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ABSTRACT. We study a class of fractional integro­differential inclusions with nonlocal frac­
tional integral boundary conditions and we establish a Filippov type existence result in the
case of nonconvex set­valued maps.
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1. INTRODUCTION

This note is concerned with the following problem

Dqx(t) ∈ F (t, x(t), Iγx(t)) a.e. ([1, e]), (1.1)

x(1) = 0,
m∑
i=1

λiI
αix(ηi) =

n∑
j=1

µi(I
βjx(e)− Iβjx(ξj)), (1.2)

where Dq is the Hadamard fractional derivative of order q, q ∈ (1, 2], Iγ is the
Hadamard integral of order γ, γ > 0, αi, βj > 0, ηi, ξj ∈ (1, e), λi ∈ R, µj ∈ R,
i = 1,m, j = 1, n, η1 < η2 < ... < ηm, ξ1 < ξ2 < ... < ξn and F : [1, e]×R×R −→
P(R) is a set­valued map.

If F is single­valued and does not depend on the last variable, fractional inclusion
(1.1) reduces to the fractional equation

Dqx(t) = f(t, x(t)), (1.3)

where f : [1, e]×R −→ R.
In the last years we may see a strong development of the study of boundary

value problems associated to fractional differential equations and inclusions. Most
of the results in this framework are obtained for problems defined by Riemann­
Liouville or Caputo fractional derivatives. Another type of fractional derivative is
the one introduced by Hadamard ([6]) which differs from the others in the sense
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that the kernel of the integral contains a logarithmic function of arbitrary expo­
nent. Recently, several papers were devoted to fractional differential equations and
inclusions defined by Hadamard fractional derivative [1,2,4,9] etc.

The present note is motivated by a recent paper of Thiramanus, Ntouyas and
Taribon ([9]) where existence results for problem (1.3)­(1.2) are obtained using fixed
point techniques.

Our aim is to extend the study in [9] to the set­valued framework; moreover, our
right­hand side contains an integral term. We show that Filippov’s ideas ([5]) can be
suitably adapted in order to obtain the existence of solutions for problem (1.1)­(1.2).
Recall that for a differential inclusion defined by a lipschitzian set­valued map with
nonconvex values, Filippov’s theorem ([5]) consists in proving the existence of a
solution starting from a given "quasi" solution. Moreover, the result provides an
estimate between the "quasi" solution and the solution obtained. In this way we
extend an existence result in [4].

The paper is organized as follows: in Section 2 we recall some preliminary results
that we need in the sequel and in Section 3 we prove our result.

2. PRELIMINARIES

Let (X, d) be a metric space. Recall that the Pompeiu­Hausdorff distance of the
closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},
where d(x,B) = infy∈B d(x, y).

Let I = [1, e], we denote by C(I,R) the Banach space of all continuous functions
from I to R with the norm ||x(.)||C = supt∈I |x(t)| and L1(I,R) is the Banach space
of integrable functions u(.) : I −→ R endowed with the norm ||u(.)||1 =

∫ e

1
|u(t)|dt.

The Hadamard fractional integral of order q > 0 of a Lebesgue integrable function
f : [1,∞) −→ R is defined by

Iqf(t) =
1

Γ(q)

∫ t

1

(
ln

t

s

)q−1
f(s)

s
ds

provided the integral exists and Γ is the (Euler’s) Gamma function defined by Γ(q) =∫∞
0

tq−1e−tdt.
The Hadamard fractional derivative of order q > 0 of a function f : [1,∞) −→ R

is defined by

Dqf(t) =
1

Γ(n− q)

(
t
d

dt

)n ∫ t

1

(
ln

t

s

)n−q−1
f(s)

s
ds,

where n = [q] + 1, [q] is the integer part of q.
Details and properties of Hadamard fractional derivative may be found in [8,9].
The next technical result is proved in [9]. Set

Λ :=
m∑
i=1

λi
Γ(q)

Γ(q + αi)
(ln ηi)

q+αi−1 −
n∑

j=1

µi
Γ(q)

Γ(q + βj)
(1− (ln ξj)

q+βj−1).

Lemma 2.1. Assume that Λ ̸= 0. For a given f(.) ∈ C(I,R), the unique solution
x(.) of problem Dqx(t) = f(t) a.e. ([1, e]) with boundary conditions (1.2) is given
by

x(t) = Iqf(t) +
(ln t)q−1

Λ
[

n∑
j=1

µj(I
q+βjf(e)− Iq+βjf(ξj))−

m∑
i=1

λiI
q+αif(ηi)].
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Remark 2.2. If we denote A(t, s) = 1
Γ(q) (ln

t
s )

q−1 1
sχ[1,t](s), B(t, s) = (ln t)q−1

Λ ·∑n
j=1

µj

Γ(q+βj)
(ln e

s )
q+βj−1 1

s , Cj(t, s) = − (ln t)q−1

Λ
µj

Γ(q+βj)
(ln

ξj
s )

q+βj−1 1
sχ[1,ξj ](s), j =

1, n, Di(t, s) = − (ln t)q−1

Λ
λi

Γ(q+αi)
(ln ηi

s )
q+αi−1 1

sχ[1,ηi](s), i = 1,m, and G(t, s) =

A(t, s) + B(t, s) +
∑n

j=1 Cj(t, s) +
∑m

i=1 Di(t, s), where χS(·) is the characteristic
function of the set S, then the solution x(·) in Lemma 2.1 may be written as

x(t) =

∫ e

1

G(t, s)f(s)ds. (2.1)

Using the fact that, for fixed t, the function g(s) = (ln t
s )

q−1 1
s is decreasing and

g(1) = (ln t)q−1 we deduce that, for any t, s ∈ I,

|A(t, s)| ≤ 1

Γ(q)
(ln t)q−1 ≤ 1

Γ(q)
,

|B(t, s)| ≤
n∑

j=1

|µj |
|Λ|Γ(q + βj)

(ln t)q−1 ≤
n∑

j=1

|µj |
|Λ|Γ(q + βj)

,

|Cj(t, s)| ≤
(ln t)q−1

|Λ|
|µj |

Γ(q + βj)
(ln ξj)

q+βj−1 ≤ |µj |
|Λ|Γ(q + βj)

(ln ξj)
q+βj−1,

|Di(t, s)| ≤
(ln t)q−1

|Λ|
|λi|

Γ(q + αi)
(ln ηi)

q+αi−1 ≤ |λi|
|Λ|Γ(q + αi)

(ln ηi)
q+αi−1,

and therefore,

|G(t, s)| ≤ 1
Γ(q) +

∑n
j=1

|µj |
|Λ|Γ(q+βj)

(1 + (ln ξj)
q+βj−1)+∑m

i=1
|λi|

|Λ|Γ(q+αi)
(ln ηi)

q+αi−1 =: M1 ∀ t, s ∈ I.

Definition 2.3. A function x(.) ∈ C(I,R) with its Hadamard derivative of order
q existing on [1, e] is a solution of problem (1.1)­(1.2) if there exists a function
f(.) ∈ L1(I,R) that satisfies f(t) ∈ F (t, x(t), Iγx(t)) a.e. (I), Dqx(t) = f(t) a.e.
(I) and conditions (1.2) are satisfied.

3. THE MAIN RESULT

First we recall a selection result ([3]) which is a version of the celebrated Kura­
towski and Ryll­Nardzewski selection theorem.

Lemma 3.1. Consider X a separable Banach space, B is the closed unit ball in X,
H : I −→ P(X) is a set­valued map with nonempty closed values and g : I −→
X,L : I −→ R+ are measurable functions. If

H(t) ∩ (g(t) + L(t)B) ̸= ∅ a.e.(I),

then the set­valued map t −→ H(t) ∩ (g(t) + L(t)B) has a measurable selection.

In order to prove our results we need the following hypotheses.

Hypothesis H1. i) F (., .) : I ×R×R −→ P(R) has nonempty closed values and is
L(I)⊗ B(R×R) measurable.

ii) There exists L(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F (t, ., .) is
L(t)­Lipschitz in the sense that

dH(F (t, x1, y1), F (t, x2, y2)) ≤ L(t)(|x1 − x2|+ |y1 − y2|) ∀ x1, x2, y1, y2 ∈ R.
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We use next the following notations

M(t) := L(t)(1 +
1

Γ(γ)

∫ t

1

(
ln

t

s

)γ−1
1

s
ds) = L(t)(1 +

(ln t)γ

Γ(γ + 1)
), (3.1)

M0 =

∫ e

1

M(t)dt. (3.2)

Theorem 3.1. Assume that Hypothesis H1 is satisfied and M1M0 < 1. Consider
y(.) ∈ C(I,R) with its Hadamard derivative of order q existing on [1, e] such that
y(1) = 0,

∑m
i=1 λiI

αiy(ηi) =
∑n

j=1 µi(I
βjy(e) − Iβjy(ξj)) and there exists p(.) ∈

L1(I,R+) verifying d(Dqy(t), F (t, y(t), Iγy(t))) ≤ p(t) a.e. (I).
Then there exists x(.) a solution of problem (1.1)­(1.2) satisfying for all t ∈ I

|x(t)− y(t)| ≤ M1

1−M1M0

∫ e

1

p(t)dt. (3.3)

Proof. The set­valued map t −→ F (t, y(t), Iγy(t)) is measurable with closed values
and

F (t, y(t), Iγy(t)) ∩ {Dqy(t) + p(t)[−1, 1]} ≠ ∅ a.e. (I).

It follows from Lemma 3.1 that there exists a measurable selection f1(t) ∈
F (t, y(t), Iγy(t)) a.e. (I) such that

|f1(t)−Dqy(t)| ≤ p(t) a.e. (I) (3.4)

Define x1(t) =
∫ e

1
G(t, s)f1(s)ds and one has

|x1(t)− y(t)| ≤ M1

∫ e

1

1p(t)dt.

We claim that it is enough to construct the sequences xn(.) ∈ C(I,R), fn(.) ∈
L1(I,R), n ≥ 1 with the following properties

xn(t) =

∫ e

1

G(t, s)fn(s)ds, t ∈ I, (3.5)

fn(t) ∈ F (t, xn−1(t), I
γxn−1(t)) a.e. (I), (3.6)

|fn+1(t)−fn(t)| ≤ L(t)(|xn(t)−xn−1(t)|+
1

Γ(γ)

∫ t

1

(
ln

t

s

)γ−1
1

s
|xn(s)−xn−1(s)|ds)

(3.7)
for almost all t ∈ I.

If this construction is realized then from (3.4)­(3.7) we have for almost all t ∈ I

|xn+1(t)− xn(t)| ≤ M1(M1M0)
n

∫ e

1

p(t)dt ∀n ∈ N.

Indeed, assume that the last inequality is true for n − 1 and we prove it for n.
One has

|xn+1(t)− xn(t)| ≤
∫ e

1

|G(t, t1)|.|fn+1(t1)− fn(t1)|dt1 ≤

M1

∫ e

1

L(t1)[|xn(t1)− xn−1(t1)|+
1

Γ(γ)

∫ t1

1

(
ln

t1
s

)γ−1
1

s
|xn(s)− xn−1(s)|ds)

≤ M1

∫ 1

0

L(t1)(1 +
1

Γ(γ)

∫ t1

1

(
ln

t1
s

)γ−1
1

s
ds)dt1.M

n
1 M

n−1
0

∫ e

1

p(t)dt =

= M1(M1M0)
n

∫ e

1

p(t)dt
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Therefore {xn(.)} is a Cauchy sequence in the Banach space C(I,R), hence
converging uniformly to some x(.) ∈ C(I,R). Therefore, by (3.7), for almost all
t ∈ I, the sequence {fn(t)} is Cauchy in R. Let f(.) be the pointwise limit of fn(.).

Moreover, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
∑n−1

i=1 |xi+1(t)− xi(t)| ≤
M1

∫ e

1
p(t)dt+

∑n−1
i=1 (M1

∫ e

1
p(t)dt)(M1M0)

i =
M1

∫ e
1
p(t)dt

1−M1M0
.

(3.8)

On the other hand, from (3.4), (3.7) and (3.8) we obtain for almost all t ∈ I

|fn(t)−Dqy(t)| ≤∑n−1
i=1 |fi+1(t)− fi(t)|++|f1(t)−Dqy(t)| ≤ L(t)

M1

∫ e
1
p(t)dt

1−M1M0
+ p(t)

Hence the sequence fn(.) is integrably bounded and therefore f(.) ∈ L1(I,R).
Using Lebesgue’s dominated convergence theorem and taking the limit in (3.5),

(3.6) we deduce that x(.) is a solution of (1.1). Finally, passing to the limit in (3.8)
we obtained the desired estimate on x(.).

It remains to construct the sequences xn(.), fn(.) with the properties in (3.5)­
(3.7). The construction will be done by induction.

Since the first step is already realized, assume that for some N ≥ 1 we al­
ready constructed xn(.) ∈ C(I,R) and fn(.) ∈ L1(I,R), n = 1, 2, ...N satis­
fying (3.5), (3.7) for n = 1, 2, ...N and (3.6) for n = 1, 2, ...N − 1. The set­
valued map t −→ F (t, xN (t), IγxN (t)) is measurable. Moreover, the map t −→

L(t)(|xN (t) − xN−1(t)| + 1
Γ(γ)

∫ t

1

(
ln t

s

)γ−1
1
s |xN (s) − xN−1(s)|ds) is measurable.

By the lipschitzianity of F (t, ., .) we have that for almost all t ∈ I

F (t, xN (t), IγxN (t)) ∩ {fN (t) + L(t)(|xN (t)− xN−1(t)|+
1

Γ(γ)

∫ t

1

(
ln t

s

)γ−1
1
s |xN (s)− xN−1(s)|ds)[−1, 1]} ̸= ∅.

Lemma 3.1 yields that there exists a measurable selection fN+1(.) of F (., xN (.),
IγxN (.)) such that for almost all t ∈ I

|fN+1(t)− fN (t)| ≤

L(t)(|xN (t)− xN−1(t)|+ 1
Γ(γ)

∫ t

1

(
ln t

s

)γ−1
1
s |xN (s)− xN−1(s)|ds).

We define xN+1(.) as in (3.5) with n = N + 1. Thus fN+1(.) satisfies (3.6) and
(3.7) and the proof is complete. �

The assumption in Theorem 3.1 is satisfied, in particular, for y(.) = 0 and
therefore with p(.) = L(.). We obtain the following consequence of Theorem 3.1.

Corollary 3.2. Assume that Hypothesis H1 is satisfied, d(0, F (t, 0, 0) ≤ L(t) a.e.
(I) and M1M0 < 1. Then there exists x(.) a solution of problem (1.1)­(1.2) satisfying
for all t ∈ I

|x(t)| ≤ M1

1−M1M0

∫ e

1

L(t)dt.

If F does not depend on the last variable, Hypothesis H1 became

Hypothesis H2. i) F (., .) : I × R −→ P(R) has nonempty closed values and is
L(I)⊗ B(R) measurable.
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ii) There exists L(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F (t, .) is
L(t)­Lipschitz in the sense that

dH(F (t, x1), F (t, x2)) ≤ L(t)|x1 − x2| ∀ x1, x2 ∈ R.

Denote L0 =
∫ e

1
L(t)dt. and consider the fractional differential inclusion

Dqx(t) ∈ F (t, x(t)) a.e. ([1, e]), (3.9)

Corollary 3.3. Assume that Hypothesis H2 is satisfied, d(0, F (t, 0) ≤ L(t) a.e. (I)
and M1L0 < 1. Then there exists x(.) a solution of problem (3.9)­(1.2) satisfying for
all t ∈ I

|x(t)| ≤ M1L0

1−M1L0
.

Remark 3.4. If in (1.2) λi = 0, i = 1,m, j = 1, µ1 = 1, then Theorem 3.1 yields
Theorem 3.1 in [4].
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