)] < .
memwN1+pﬁ()im@wNmm>

We define zy11(.) as in (3.5) with n = N + 1. Thus fy41(.) satisfies (3.6) and
(3.7) and the proof is complete. O

The assumption in Theorem 3.1 is satisfied, in particular, for y(.) = 0 and
therefore with p(.) = L(.). We obtain the following consequence of Theorem 3.1.

Corollary 3.2. Assume that Hypothesis H1 is satisfied, d(0, F'(t,0,0) < L(t) a.e
(I) and M1 My < 1. Then there exists z(.) a solution of problem (1.1)-(1.2) satisfying

forallt € T
M, ¢
< —— L(t)dt.
01 < =557 [ L0
If F' does not depend on the last variable, Hypothesis H1 became

Hypothesis H2. i) F'(.,.) : I x R — P(R) has nonempty closed values and is
L(I) ® B(R) measurable.
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ii) There exists L(.) € L'(I,(0,00)) such that, for almost allt € I, F(t,.) is
L(t)-Lipschitz in the sense that

dg(F(t,z1), F(t,z2)) < L(t)|x1 — z2| YV z1,22 € R.

Denote Ly = | 16 L(t)dt. and consider the fractional differential inclusion
Dix(t) € F(t,z(t)) a.e. ([1,€]), (3.9)

Corollary 3.3. Assume that Hypothesis H2 is satisfied, d(0, F'(t,0) < L(t) a.e. (I)
and M, Ly < 1. Then there exists x(.) a solution of problem (3.9)-(1.2) satisfying for
allt e I ML
1Lo
) < — 7.

Remark 3.4. Ifin (1.2) \; = 0,7 =1,m, j = 1, uy = 1, then Theorem 3.1 yields
Theorem 3.1 in [4].
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