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1. INTRODUCTION, PRELIMINARIES AND NOTATIONS

Let N, R, w and w2 denote the sets of positive integers, real numbers, single
real sequences and double real sequence respectively in the entire paper. For
1 ≤ p < ∞, the Cesàro sequence space Cesp is defined by

Cesp =
{
x ∈ w :

∞∑
j=1

(1
j

j∑
i=1

|xi|
)p

< ∞
}
,

equipped with the norm

∥x∥ =
( ∞∑

j=1

(1
j

j∑
i=1

|xi|
)p) 1

p

.

Beginning with the first premise of Shiue [26], the concept of space played a very
significant role in the theory of matrix operators and others. In the advent, Sanhan
and Suantai studied a generalized Cesàro sequence space Cesp, where p = (pj)
symbolized a bounded sequence of positive real numbers (see [25]). Later, this
spaces was studied by many authors in ([8], [10], [15]).
A double sequence on a normed linear space X is a function x from N× N into X
and briefly denoted by x = (xkl). A double sequence (xkl) is said to converge (in
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terms of Pringsheim) to a ∈ X [19], if for every ε > 0 there exists nε ∈ N such that
∥xkl − a∥X < ε whenever k, l > nε.

A double series
∞∑

k,l=1

xkl is convergent if and only if its sequence of partial sums

snm is convergent (see [1], [2]), where snm =
n∑

k=1

m∑
l=1

xkl for all m,n ∈ N.

A double sequence x = (xkl) is said to be bounded if ∥x∥(∞,2) = supk,l |xkl| < ∞.
The space of all bounded double sequences is denoted by l2∞.
Initially introduced by Kızmaz [9], the notion of difference sequence spaces was
conceptualized as l∞(∆), c(∆) and co(∆). Further, the notion was generalized by
Et and Çolak [3] as they familiarized the spaces l∞(∆n), c(∆n) and co(∆

n). Let
m,n be non­negative integers, then for Z a given sequence space, we have

Z(△n
m) = {x = (xk) ∈ w : (△n

mxk) ∈ Z}

for Z = c, c0 and l∞ where △n
mx = (△n

mxk) = (△n−1
m xk −△n−1

m xk+m) and △0
m =

xk for all k ∈ N, which is equivalent to the following binomial representation

∆n
mxk =

n∑
v=0

(−1)v
(

n
v

)
xk+mv.

If m = 1, we get the spaces l∞(△n), c(△n) and c0(△n) studied by Et and Çolak
[3].
If m = n = 1, we get the spaces l∞(△), c(△) and c0(△) introduced and studied
by Kizmaz [9]. Likewise, the difference operators on double sequence spaces can
be examined as:

∆xk,l = (xk,l − xk,l+1)− (xk+1,l − xk+1,l+1)

= xk,l − xk,l+1 − xk+1,l + xk+1,l+1,

∆nxk,l = ∆n−1xk,l −∆n−1xk,l+1 −∆n−1xk+1,l +∆n−1xk+1,l+1

and

∆n
mxk,l = ∆n−1

m xk,l −∆n−1
m xk,l+1 −∆n−1

m xk+1,l +∆n−1
m xk+1,l+1.

For further details about sequence spaces one can refer to ([16], [17], [20], [21],
[22], [24]) and references therein.
An Orlicz function M : [0,∞) → [0,∞) is a continuous, non­decreasing and convex
such that M(0) = 0, M(x) > 0 for x > 0 and M(x) −→ ∞ as x −→ ∞. The func­
tion is said to be modulus function if the convexity of Orlicz function is substituted
by M(x+ y) ≤ M(x) +M(y). Lindenstrauss and Tzafriri [11] used the conception
of Orlicz function to describe the following sequence space,

ℓM =
{
x = (xk) ∈ w :

∞∑
k=1

M
( |xk|

ρ

)
< ∞, for some ρ > 0

}
termed as an Orlicz sequence space. The space ℓM is a Banach space with the
norm

||x|| = inf
{
ρ > 0 :

∞∑
k=1

M
( |xk|

ρ

)
≤ 1

}
.

Prior, [11] indicates that every Orlicz sequence space ℓM comprises of a subspace
isomorphic to ℓp(p ≥ 1). An Orlicz function M can always be imputed in the
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following integral form

M(x) =

∫ x

0

η(t)dt,

where η is known as the kernel of M, is a right differentiable for t ≥ 0, η(0) =
0, η(t) > 0, η is non­decreasing and η(t) → ∞ as t → ∞.
A sequence M = (Mk) of Orlicz functions is called a Musielak­Orlicz function (see
[12, 13]). Complementary function where N = (Nk), defined as

Nk(v) = sup{|v|u−Mk(u) : u ≥ 0}, k = 1, 2, · · ·
is derived from the Musielak­Orlicz function M.
The sequence space tM and its subspace hM for a given Musielak­Orlicz function
M, can be specified as follows

tM =
{
x ∈ w : IM(cx) < ∞ for some c > 0

}
,

hM =
{
x ∈ w : IM(cx) < ∞ for all c > 0

}
,

where IM as a convex modular can be described as

IM(x) =
∞∑
k=1

Mk(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

||x|| = inf
{
k > 0 : IM

(x
k

)
≤ 1

}
or equipped with the Orlicz norm

||x||0 = inf
{1

k

(
1 + IM(kx)

)
: k > 0

}
.

A Musielak­Orlicz function M = (Mk) is said to be ∆2­condition if there exist
constants a, K > 0 and a sequence c = (ck)

∞
k=1 ∈ l1+ (the positive cone of l1) such

that the inequality
Mk(2u) ≤ KMk(u) + ck

holds for all k ∈ N and u ∈ R+, whenever Mk(u) ≤ a.

2. The Spaces of Double Sequences over n− Normed Spaces

This section brings to limelight Cesàro­Orlicz double difference sequence spaces
over n­normed spaces with the help of Musielak­Orlicz functions. Before proceed­
ing futher, first we recall the notion of paranormed space as follows:
A linear topological space X over the real field R (the set of real numbers) is said
to be a paranormed space if there is a subadditive function g : X −→ R such that
g(θ) = 0, g(x) = g(−x) and scalar multiplication is continuous, i.e., |αn −α| −→ 0
and g(xn−x) −→ 0 imply g(αnxn−αx) −→ 0 for all α’s in R and all x’s in X, where
θ is the zero vector in the linear space X. A paranorm g for which g(x) = 0 implies
x = 0 is called total paranorm and the pair (X, g) is called a total paranormed
space. The metric of any linear metric space is given by some total paranorm (see
[27], Theorem 10.4.2, pp. 183).
In the mid of 1960’s, Gähler [4] introduced the concept of 2­normed spaces while
Misiak [14] propounded the n­normed spaces. This concept was further surveyed
by critics like Gunawan ([5], [6]) and Gunawan and Mashadi [7] who studied it and
obtained various results. Let n ∈ N and X be a linear space over the field of real
numbers R of dimension d, where d ≥ n ≥ 2. A real valued function ||·, · · · , ·|| on
Xn substantiates the following four conditions:
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(i) ||x1, x2, · · · , xn|| = 0 if and only if x1, x2, · · · , xn are linearly dependent in
X,

(ii) ||x1, x2, · · · , xn|| is invariant under permutation,
(iii) ||αx1, x2, · · · , xn|| = |α| ||x1, x2, · · · , xn|| for any α ∈ R, and
(iv) ||x+ x′, x2, · · · , xn|| ≤ ||x, x2, · · · , xn||+ ||x′, x2, · · · , xn||

is called an n­norm on X, and the pair (X, ||·, · · · , ·||) is said to be n­normed space
over the field R.
For example, we may take X = Rn being equipped with the n­norm ||x1, x2, · · · , xn||E
= the volume of the n­dimensional parallelopiped spanned by the vectors x1, x2, · · · , xn

which may be given explicitly by the formula

||x1, x2, · · · , xn||E = | det(xij)|,

where xi = (xi1, xi2, · · · , xin) ∈ Rn for each i = 1, 2, · · · , n.
Let (X, ||·, · · · , ·||) be an n­normed space of dimension d ≥ n ≥ 2 and {a1, a2, · · · , an}
be linearly independent set in X. Then the following function ||·, · · · , ·||∞ on Xn−1

as defined by

||x1, x2, · · · , xn−1||∞ = max{||x1, x2, · · · , xn−1, ai|| : i = 1, 2, · · · , n}

is called an (n− 1)­norm on X with respect to {a1, a2, · · · , an}.
A sequence (xk) in a n­normed space (X, ||·, · · · , ·||) is said to converge to some
L ∈ X if

lim
k→∞

||xk − L, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1 ∈ X.

A sequence (xk) in a n­normed space (X, ||·, · · · , ·||) is said to be Cauchy if

lim
k,p→∞

||xk − xp, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1 ∈ X.

X is said to be complete with respect to the n­norm if every Cauchy sequence in
X converges to some L ∈ X. Thereby, any complete n­normed space is said to be
n­Banach space.

Suppose (X, ||·, · · · , ·||) be a n­normed space and w(n − X) denotes the space of
X­valued double sequences. Let M = (Mnm) be a Musielak­Orlicz function, that
is, M is a sequence of Orlicz functions, p = (pnm) be a bounded double sequence
of positive real numbers and u = (unm) be a double sequence of strictly positive
real numbers. In this paper we have analysed the following sequence spaces:

Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥] ={
x ∈ w(n−X) :

∞∑
n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

< ∞, for some ρ > 0
}
.

Let us consider a few special cases of the above sequence spaces:

(i) If M = Mnm(x) = I for all n,m ∈ N, then we have
Ces

(2)
M [∆m

n , u, p, ∥·, · · · , ·∥] = Ces(2)[∆m
n , u, p, ∥·, · · · , ·∥].

(ii) If u = (unm) = 1, for all n,m ∈ N then we have
Ces

(2)
M [∆m

n , u, p, ∥·, · · · , ·∥] = Ces
(2)
M [∆m

n , p, ∥·, · · · , ·∥].

If we take u = (unm) = 1, Mnm(x) = M(x) for all n,m ∈ N, ∆m
n = ∆ and X
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is a normed space, then we get the spaces Ces
(2)
M [∆, p] which were introduced and

studied by Oǧur and Duyar [18].
The following inequality will be used throughout the paper. If 0 ≤ pnm ≤ sup pnm =
H,K = max(1, 2H−1) then

|anm + bnm|pnm ≤ K{|anm|pnm + |bnm|pnm} (2.1)

for all n,m and anm, bnm ∈ C. Also |a|pnm ≤ max(1, |a|H) for all a ∈ C.
The paper is an endeavor to introduce the new sequence spaces Ces

(2)
M [∆m

n , u, p, ∥·, · · · , ·∥].
The focus here is on some topological properties and inclusion relations between
these sequence spaces.

3. MAIN RESULTS

Theorem 3.1. In order to prove the double sequence Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥] is a
linear space over the real field R, let us suppose M = (Mnm) be a Musielak­Orlicz
function, p = (pnm) be a bounded double sequence of positive real numbers and
u = (unm) be a double sequence of strictly positive real numbers.

Proof. Suppose x = (xij) and y = (yij) ∈ Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥] and α, β ∈ R.
Then based on the presumption there exist positive numbers ρ1, ρ2 such that

∞∑
n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ1
, z1, · · · , zn−1

∥∥∥)]pnm

< ∞, for some ρ1 > 0,

and
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n yij
ρ2

, z1, · · · , zn−1

∥∥∥)]pnm

< ∞, for some ρ2 > 0.

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Since M = (Mnm) is a non­decreasing and convex so
by using inequality (2.1), we have

∞∑
n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥α∆m
n xij + β∆m

n yij
ρ3

, z1, · · · , zn−1

∥∥∥)]pnm

≤
∞∑

n,m=1

unm

[
Mnm

( |α|
nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ3
, z1, · · · , zn−1

∥∥∥+
|β|
nm

n,m∑
i,j=1

∥∥∥∆m
n yij
ρ3

, z1, · · · , zn−1

∥∥∥)]pnm

≤
∞∑

n,m=1

unm

[
Mnm

( 1

2nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ1
, z1, · · · , zn−1

∥∥∥+
1

2nm

n,m∑
i,j=1

∥∥∥∆m
n yij
ρ2

, z1, · · · , zn−1

∥∥∥)]pnm

≤ K
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ1
, z1, · · · , zn−1

∥∥∥)]pnm

+K

∞∑
n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n yij
ρ2

, z1, · · · , zn−1

∥∥∥)]pnm

< ∞.

Thus αx+βy ∈ Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥]. This proves that Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥]
is a linear space. �
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Theorem 3.2. Let M = (Mnm) be a Musielak­Orlicz function, p = (pnm) be a
bounded double sequence of positive real numbers and u = (unm) be a double se­

quence of strictly positive real numbers. Then the double sequenceCes
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥]
is a paranormed space with the paranorm

g(x) = inf

{
ρ

pqr
R > 0 :

( ∞∑
n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm
) 1

R ≤ 1; q, r ∈ N
}

where 0 < pnm ≤ sup pnm = H < ∞ and R = max(1,H).

Proof. (i) Clearly g(x) ≥ 0 for x = (xij) ∈ Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥]. Since Mnm(0) =
0, we get g(0) = 0.
(ii) g(−x) = g(x)

(iii) Let x = (xij), y = (yij) ∈ Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥] there exist positive num­
bers ρ1 and ρ2 such that( ∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ1
, z1, · · · , zn−1

∥∥∥)]pnm
) 1

R ≤ 1

and ( ∞∑
n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n yij
ρ2

, z1, · · · , zn−1

∥∥∥)]pnm
) 1

R ≤ 1.

Let ρ3 = 2
R
h (ρ1 + ρ2), where h = inf pnm > 0. Since M ia a non­decreasing convex

function, we have

( ∞∑
n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij +∆m

n yij
ρ3

, z1, · · · , zn−1

∥∥∥)]pnm
) 1

R

≤
( ∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥ ∆m
n xij

2
R
h (ρ1 + ρ2)

, z1, · · · , zn−1

∥∥∥
+

1

nm

n,m∑
i,j=1

∥∥∥ ∆m
n yij

2
R
h (ρ1 + ρ2)

, z1, · · · , zn−1

∥∥∥)]pnm
) 1

R

≤
( ∞∑

n,m=1

unm

[ ρ1

2
R
h (ρ1 + ρ2)

Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ1
, z1, · · · , zn−1

∥∥∥
+

ρ2

2
R
h (ρ1 + ρ2)

Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n yij
ρ2

, z1, · · · , zn−1

∥∥∥)]pnm
) 1

R

≤
( ∞∑

n,m=1

unm

[ 1

2
R
h

Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ1
, z1, · · · , zn−1

∥∥∥)]pnm
) 1

R

+
( ∞∑

n,m=1

unm

[ 1

2
R
h

Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n yij
ρ2

, z1, · · · , zn−1

∥∥∥)]pnm
) 1

R

=
1

2

( ∞∑
n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ1
, z1, · · · , zn−1

∥∥∥)]pnm
) 1

R

+
1

2

( ∞∑
n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n yij
ρ2

, z1, · · · , zn−1

∥∥∥)]pnm
) 1

R
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≤ 1.

Since ρ1, ρ2 and ρ3 are positive real numbers, we get

g(x+ y)

inf

{
ρ

pqr
R

3 > 0 :
( ∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij +∆m

n xij

ρ3
, z1, · · · , zn−1

∥∥∥)]pnm
) 1

R ≤

1; q, r ∈ N
}

≤ inf

{
ρ

pqr
R

1 > 0 :
( ∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ1
, z1, · · · , zn−1

∥∥∥)]pnm
) 1

R ≤

1; q, r ∈ N
}

+ inf

{
ρ

pqr
R

2 > 0 :
( ∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n yij
ρ2

, z1, · · · , zn−1

∥∥∥)]pnm
) 1

R ≤

1; q, r ∈ N
}

= g(x) + g(y).

Let (xn) = {xn
ij} be any sequence in the space Ces

(2)
M [∆m

n , u, p, ∥·, · · · , ·∥] such
that g(xn − x) → 0, as n → ∞ and (λn) is a sequence of reals with λn → λ, as
n → ∞. Then, since the inequality

g(xn) ≤ g(x) + g(xn − x)

holds by subadditivity of the function g, {g(xn)} is bounded. Taking into account
this fact we therefore derive the inequality

g(λnx
n − λx) ≤ |λn − λ|g(xn) + |λ|g(xn − x)

which tends to zero as n → ∞. Hence, the scalar multiplication is continuous
follows from the above inequality and thus proving the theorem. �
Theorem 3.3. Let M = (Mnm) be a Musielak­Orlicz function, p = (pnm) be a
bounded double sequence of positive real numbers and u = (unm) be a double

sequence of strictly positive real numbers. Then the space Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥]
is complete with respect to its paranorm.

Proof. Let (xs) = {xs
ij} be any Cauchy sequence in the space Ces

(2)
M [∆m

n , u, p, ∥·, · · · , ·∥].
Since (xs) is a Cauchy sequence, we have g(xs − xt) → 0 as s, t → ∞. Then, we
have

∞∑
n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xs

ij −∆m
n xt

ij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

→ 0

as s, t → ∞ for all i, j ∈ N. Then, we have {xs
ij} is a Cauchy sequence in R for each

fixed i, j ∈ N. Since R is complete as t → ∞, we have xs
ij → xij as s → ∞ for each

(i, j) and M = (Mnm) is continuous. For ϵ > 0, there exists a natural number N
such that

∞∑
n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1 s,t>N

∥∥∥∆m
n xs

ij −∆m
n xt

ij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

< ε.
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Since for any fixed natural number M , we have
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j≤M s,t>N

∥∥∥∆m
n xs

ij −∆m
n xt

ij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

< ε,

by letting t → ∞ in the above expression we obtain
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j≤M s,t>N

∥∥∥∆m
n xs

ij −∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

< ε.

Since M is arbitrary, by letting M → ∞ we obtain
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xs

ij −∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

< ε.

Then g(xs − x) → 0 as t → ∞. Since Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥] is linear space, we
get x = {xij} ∈ Ces

(2)
M [∆m

n , u, p, ∥·, · · · , ·∥]. This completes the proof. �

Theorem 3.4. If 0 < pnm ≤ qnm < ∞ for each n and m, then we have

Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥] ⊂ Ces
(2)
M [∆m

n , u, q, ∥·, · · · , ·∥].

Proof. Let x ∈ Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥]. Then there exists ρ > 0 such that
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

< ∞.

This implies that

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

< 1,

for sufficiently large values of n and m. Since Mnm is non­decreasing, we get
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]qnm

≤
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

< ∞.

Thus x ∈ Ces
(2)
M [∆m

n , u, q, ∥·, · · · , ·∥]. This completes the proof. �

Theorem 3.5. Suppose M = (Mmn) be a Musielak­Orlicz function, p = (pmn) be
a bounded double sequence of positive real numbers and u = (umn) be a double
sequence of strictly positive real numbers. Then

(a) If 0 < inf pmn < pmn ≤ 1. ThenCes
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥] ⊂ Ces
(2)
M [∆m

n , u, ∥·, · · · , ·∥].
(b) If 1 ≤ pmn ≤ sup pmn < ∞. ThenCes

(2)
M [∆m

n , u, ∥·, · · · , ·∥] ⊂ Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥]

Proof. (a) Let x = (xij) ∈ Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥]. Since 0 < inf pmn ≤ 1, we
obtain the following

∞∑
n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]

≤
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm
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< ∞.

and hence x = (xij) ∈ Ces
(2)
M [∆m

n , u, ∥·, · · · , ·∥].
(b) Let pnm ≥ 1 for each n and m and sup pnm < ∞. Let x = (xij) ∈ Ces

(2)
M [∆m

n , u, ∥·, · · · , ·∥].
Then for each 0 < ϵ < 1 there exists a positive integer N such that

∞∑
n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)] ≤ ϵ < 1 for all n,m ≥ N.

This implies that
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

≤
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]
< ∞.

Therefore, x = (xij) ∈ Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥] . This completes the proof. �

Theorem 3.6. Let 0 < pnm ≤ qnm for all n,m ∈ N and ( qnm

pnm
) be bounded. Then we

have Ces
(2)
M [∆m

n , u, q, ∥·, · · · , ·∥] ⊂ Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥].

Proof. Let x = (xij) ∈ Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥]. Then
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]qnm

< ∞, for some ρ > 0.

Let snm =
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]qnm

and λnm = pnm

qnm
.

Since pnm ≤ qnm, we have 0 ≤ λnm ≤ 1. Take 0 < λ < λnm.

Define

unm =

 snm if snm ≥ 1

0 if snm < 1

and

vnm =

 0 if snm ≥ 1

snm if snm < 1

snm = unm + vnm, sλnm
nm = uλnm

nm + vλnm
nm . It follows that uλnm

nm ≤ unm ≤ snm,
vλnm
nm ≤ vλnm. Since sλnm

nm = uλnm
nm + vλnm

nm , then sλnm
nm ≤ snm + vλnm

∞∑
n,m=1

unm

[(
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥))qnm
]λnm

≤
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]qnm

=⇒
∞∑

n,m=1

unm

[(
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥))qnm
]pnm/qnm
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≤
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]qnm

=⇒
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

≤
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]qnm

,

but
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]qnm

< ∞ for some ρ > 0.

Therefore,
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

< ∞ for some ρ > 0.

Hence x = (xij) ∈ Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥]. Thus, we get Ces
(2)
M [∆m

n , u, q, ∥·, · · · , ·∥] ⊂
Ces

(2)
M [∆m

n , u, p, ∥·, · · · , ·∥]. �

Theorem 3.7. Let M′ = (M ′
nm) and M′′ = (M ′′

nm) be two Musielak­Orlicz functions
satisfying ∆2−condition. Then

(a) Ces
(2)
M′ [∆m

n , u, p, ∥·, · · · , ·∥] ⊂ Ces
(2)
M′′◦M′ [∆m

n , u, p, ∥·, · · · , ·∥],

(b)Ces
(2)
M′ [∆m

n , u, p, ∥·, · · · , ·∥] ∩ Ces
(2)
M′′ [∆m

n , u, p, ∥·, · · · , ·∥] ⊂ Ces
(2)
M′+M′′ [∆m

n , u, p, ∥·, · · · , ·∥].

Proof. (a) Let x ∈ Ces
(2)
M′ [∆m

n , u, p, ∥·, · · · , ·∥]. Then there exists ρ > 0 such that
∞∑

n,m=1

unm

[
M ′

nm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

< ∞.

Since M′ = (M ′
nm) is a continuous function, we can find a real number δ with 0 <

δ < 1 such that M ′
nm(t) < ε. Let ynm = M ′

nm

(
1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥).

Hence we write
∞∑

n,m=1

unm[M ′′
nm(ynm)]pnm =

∞∑
ynm≤δ

unm[M ′′
nm(ynm)]pnm

+
∞∑

ynm>δ

unm[M ′′
nm(ynm)]pnm

so we have
∞∑

ynm≤δ

unm[M ′′
nm(ynm)]pnm ≤ max{1,M ′′

nm(1)H}
∞∑

ynm≤δ

unm[ynm]pnm (3.1)

For ymn > δ, we use the fact ymn < ymn

δ < 1 + ymn

δ . Since M′′ = (M ′′
nm) is

non­decreasing and convex it follows that

M ′′
nm(ynm) < M ′′

nm(1 +
ynm
δ

) <
1

2
M ′′

nm(2) +
1

2

(2ynm
δ

)
.
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Since M′′ = (M ′′
nm) satisfying the ∆2­condition and ymn

δ > 1, there exists T > 0
such that

M ′′
nm(ynm) <

1

2
T
ymn

δ
M ′′

nm(2) +
1

2
T
ymn

δ
M ′′

nm(2) = T
ymn

δ
M ′′

nm(2).

Therefore, we have
∞∑

ynm>δ

unm[M ′′
nm(ynm)]pnm ≤ max

{
1,
(
T
M ′′

nm(2)

δ

)H} ∞∑
ynm>δ

unm[ynm]pnm (3.2)

Hence by the equation (3.1) and (3.2), we have
∞∑

n,m=1

unm

[
(M ′′

nm ◦M ′
nm)

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

=
∞∑

n,m=1

unm[M ′′
nmynm]pnm

≤ D

∞∑
ynm≤δ

unm[(ynm)]pnm

+G
∞∑

ynm>δ

unm[ynm]pnm

where D = max{1,M ′′
nm(1)H} and G = max

{
1,
(
T

M ′′
nm(2)
δ

)H}
.

Hence Ces
(2)
M′ [∆m

n , u, p, ∥·, · · · , ·∥] ⊂ Ces
(2)
M′′◦M′ [∆m

n , u, p, ∥·, · · · , ·∥].

(b) Let x ∈ Ces
(2)
M′ [∆m

n , u, p, ∥·, · · · , ·∥] ∩ Ces
(2)
M′′ [∆m

n , u, p, ∥·, · · · , ·∥]. Then
∞∑

n,m=1

unm

[
M ′

nm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

< ∞, for some ρ > 0

and
∞∑

n,m=1

unm

[
M ′′

nm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

∞, for some ρ > 0.

Let ρ = max{ρ1, ρ2}. The result follows from the inequality

∞∑
n,m=1

unm

[
(M ′

nm +M ′′
nm)

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

=
∞∑

n,m=1

unm

[
M ′

nm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

+
∞∑

n,m=1

unm

[
M ′′

nm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

≤ K
∞∑

n,m=1

unm

[
M ′

nm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

+ K
∞∑

n,m=1

unm

[
M ′′

nm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

< ∞,
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where K = {max 1, 2H−1}. Therefore, x = (xij) ∈ Ces
(2)
M′+M′′ [∆m

n , u, p, ∥·, · · · , ·∥].
�

Theorem 3.8. Let M = (Mnm) be a Musielak­Orlicz function and Suppose that β =

lim
t→∞

Mnm(t)

t
< ∞. Then Ces(2)[∆m

n , u, p, ∥·, · · · , ·∥] = Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥].

Proof. In order to prove that Ces(2)[∆m
n , u, p, ∥·, · · · , ·∥] = Ces

(2)
M [∆m

n , u, p, ∥·, · · · , ·∥].
It is adequate to show that Ces

(2)
M [∆m

n , u, p, ∥·, · · · , ·∥] ⊂ Ces(2)[∆m
n , u, p, ∥·, · · · , ·∥].

Now, let β > 0. By definition of β, we have Mnm(t) ≥ βt for all t ≥ 0. Since β > 0,
we have t ≤ 1

βMnm(t) for all t ≥ 0. Let x = (xij) ∈ Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥].
Thus, we have

∞∑
n,m=1

unm

[( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

≤ 1

β

∞∑
n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

< ∞,

which implies that x = (xij) ∈ Ces(2)[∆m
n , u, p, ∥·, · · · , ·∥]. This completes the

proof. �

Theorem 3.9. The double sequence space Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥] is solid.

Proof. Suppose x = (xij) ∈ Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥]
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

< ∞, for some ρ > 0.

Let (αij) be a double sequence of scalars such that |αij | ≤ 1 for all i, j ∈ N. Then

we get
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n αijxij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

≤
∞∑

n,m=1

unm

[
Mnm

( 1

nm

n,m∑
i,j=1

∥∥∥∆m
n xij

ρ
, z1, · · · , zn−1

∥∥∥)]pnm

< ∞.

This completes the proof. �

Theorem 3.10. The double sequence space Ces
(2)
M [∆m

n , u, p, ∥·, · · · , ·∥] is monotone.

Proof. The proof is insignificant so we exclude it. �
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space, Internat. J. Math. Sci. 57 (2003), 3599­3607.
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