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ABSTRACT. This article is an attempt to highlight wide-ranging Cesaro-Orlicz double differ-
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1. INTRODUCTION, PRELIMINARIES AND NOTATIONS

Let N, R, w and w? denote the sets of positive integers, real numbers, single
real sequences and double real sequence respectively in the entire paper. For
1 < p < o0, the Cesaro sequence space Ces,, is defined by

Ces, = {L cEw: i (ji |£U1|)p < OO},
j=1 7 i=1

equipped with the norm

[eS) 1 7 » %
el = (32 (3 Il))"
j=1 i=1

Beginning with the first premise of Shiue [26], the concept of space played a very
significant role in the theory of matrix operators and others. In the advent, Sanhan
and Suantai studied a generalized Cesaro sequence space Ces,, where p = (p;)
symbolized a bounded sequence of positive real numbers (see [25]). Later, this
spaces was studied by many authors in ([8], [10], [15]).

A double sequence on a normed linear space X is a function x from N x N into X
and briefly denoted by = (x;). A double sequence (z;) is said to converge (in
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terms of Pringsheim) to a € X [19], if for every € > 0 there exists n. € N such that
|z — al|x < e whenever k,1 > n..
oo

A double series Z T is convergent if and only if its sequence of partial sums

k=1
n m

Snm 1s convergent (see [1], [2]), where S, = Z Zxkl for all m,n € N.

k=11=1
A double sequence = = () is said to be bounded if ||z|(0,2) = SUPy; [T11| < 00.

The space of all bounded double sequences is denoted by lgo.

Initially introduced by Kizmaz [9], the notion of difference sequence spaces was
conceptualized as [, (A), ¢(A) and ¢,(A). Further, the notion was generalized by
Et and Colak [3] as they familiarized the spaces [, (A™), ¢(A™) and ¢,(A™). Let
m,n be non-negative integers, then for Z a given sequence space, we have

Z(A5) ={x = (zx) € w: (Apan) € Z}

for Z = c,co and I, where A"z = (A" ) = (A% 1oy — A" 1y, ) and AV =
x for all £ € N, which is equivalent to the following binomial representation

n
n
Man =30 () ) e
v=0

If m = 1, we get the spaces o (A"™),c(A™) and c¢y(A") studied by Et and Colak
[3].

If m = n = 1, we get the spaces [ (A),c(A) and c¢o(4) introduced and studied
by Kizmaz [9]. Likewise, the difference operators on double sequence spaces can
be examined as:

Azg; = (Tpg— Tri+1) — (@Bht10 — Tht1,141)

Thl — Thl+l — Thtl,l T Tht1,i+1,

1 1 —1 —1
Az =A""wp — A" g1 — A" 1 AT g1
and

—1 —1 —1 —1
Al xgg = AL Tk — Ay T — AL T+ A 141

For further details about sequence spaces one can refer to ([16], [17], [20], [21],
[22], [24]) and references therein.

An Orlicz function M : [0, 00) — [0, 00) is a continuous, non-decreasing and convex
such that M(0) =0, M(x) > 0 for x > 0 and M (z) — oo as x — oco. The func-
tion is said to be modulus function if the convexity of Orlicz function is substituted
by M(x+y) < M(z) + M(y). Lindenstrauss and Tzafriri [1 1] used the conception
of Orlicz function to describe the following sequence space,

oo
T
by = {x: (zg) €Ew: ZM(M) < o0, for some p > 0}
k=1 P
termed as an Orlicz sequence space. The space {j; is a Banach space with the

norm -
I|z|| = inf{p >0: ZM("";’“') < 1}.
k=1

Prior, [11] indicates that every Orlicz sequence space /), comprises of a subspace
isomorphic to £,(p > 1). An Orlicz function M can always be imputed in the
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following integral form
M) = [ noyir,
0

where 7 is known as the kernel of M, is a right differentiable for ¢ > 0, n(0) =
0, n(t) > 0, n is non-decreasing and 7n(t) — oo as t — oc.

A sequence M = (M) of Orlicz functions is called a Musielak-Orlicz function (see
[12, 13]). Complementary function where N' = (N ), defined as

Ni(v) = sup{|v|u — My(u) :u >0}, k=1,2,---

is derived from the Musielak-Orlicz function M.
The sequence space t ¢ and its subspace h 4 for a given Musielak-Orlicz function
M, can be specified as follows

tm :{xew:IM(cx) < oo for some c>()},

hM:{wa:IM(cx)<oo for all c>0}7

where I as a convex modular can be described as

o0
Im(z) = ZMk(xk); x = (zk) € tpm-
k=1
We consider ¢ equipped with the Luxemburg norm
I|z]| = inf{k >0 IM<%) < 1}

or equipped with the Orlicz norm

][0 = inf{%(l (k) k> 0},

A Musielak-Orlicz function M = (M) is said to be Ay-condition if there exist
constants a, K > 0 and a sequence ¢ = (¢;)32, € I} (the positive cone of ') such
that the inequality

My (2u) < KMy (u) + ¢
holds for all k¥ € N and u € R*, whenever My (u) < a.

2. THE SPACES OF DOUBLE SEQUENCES OVER 17— NORMED SPACES

This section brings to limelight Cesaro-Orlicz double difference sequence spaces
over n-normed spaces with the help of Musielak-Orlicz functions. Before proceed-
ing futher, first we recall the notion of paranormed space as follows:

A linear topological space X over the real field R (the set of real numbers) is said
to be a paranormed space if there is a subadditive function g : X — R such that
g(0) =0, g(z) = g(—=) and scalar multiplication is continuous, i.e., |, —a| — 0
and g(z, —z) — 0 imply g(a,z, —azx) — Oforall o’s in R and all 2’s in X, where
6 is the zero vector in the linear space X. A paranorm g for which g(z) = 0 implies
x = 0 is called total paranorm and the pair (X, g) is called a total paranormed
space. The metric of any linear metric space is given by some total paranorm (see
[27], Theorem 10.4.2, pp. 183).

In the mid of 1960’s, Gahler [4] introduced the concept of 2-normed spaces while
Misiak [14] propounded the n-normed spaces. This concept was further surveyed
by critics like Gunawan ([5], [6]) and Gunawan and Mashadi [7] who studied it and
obtained various results. Let n € N and X be a linear space over the field of real
numbers R of dimension d, where d > n > 2. A real valued function ||-,--- ,-|| on
X™ substantiates the following four conditions:
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() ||z1,z2, - ,z,]| = 0if and only if 21,9, - - - ,z, are linearly dependent in
X,

(i) ||x1, 22, ,zy]|| is invariant under permutation,

(iii) ||z, zo, -, x|l = |af ||x1,22, ,z,|| for any a € R, and

W) [z + ' 22, anll < |, 22, 2l + [[2), 22, 24|
is called an n-norm on X, and the pair (X, ||-,--- ,-||) is said to be n-normed space
over the field R.
For example, we may take X = R" being equipped with the n-norm ||z1, z2, - ,Zn||E
= the volume of the n-dimensional parallelopiped spanned by the vectors 1, 22, - - , 2y,
which may be given explicitly by the formula

||l‘1,.’152," : ,anE‘ = |det(x1])|7

where z; = (1,22, ,%in) € R" foreach i =1,2,--- | n.

Let (X,||-,- -+ ,-||]) be an n-normed space of dimensiond > n > 2and {ay,az, - ,an}
be linearly independent set in X. Then the following function ||-, - - - ,+||oo on X™71
as defined by

||IE1,$2,"' 7$n71”oo - max{||x1,x27--~ 71’.?17170’1'” 1= 172"" 7”}

is called an (n — 1)-norm on X with respect to {aj,as, - ,a,}.
A sequence (zy) in a n-normed space (X, ||-,--- ,||) is said to converge to some
LeXif

kli_>m |z — Lyz1,++ ,2n—1]| =0 for every z1,-+-,2,-1 € X.
[oe]

A sequence (xj) in a n-normed space (X, ||, -+ ,-||) is said to be Cauchy if

lim ||lzg —2p, 21, -, 2n—1]| =0 forevery 21, -+, 2,1 € X.
k,p—o0

X is said to be complete with respect to the n-norm if every Cauchy sequence in
X converges to some L € X. Thereby, any complete n-normed space is said to be
n-Banach space.

Suppose (X, ||-,--- ,-||) be a n-normed space and w(n — X) denotes the space of
X-valued double sequences. Let M = (M,,,) be a Musielak-Orlicz function, that
is, M is a sequence of Orlicz functions, p = (p,m) be a bounded double sequence
of positive real numbers and u = (u,,,) be a double sequence of strictly positive
real numbers. In this paper we have analysed the following sequence spaces:

2 m
Ces\ QAR u,p, |-+ -] =

> 1 AT Prm
S -X): nm[Mnm(i HM7 y Ty An— H):| < ) fi >0}
{ac w(n—X) Z u - ijzzl P z1 Zn—1 oo, for some p

n,m=

Let us consider a few special cases of the above sequence spaces:

(D) If M = M, (x) = I for all n,m € N, then we have
0685\2/1) [Aﬁ7u,p, ||7 T 7”] = 068(2) [Aﬁ,u,p, ||, T ”]

(i) If w = (Upsm) = 1, for all n,m € N then we have
2 2
Ces@IAD, wp, |-+ -] = CesIAR, p, I+ ,-[I.

If we take u = (Upm) = 1, Mpm(z) = M(z) for all n,m € N, A7 = A and X



CESARO-ORLICZ DOUBLE SEQUENCE SPACES 57

is a normed space, then we get the spaces C’esgff) [A, p] which were introduced and
studied by Ogur and Duyar [18].

The following inequality will be used throughout the paper. If 0 < p,, < SUP P =
H, K = max(1,27~1) then

|anm + bnm Pnm S K{|anm

Pnm + |bnm |pn7n } (2. 1)

for all n,m and apm, bpm € C. Also |a|Prm < max(1, |a|f) for all a E (C

The paper is an endeavor to introduce the new sequence spaces Ces M [Am wy Py ||y

The focus here is on some topological properties and inclusion relations between
these sequence spaces.

3. MAIN RESULTS

Theorem 3.1. In order to prove the double sequence C’esM [AT up, |-l isa
linear space over the real field R, let us suppose M = (M) be a Musielak-Orlicz
Sunction, p = (ppm) be a bounded double sequence of positive real numbers and
u = (unm) be a double sequence of strictly positive real numbers.

Proof. Suppose ¢ = (z;;) and y = (y;;) € Ces @) AT u,p, -0l and o, B € R.
Then based on the presumption there exist pos1t1ve numbers pi, p2 such that

[e.9] n,m

Az, Prm
Z Unm[ nm< Z H ” ,znle)} < oo, for some p; > 0,
nm -
n,m=1 i,7=1

and

= Ay, Prm
Z Unm[ nm( ZH Yy Z"”’Z"%H)} < o0, for some py > 0.
nm <

n,m=1 2%}

Let p3 = max(2|alp1,2|8|p2). Since M = (M,,,) is a non-decreasing and convex so
by using inequality (2. 1) we have

e Am i Am i Prm
Z unm[Mnm( Z Ha xj_’_ﬁ Y4 s 21yttt ;anlH):|

n,m=1 ij=1 p3

A 2 Lig A Yij
= Z u"m{ (2nm_Z H LT A 1H+2nm_Z H LT
n,m=1
A X Pnm
<KD v (g 3 [ )]
n,m=1
A Pnm
+K Z u"m[ "m(nm Z H = P21 .“’Z”*lH)]
n,m=1
< 00.
Thus ax+fy € Cess\z,l)[A?,u,p, Iy -1l]- ThlsprovesthatCes [A’” Uy Py [y

is a linear space.

> |av] Ay Ay P
e G 3 e ] R =P 3 o e S )|
m=
Pnm
)]

2|l
O
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Theorem 3.2. Let M = (M,,,) be a Musielak-Orlicz function, p = (pnm) be a
bounded double sequence of positive real numbers and v = (Upm, ) be a double se-

quence of strictly positive real numbers. Then the double sequence C es! M [AZL, wy Py ||y el
is a paranormed space with the paranorm

1= >0 (55 it 3 Ay ) < e
) =11 : Unm nm\ %1, ", An— A , T
g p nm 2 P 1 1 q
n,m=1 i,j=1
where 0 < ppm < SUP Prm = H < 00 and R = max(1, H).

Proof. (i) Clearly g(x) > Oforz = (x;;) € CesM [A™ w,p, |- ,-|l]. Since M, (0) =

0, we get g(0) = 0.

i) g(—z) = g(x)

(i) Let = (z45),y = (yij) € Cess\z,l) [A™ u,p, |-, -+ ,||] there exist positive num-
bers p; and p2 such that

(3 oot 35 A )]
and

(55 oty 32 [ ]) <

Let p3 = 2% (p1 + pg), where h = inf p,,,,, > 0. Since M ia a non-decreasing convex

function, we have

1

o0 n,m
]. : Amx+Am i Pnm\ B
(2 wndn (G5 X |2 = )]77)
nm A= p3

n,m=1

oo n,m A .
< ( Z unm|: nm( Z H 4 Zlv"'azn—lH
W nm < 2% (p1 + p2)
AT Prm\ &
+ Z Iz D)
i 2% (p1 + p2)
oo
Az,
< ( > v [ o (i 2 [ |
el 2% (p1 —|—p2 nm .
]. A Pnm +
+ #Mnm(i Z H n Yij yRLy " azn—l’D} >R
2" (/)1 + pz) nm =1 P2
Az, Pm\ &
< (X ol (s Z | =2 a7
1, m=1
00 1
]_ A y Pnm R
(X [t (o Z | =22 e )])
n,m=
1( Z 1 n,m An m” Pnm %
= 35 unm{Mnm(i Z H s <1, Zn 1H):| )
2 n,m=1 = P
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< 1

Since p;, p2 and p3 are positive real numbers, we get

9(x +y)
. Par = 1 &R A™y + AMy Prm\ %
1nf{p3R >0: ( Z Unm [Mnm(— Z H# Z1yc ;anlH)} )
nm . P3
n,m=1 j=1
1; q,r € N}
. Pgr > 1 Az, Prm\ &
< ut{oF > 05 (3 oM 3 [ e a )] <
n,m=1 3,j=1
1; q,r e N}

) Pgr > 1 A Pnm %
+1Hf{p2R > 0 : ( Z Unm |:Mn7n(7 H n Y4 s 21, 7271,—1H):| ) =
nm

n,m=1 i,j=1
1, q,re N}
=g(x) +9(y).
Let (z") = {z};} be any sequence in the space CesM [AT u,p, |-+, -|]] such
that g( —x) = 0, as n — oo and (\,) is a sequence of reals with \,, — A, as

n — oo. Then, since the inequality

g9(z") < g(z) + g(a" —x)
holds by subadditivity of the function g, {g(z™)} is bounded. Taking into account
this fact we therefore derive the inequality
gz = Az) < |Ay = Ag(z™) + [A|g(a™ — )

which tends to zero as n — oo. Hence, the scalar multiplication is continuous
follows from the above inequality and thus proving the theorem. (]

Theorem 3.3. Let M = (M,,,) be a Musielak-Orlicz function, p = (pnm) be a
bounded double sequence of positive real numbers and u = (uy;,) be a double

sequence of strictly positive real numbers. Then the space C 685\2/[) [AT w,p, ||+ s ]]
is complete with respect to its paranorm.

Proof. Let (z°) = {x};} be any Cauchy sequence in the space Cesga) [AT u,p, |- 0]l]-
Since (z°%) is a Cauchy sequence, we have g(z® — x') — 0 as s,t — oo. Then, we

have
> — Al Prm
Z unm|: nm(nm Z H 7217"' 7Zn71H)i| -0

n,m=1 i,j=1
as s,t — oo for all 7, j € N. Then, we have {:1: -} is a Cauchy sequence in R for each
fixed ¢, 7 € N. Since R is complete as t — oo, we have x ; — x;; as s — oo for each

(i,7) and M = (M,,,,) is continuous. For ¢ > 0, there ex1sts a natural number N
such that

e 1 o A;n.r,fj — AZLJ::] Pnm
Z unm|:Mnm< Z H y 21yt azn—lH)] <e.
nm

n,m=1 i,j=1 s;t>N P

IN
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Since for any fixed natural number M, we have

> 1 <X Anag; — A, Prm
unm |iMnm<7 H—7217... 7’2:77,71”)} <€7
Z nm Z

n,m=1 ,J<M s,t>N P

by letting ¢ — oo in the above expression we obtain

o0 n,m
1 ’ Ay AN Pnm
Z Unm |:Mnm<7 Z H— 21yt azn—1H>:| <e&.
nm

n,m=1 ,j<M s,t>N P

Since M is arbitrary, by letting M — oo we obtain

> o Mo (g 3 [P e )] <

n,m=1
Then g(z® —z) — 0 as t — co. Since CesM [A™ wu,p, |- ,-||] is linear space, we
getx = {x;;} € Cesga [AT u,p, |-, ,-|]]. This completes the proof. O
Theorem 3.4. If 0 < ppm < @um < o0 for each n and m, then we have
068(2 [Am u, p, H’ T 7”] C Ces,(/\zxt)[Anmau7 q, ||» T, ||]

Proof. Let x € Ces(g)[ ™ u,p, |-+ ,-||]. Then there exists p > 0 such that

o0 n,m

1 . Amx Pnm
D D o e e IS
nm < p
n,m=1 i,7=1

This implies that

1 KAy Prm
unm[Mnm( E H & ”7217"' azn—lH)i| <1a
nm “ p
4,j=1
for sufficiently large values of n and m. Since M, is non-decreasing, we get

[e%S) n,m
]. AZT(E” dnm
§ Unm Mnm I § Ty R1, 0y Zn—1
1
[eS)

n,m=1 1,j=
<= A X Pnm
< 5 v Mo (o 32 [F o)
n,m 3 ':

< o0.

Thus z € C’es [Am u,q, ||,- -+ ,-||]. This completes the proof. O

Theorem 3.5. Suppose M = (M,,,) be a Musielak-Orlicz function, p = (pn) be
a bounded double sequence of posmve real numbers and u = (u,,) be a double
sequence of strictly positive real numbers Then

(@If0 < inf P < Prn < 1. ThenC'esM [AT u,p, |-+, -|]] € Ces 2)[Am Uy [y
(b)If]- < Pmn < SUD Py < 00 Thences,(/\QA) [AT7U7 H7 to am C CGSM[ATW’P, Ha T
Proof. (a) Let x = (x;5) € CesM [AT u,p, |-+ ,-|l]. Since 0 < infpp, < 1, we

obtain the following

[e%S) n,m
1 A;Lnl‘ij

E Unm Mnm % § T3 R1, 7 s Rn—1

n,m=1 i,j=1 P

=

n7

< 3 oo (g 30 [ )]

[l

il
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< Q.

and hence = (z;;) € 065(2) [AT a0l

(b) Let py,, > 1 for each nand m and sup pp, < 00. Letx = (z;5) € Cesj 2) [AT ]|y - - -

Then for each 0 < € < 1 there exists a positive integer N such that

[ee] n,m
1 < JANGE P

g u7z7n|:l‘47zm< E H nm1J721".. 7Z7L—1H):| S€< 1 foralln,mZN.
nm “— P

n,m=
This implies that
© ]_ wm A x Pnm
1,
37 o Mo (55 32 |5 )]
n,m=1 j=1

n1

< 3 oo 30 [ )

n,m=1
< oo.
Therefore, z = (2;;) € Cesga) [AT u,p,|-,---,-|]] - This completes the proof. O
Theorem 3.6. Let0 < pnm < Gnm foralln,m € N and (g"m) be bounded. Then we
have Ces(0)[AT u,q, |-+ -] € Ces AR u,p, |-+ -l
Proof. Let x = (x;5) € CesM [AT w,p, ||-,- -+ ,-]|]- Then
oo
1 o ANy . qnm
Z Upm {Mnm(— Z “"7%721, e ,zn,lH)} < 0o, for some p > 0.
nm < p
n,m=1 3,7=1
oo n,m
1 ’ A Gnm
Lot = 37 o[ Mo (20 3 [[Z55 0z )] and v =
n,m= INES

Since pnm < @nm, we have 0 < A\, < 1. Take 0 < A < A

Define
Sn’m if Snm Z 1
Unm =
0 if spm < 1
and
if spp > 1
if s < 1
Snm = Unm + Unm-» snm = ;\Lm —I— v nm It follows that u < Upm < Snm»
vanm < A . Since spnm = ulnm 4 plem, then shom < g+ vnm
> M 1 o A?.’E” Anm 1 Anm
Unm nm m y 2150 5 %n—1
n,m=1 i,7=1 p

n7

< 30 v it (g 3 [P )]

n,m=1

n7

— Z unm[( nm(im Z: HAm:vU . 7zn71H>)qnm]pnm/qnm

n,m=1
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< 3t [ g 32 [ )]

i,7=1

= 5 el

n,m=1 i,5=1

e 1 &A™, dnm
Z Upm {Mnm(— Z H"ix],zl,--- ,zn,lu)} < oo for some p > 0.
ol nm =11 p

Therefore,

i 1 < AMg. . Pnm
Z Unm [Mnm<— Z HM,zl,--- ,zn,lH)} < oo for some p > 0.
nm 2= 11 p

n,m=1 i,j=

Hence z = (2;5) € C’es [Am u,p, ||+, -||]- Thus, wegetCesM [A™ u,q, |- ,-]l] C

Cesﬁ[Agl,u,p, H’ ) H] O

Theorem 3.7. Let M’ = (M), ) and M" = (M), ) be two Musielak-Orlicz functions
satisfying As—condition. Then

2
(@) CGSS\/I)/ [A;Ln7uapa ||7 Ty ||] C CGSM”Q/\/[’[AZLauap> ||7 Tty ||]7
2 2

(b) Ces [Am w,py ||l N C’ess\/l),, [AT w,p, |-, ll] C 0655\/1)'+M“ [A™ w,p, |-,
Proof. (a) Let x € C’es( ) (AT u,p, ||+, ||]. Then there exists p > 0 such that

o0 n,m

1 : Am.’b Pnm
> [ Mo (G 3 |25 Az )] T <o
n,m=1 i,7=1

Since M’ = (M) is a continuous function, we can ﬁnd a real number § with 0 <

A
0 < 1 such that M, (t) < e. Let ypm = Mﬁm(# g Hni%721,"' ,zn,lu).
1,j=1

Hence we write

o0 o0
Z Unn [ M (Y ) [P = Z Unir [ My, (Y )]
n,m=1 ynm<6

+ Z unm MU yn’m)]pnm

Ynm >0
so we have
o0 o0
Z U M (Y )P < max{1, My, (1)} Z Unm [Yrm 7" 3.1
Ynm <O Ynm <O

For Y, > 0, we use the fact y,,, < 3= < 1+ ¥2». Since M" = (M,),,) is
non-decreasing and convex it follows that

" " Ynm 1 1" 1 2Ynm
M (Ym) < My (L4 25 < S0l (2) + 5 ().

lig
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Since M" = (M, ,) satisfying the Aj-condition and %= > 1, there exists 7" > 0
such that

1 mn 1 mn mn

Therefore, we have

3 ML (2NHY &
)
Ynm >0 Y6

Hence by the equation (3.1) and (3.2), we have

oo n,m
1 O Ay, DPrm
E Unm[(Myll/mOM»,/lm)<nm § 1” np ”’217"' 7Zn—1H):|
1,1=

n,m=1

o0
E : " ]
— U, [Mnmynm]p'”"
n,m=1

o

SD Z unm[(ynm)]pnm

Ynm <O

+G Z Unm, [ynm}pnm

Ynm >0

" H
where D = max{1, M/ (1)} and G = max {1, (TMng«b(Q)) }

2 2

Hence Cesgw), [AT u,p, |- 0]l] € Cesgw),,oM,[A;”, wyp, |l el
(b) Let x € 0635\2/1)' [AT w,p, |- -] N Cess\z,t),, [A™ u,p, |-+ ,-|]]. Then

(oo} n,m

1 ’ AMa. . Pnm
Z Unm [M,’Lm(— Z H”ix”,zl,~-~ ,zn_lHﬂ < oo, for some p > 0
nm 4 p
n,m=1 i,j=1

and

e} n,m
M,, 1 A;”x” Pnm
E , Unm | Mpm | —— E T 521, 5 Zn—1 o0, for some p > 0.
nm <~ P
,]=

n,m=1

Let p = max{p1, p2}. The result follows from the inequality

[eS) n,m
1 R ATy, Pam
! 1" n )
E Unm |:(Mnm+Mnm)( § H y Ryt 7Zn71H):|
nm < P
n,m=1 1,j=1

n,m

)
, 1 AZLJ}” Prm
= E Unm Mnm E y 21" 3 2n—1
nm 4 P
1,0=1

n,m=1
9] n,m
Ve 1 ’ A:?x” DPnm
+ Unm nm s %1y 5y 2n—1
nm & p
n,m=1 i,j=1
[eS) n,m
’ 1 ! A::Lnxlj Pnm
< K § Unm Mnm § yR1y " 5 Zn—1
nm = P
n,m=1 3,7=1
[eS) n,m
K u M// 1 - A?lelj Pnm
nm
+ § nm m g y %1, y Zn—1
nm < p
n,m=1 i,j=1

< oo,
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where K = {max 1,271}, Therefore, z = (z;;) € C’ess\a),+M,, [AT w,p, |-l

O
Theorem 3.8. Let M = (M,,,,) be a Musielak-Orlicz_function and Suppose that § =
. My (t) 5
tli>nolo —M7 < oo, Then Ces@ A" u,p, |- ,-|]] = Cesg\/l)[A?,u,p, [ 5-]l]-
Proof. In order to prove that Ces [A” u, p, ||-,--- ,-||] = 0655\2/1) AT u,p, |-l
It is adequate to show that Cessa) [AT w,p, ||y 5] € CesP[A™ u,p, |- -]

Now, let 8 > 0. By definition of 3, we have M,,,(t) > St for all t > 0. Since 3 > 0,
we have t < %Mnm(t) forall t > 0. Let x = (x;5) € Cesg\z,l)[AZL,u,p, I - 1l]-

Thus, we have
n

oo ,m
1 A?ww Pnm
E Unm % E T3 R1y 5 Rn—1
i,5=1 P

n,m=1 ,
]- 1 < A x Pnm
LS (55 [ )
n,m=1 nm i,j=1 p

< oo,
which implies that x = (z;;) € Ces®[A™ u,p,|-,---,-[|]. This completes the
proof. U
Theorem 3.9. The double sequence space Cesga) [AT u,p, |-, -l] is solid.

Progf. Suppose © = (z;;) € Cesga) AT wp, |yl

e} 1 n,m AMp. Prm
Z Unm {Mnm(— Z HM,Q, e ,zn,1H>] < 00, for some p > 0.
nm P

n,m=1

Let (a;;) be a double sequence of scalars such that |a;;| < 1 for all 4,j € N. Then

00 n,m
1 A:lnaljxlj Pnm
we get E Unm Mnm % § Ta 21yt 5 RAn—1
7,7=1

n,m=1
> 1 <= Aﬁxu Pnm
S § unm[Mnm( E H y 21yt 7zn—1H):|
1,7=1

n,m=1
< oo
This completes the proof. O
Theorem 3.10. The double sequence space C’essa [A™ wu,p, |- ,-||]] is monotone.
Proof. The proof is insignificant so we exclude it. U
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