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ABSTRACT. The aim of this paper, among other things, is, using a nonlinear scalarization
function and its properties, to study an existence theorem for a solution of SVQEP in the
setting of real topological vector space. One can consider this note as a new version of the
reference [5] by replacing a nonlinear scalarization function by a linear functional.

KEYWORDS : Symmetric vector quasi­equilibrium problem; Properly quasi­convex; Acyclic
map; Admissible set

1. INTRODUCTION

Let X and Y be real Hausdorff topological vector spaces (for short, t.v.s.), C and
D be nonempty subsets of X and Y , respectively. Let Z be a real Hausdorff t.v.s.
with its topological dual space Z∗. The pairing between Z and Z∗ is denoted by
⟨., .⟩. Let P ⫋ Z be a convex cone with intP ̸= ∅, where intP denotes the interior
of P . Let S : C ×D −→ 2C and T : C ×D −→ 2D be set­valued mappings and let
f , g : C ×D −→ Z be two vector­valued functions.

In 2003, Fu [8] introduced the symmetric vector quasi­equilibrium problem
(for short, SVQEP) that consists in finding (x̄, ȳ) ∈ C × D such that x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ) and

f(x, ȳ)− f(x̄, ȳ) ̸∈ −intP, ∀x ∈ S(x̄, ȳ),

g(x̄, y)− g(x̄, ȳ) ̸∈ −intP, ∀y ∈ T (x̄, ȳ).

The SVQEP is a generalization of the (scalar) symmetric quasi­equilibrium prob­
lem (for short, SQEP) posed by Noor and Oettli [10] which this problem is a gener­
alization of the equilibrium problem that, at the first, proposed by Blum and Oettli
[3]. The equilibrium problem contains as special cases, for instance, optimization
problems, problems of Nash equilibria, variational inequalities, and complemen­
tarity problems (see [3]).
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The aim of this paper, among other things, is, using a nonlinear scalarization
function and its properties, to study an existence theorem for a solution of SVQEP
in the setting real of t.v.s. This method for obtaining a solution of SVQEP is different
from that which is used by Fu in [8]. Fu?s method is based on the notion of weak
minimal points and well­known Kakutani­Fan­ Glicksberg Fixed point theorem in
locally convex Hausdorff space. Also our method enables us extends some results
in [4, 8, 10, 11].

2. DEFINITIONS AND PRELIMINARIES

In the rest of this section we recall some definitions and preliminaries results
which we need in the sequel.

In this paper, all topological spaces are assumed to be Hausdorff. As mentioned
before, let P ⫋ Z be a convex cone with intP ̸= ∅. We can define a vector ordering
in Z by setting

x ⪯ y ⇔ y − x ∈ P,

and a weak ordering by setting

x ≺ y ⇔ y − x ∈ intP.

We will denote usual ordering on real numbers by ≤.

It is clear that P ∩ ­intP = ∅, since P + intP ⊆ intP and P ̸= Z (this fact will be
used in Lemma 3.1).

Let E be a t.v.s. and C : E −→ 2E a multi­valued map and for all x ∈ E, C(x)
is a solid cone (that is, intC(x) is non empty). Let e : E −→ E be a map with
e(x) ∈ C(x) for x ∈ E. The non linear scalarization function ξ : E × E −→ R is
defined as follows:

ξ(x, y) = inf{r ∈ R : y ∈ re(x)− C(x)}.

Definition 2.1 [8]. Let B be a nonempty subset of Z. Element b ∈ B is called a
weak minimal point of B if B ∩ (b− int P ) = ∅. The set of all weak minimal points
of B will be denoted by min wB.

Lemma 2.1 [7]. Let B be a nonempty compact subset of Z. Then

(i) minwB ̸= ∅,
(ii) B ⊂ minwB + (int P ∪ {0}).

In the following definition (i)­(iv) is due to Ferro [7] and (v) to Tanaka [12].

Definition 2.2. Let (Z,P ) be an ordered topological vector space, and let C be a
nonempty convex subset of a vector space X. Let a vector mapping f : C −→ Z be
given.

(i) f is called convex if for every x, y ∈ C and t ∈ [0, 1], one has
f(tx+ (1− t)y) ⪯ tf(x) + (1− t)f(y).

(ii) f is called properly quasi­convex if for every x, y ∈ C and t ∈ [0, 1],
one has either f(tx+ (1− t)y) ⪯ f(x) or f(tx+ (1− t)y) ⪯ f(y).

(iii) f is called P­l.s.c. if, for all z ∈ Z, the set L(z) = {x ∈ C : z ⊀ f(x)}
is closed in C.
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(iv) f is called P­u.s.c. if, for all z ∈ Z, the set U(z) = {x ∈ C : f(x) ⊀ z}
is closed in C.

(v) f is called natural quasi­convex if for every x, y ∈ C and t ∈ [0, 1],
there exists µ ∈ [0, 1] such that f(tx+ (1− t)y) ⪯ µf(x) + (1− µ)f(y)

Also, the function f is said to be natural quasi­concave(respectively, concave,
properly quasi­concave) if −f is natural quasi­convex( respectively, convex, prop­
erly quasi­convex).

Remark 2.1. Every convex or properly quasi­convex function is natural quasi­
convex function (see Lemma 2.1 [14]). A vector mapping may be convex and not
properly quasi­convex, and conversely (see [7]). Consequently, the class of natural
quasi­convex functions is strictly larger than both the class of convex functions and
the class of properly quasi­convex functions. It is easily seen that properly quasi­
convexity and quasi­convexity are equivalent to each other in the scalar case, i.e.,
Z = R and P = [0,∞).

Definition 2.3. Let X and Y be two topological spaces. A set­valued mapping
T : X −→ 2Y is called:

(i) upper semi­continuous (u.s.c.) at x ∈ X if for each open set V containing
T (x), there is an open set U containing x such that for each t ∈ U , T (t) ⊆
V ; T is said to be u.s.c. on X if it is u.s.c. at all x ∈ X.

(ii) lower semi­continuous (l.s.c.) at x ∈ X if for each open set V with
T (x)∩V ̸= ∅, there is an open set U containing x such that for each t ∈ U ,
T (t) ∩ V ̸= ∅; T is said to be l.s.c. on X if it is l.s.c. at all x ∈ X.

(iii) continuous on X if it is at the same time u.s.c. and l.s.c. on X.

(iv) closed if the graph Gr(T ) of T , i.e., {(x, y) : x ∈ X, y ∈ T (x)}, is a closed
set in X × Y .

(v) compact if the closure of range T , i.e., T (X), is compact, where T (X) =
∪x∈XT (x).

Remark 2.2 [13]. T is l.s.c. at x ∈ X if and only if for any y ∈ T (x), and any net
{xα}, xα −→ x, there is a net {yα} such that yα ∈ T (xα) and yα −→ y.

Definition 2.4. Let X be a topological space, Y be a t.v.s. A function f : X −→ Y
is said to be demicontinuous if

f−1(M) = {x ∈ X : f(x) ∈ M}
is closed in X for each closed half space M ⊂ Y .

Lemma 2.2 [14]. Let X be a topological space, Z a t.v.s. and f : X −→ Z be a
demicontinuous function, then for any x∗ ∈ Z∗, the composite function x∗ ◦ f is
continuous, where Z∗ is the topological dual space of Z.

Definition 2.5 [11]. A nonempty topological space is acyclic if all of its reduced
Cech homology groups over rationals vanish. Note that any convex or star­shape
subset of a topological vector space is contractible, and that any contractible space
is acyclic. A map T : X −→ 2Y is said to be acyclic if it is u.s.c. with compact
acyclic values .
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Definition 2.6 [11]. A nonempty subset X of a t.v.s. E is said to be admissible
provided that, for every compact subset K of X and every neighborhood V of the
origin 0 of E, there exists a continuous map h : K −→ X such that x− h(x) ∈ V ,
for all x ∈ K and h(K) is contained in a finite dimensional subspace L of E. Note
that every nonempty convex subset of a locally convex t.v.s. is admissible (see [9]).
Other examples of admissible t.v.s. are lp and Lp(0, 1) for 0 < p < 1, the space
S(0, 1) of equivalent class of measurable functions on [0, 1], the Hardy spaces Hp

for 0 < p < 1 and certain Orlicz spaces. Ultrabarrelled t.v.s. are also admissible.

We need the following theorem in the sequel.

Theorem 2.1 [11]. Let C and D be admissible convex subsets of t.v.s. X and Y ,
respectively. Let S : C×D −→ 2C and T : C×D −→ 2D be compact acyclic maps,
and f, g : C ×D −→ R l.s.c. functions such that (i) The functions

F (x, y) = min{f(ξ, y) : ξ ∈ S(x, y)},

G(x, y) = min{g(x, η) : η ∈ T (x, y)}
are u.s.c. on C ×D, and

(ii) For each (x, y) ∈ C ×D, the sets

A(x, y) = {ξ ∈ S(x, y) : f(ξ, y) = F (x, y)},

B(x, y) = {η ∈ T (x, y) : g(x, η) = G(x, y)}

are acyclic.

Then there exists an (x, y) ∈ C ×D such that

x ∈ S(x, y), f(x, y) ≥ f(x, y), for all x ∈ S(x, y),

y ∈ T (x, y), g(x, y) ≥ g(x, y), for all y ∈ T (x, y).

3. MAIN RESULTS

Throughout this section, let X,Y be real Hausdorff t.v.s., C and D be non empty,
admissible convex subsets of X and Y, respectively. Let Z be a real Hausdorff t.v.s.
with topological dual space Z∗ and P ⫋ Z a convex cone with int P ̸= ∅.

The following Lemma is essential tool for our main results. In the following we
establish some important properties of the non linear scalarization function which
generalize Propositions 2.3 and 2.4 in [4] from locally convex spaces to topological
vector spaces which its proof left to the reader.

Lemma 3.1. Let Z be a t.v.s. and P be a convex cone. Let e ∈ intP Then the
following assertions, for each r ∈ R and y ∈ z are satisfied.

(i) ξe(y) = inf{r ∈ R : y ∈ re− P = min{r ∈ R : y ∈ re− P};
(ii) ξe(y) ≤ r ⇔ y ∈ re− P
(iii) ξe(y) < r ⇔ y ∈ re− intP
(iv) If y1 ⪯ y2, then ξe(y1) ≤ ξe(y2);
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(v) The function y −→ ξe(y) is continuous, positively homogeneous and sub
additive on Z;

(vi) The function y −→ ξe(y) is bounded on some neighborhood of zero.

Now, we are ready to prove existence theorems that extends the main result in
[6], Theorems 1,2 and 3 in [8], and also is a generalization of the Theorem 1.1.
Theorem 3.1. Assume that

(i) S : C ×D −→ 2C and T : C ×D −→ 2D are continuous and compact;
and for each (x, y) ∈ C ×D, S(x, y), T (x, y) are nonempty, closed
convex subsets;

(ii) f, g : C ×D → Z are demicontinuous;
(iii) For any fixed y ∈ D, f(x, y) is natural quasi­convex in x; for any

fixed x ∈ C, g(x, y) is natural quasi­convex in y.

Then SVQEP has a solution.

Proof. By (ii) and Lemma 3.1 through theorem 2.2 in [6], the composite functions
ξeof and ξeog are l.s.c. We claim that the real­valued continuous functions ξeof
and ξeog satisfy in conditions (i) and (ii) of Theorem 2.1. Indeed, condition (i) follows
from Theorem 1 in [1, p. 122].

Now for condition (ii), we must show that for any fixed (x, y) ∈ C × D the set
A(x, y) is convex, where

A(x, y) = {u ∈ S(x, y) : ξe ◦ f(u, y) = F (x, y)}
F (x, y) = min{ξe ◦ f(u, y) : u ∈ S(x, y)}.

To this end, let t ∈]0, 1[ and u1, u2 ∈ A(x, y). By the definition of A(x, y), u1, u2 ∈
A(x, y) and convexity of the set S(x, y), we get (1 − t)u1 + tu2 ∈ S(x, y) and
F (x, y) = ξe ◦ f(u1, y) = ξe ◦ f(u2, y). Hence by (iii) there exists µ ∈]0, 1[ such that

F (x, y) ≤ ξe ◦ f((1− t)u1 + tu2, y)

≤ (1− µ)ξe ◦ f(u1, y) + µξe ◦ f(u2, y)

= (1− µ)F (x, y) + µF (x, y)

= F (x, y).

In the above, the first inequality holds by the definition of F (x, y) and (1 − t)u1 +
tu2 ∈ S(x, y), but the second inequality holds by natural quasi­convexity of the
function f in the first argument (assumption (iii)) and to preserve ordering on Z by
ξe (see, Lemma 3.1 (iv,v)). Then, (1− t)u1 + tu2 ∈ A(x, y). Similarly ξe ◦ g satisfies
in conditions (i) and (ii) of Theorem 2.1. Now, by virtue of Theorem 2.1, there exists
(x, y) ∈ C ×D such that

x ∈ S(x, y), ξe ◦ f(x, y) ≥ ξe ◦ f(x, y), ∀x ∈ S(x, y),

y ∈ T (x, y), ξe ◦ g(x, y) ≥ ξe ◦ g(x, y), ∀y ∈ T (x, y).

Then by Lemma 3.1 (v),

x ∈ S(x, y), ξe(f(x, y)− f(x, y)) ≥ ξe(f(x, y))− ξe(f(x, y)) ≥ 0, ∀x ∈ S(x, y),

y ∈ T (x, y), ξe(g(x, y)− g(x, y)) ≥ ξe(g(x, y))− ξe(g(x, y)) ≥ 0, ∀y ∈ T (x, y).

Consequently, it follows from Lemma 3.1 (iii) and the relations (1) and (2) that

x ∈ S(x, y), f(x, y)− f(x, y) ̸∈ −intP, ∀x ∈ S(x, y)
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and

y ∈ T (x, y), g(x, y)− g(x, y) ̸∈ −intP, ∀y ∈ T (x, y),

and so (x, y) is a solution of the SVQEP. This completes the proof. □

The following corollary is one of the applications Theorem 3.1. which extends
the existence Theorem 3.1 in [14] from locally convex topological vector spaces to
topological vector space.

Corollary 3.1. Let C and D be nonempty compact admissible convex sets, and
let the vector­valued function f : C ×D −→ Z satisfy the following conditions

(i) The function f is demicontinuous;
(ii) For any fixed y ∈ D, f(x, y) is natural quasi­convex in x; for any fixed x ∈ C,

f(x, y) is natural quasi­concave in y.

Then the vector­valued function f has at least one P ­weak saddle point, that is,
there exists (x̄, ȳ) ∈ C ×D such that

f(x̄, ȳ)− f(x, ȳ) ̸∈ int P ∀x ∈ C

f(x̄, y)− f(x̄, ȳ) ̸∈ int P ∀x ∈ D.

Proof. It is enough in Theorem 3.1, we define the set­valued mappings S :
C × D −→ 2C and T : C × D −→ 2D as S(x, y) = C, T (x, y) = D, and also the
vector­valued function g on C ×D as g(x, y) = −f(x, y). □

By using Theorem 2.1 and Lemma 3.1 we can state the following theorem which
is another version of Theorem 3.1 without continuity condition of the maps.

Theorem 3.2. Let S : C × D −→ 2C and T : C × D −→ 2D be compact acyclic
maps. Suppose that f, g : C ×D −→ Z and ξe ∈ S−int P,P , be such that

(i) The composite functions ξe ◦ f , ξe ◦ g are l.s.c.,

(ii) The functions

F (x, y) = min{ξe(f(ξ, y)) : ξ ∈ S(x, y)},
G(x, y) = min{ξe(g(x, η)) : η ∈ T (x, y)}

are u.s.c. on C ×D,

(iii) For each (x, y) ∈ C ×D, the sets

A(x, y) = {u ∈ S(x, y) : ξe(f(u, y)) = F (x, y)},
B(x, y) = {η ∈ T (x, y) : ξe(g(x, η)) = G(x, y)}

are acyclic.

Then SVQEP has a solution.

Remark 3.1. Let us briefly discuss assumptions (i),(iii) and convexity C ×D. The
lower semicontinuity of ξe ◦ f and ξe ◦ g : C × D −→ Z is ensured whenever f
and g are P­l.s.c. This follows from Lemma 2.4 in [2]. We can omit compactness
condition of the sets C and D in Theorem 1 in [10], by using Himmelberg’s Fixed
point theorem [11] instead of Berge’s maximum Theorem in its proof. Then by
using this form of the Theorem 1 in [10] and the property of ξe ∈ S−int P,P , we
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can omit condition (iii) in Theorem 3.2, if C and D be nonempty convex subsets of
real locally convex Hausdorff spaces X and Y , respectively, and S, T be u.s.c. and
compact maps with nonempty closed convex values. At last convexity of C ×D is
not essential. In fact, C ×D can be any subset of X × Y which is homomorphic to
an admissible convex subset in t.v.s. X1 × Y1 (see discussion after Theorem 1 in
[11]).

The following examples show that Theorem 3.2 is sharper than Theorem 3.1.

Example 3.1. Let C = [−1, 1], D = [0, 1]. Define T : C ×D −→ 2D by
T (x, y) = [0, 1], S : C ×D −→ 2C by

S(x, y) =

{
{0} if x ̸= 0

[0, 1] if x = 0,

and f, g : C ×D −→ R by

g(x, y) = x+ y, f(x, y) =

{
0 if x ∈ {−1

n : n ∈ N} ∪ {0}
1 otherwise .

The maps S and T are acyclic. The function f is not quasi­convex but l.s.c. and
the function g is convex and continuous such that

F (x, y) = min{f(ξ, y) : ξ ∈ S(x, y)} = 0, for all (x, y) ∈ C ×D,

G(x, y) = min{g(x, η) = x+ η : η ∈ T (x, y)} = x, for all (x, y) ∈ C ×D
are continuous and convex. It is clear that,

A(x, y) = {ξ ∈ S(x, y) : f(ξ, y) = F (x, y)} = {0}, for all (x, y) ∈ C ×D
B(x, y) = {η ∈ T (x, y) : g(x, η) = G(x, y)} = {0}, for all (x, y) ∈ C ×D are

acyclic (sets) for every (x, y) ∈ C×D. Therefore, SVQEP has a solution by Theorem
3.2. But the example does not satisfy in the conditions of Theorem 3.1.

Acknowledgment. The author would like to thank of Islamic Azad University,
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