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ABSTRACT. Motivated by the recent work of Moudafi (Inverse Problems, 26 (2010), 587­
600) and inspired by Xu (Inverse Problems, 22 (2006), 2021­2034), Censor and Segal (J.
Convex Anal. 16 (2009), 587­600) , and Yang (Inverse Problems, 20 (2004), 1261­1266),
we investigate a Krasnoselskii­type iterative algorithm for solving the split equality fixed
point problem recently introduced by Moudafi and Al­Shemas (Transactions on Mathematical
Programming and Applications, Vol. 1, No. 2 (2013), 1­11). Weak and strong convergence
theorems are proved for the class of demi­contractive mappings in Hilbert spaces. Our
theorems extend and complement some recent results of Moudafi and a host of other recent
important results.
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1. INTRODUCTION

The split feasibility problem arises in many areas of application such as phase
retrieval, medical image reconstruction, image restoration, computer temography
and radiation therapy treatment planning (see e.g., Byrne [1], Censor et al.[2],
Censor et al. [3], and Censor and Elfving [4]). It takes the following form: Let
C and Q be two nonempty closed convex subsets of real Hilbert spaces H1 and
H2, respectively, A : H1 → H2 be a bounded linear operator. The split feasibility
problem (SFP) is formulated as follows:

Find x∗ ∈ C such that Ax∗ ∈ Q. (1.1)

The SFP was first introduced in 1994 by Censor and Elfving [4] in finite­dimensional
Hilbert spaces for modelling inverse problems arising from phase retrieval and med­
ical image reconstruction.
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Assuming that the SFP (1.1) has a solution, one can easily show that x∗ ∈ C solves
SFP if and only if it solves the fixed point equation

x∗ = PC(I − γA∗(I − PQ)A)x∗,

where PC and PQ are the metric projections from H1 onto C and from H2 onto Q,
respectively, where γ is a positive constant and A∗ denotes the adjoint of A.

A popular algorithm used in approximating the solution of the SFP (1.1) is the
CQ­algorithm of Byrne [1]:

xn+1 = PC(I − γA∗(I − PQ)A)xn,

for each n ≥ 1, where γ ∈ (0, 2
λ ) with λ being the spectral radius of the operator

A∗A.
Based on the work of Censor and Segal [5], Moudafi [10] proposed the following
scheme which does not involve the metric projections PC and PQ:

xn+1 = (1− αn)
(
xn + γA∗(T − I)Axn

)
+ αnU

(
xn + γA∗(T − I)Axn

)
, n ∈ N,

for approximating a solution of the split feasibility fixed point problem (1.1) and
obtained a weak convergence results when U and T are demi­contractive.

Very recently, Moudafi and Al­Shemas [9] introduced the following split equality
fixed point problem as a generalization of the split feasibility problem (1.1):

Find x ∈ C := F (U) and y ∈ Q := F (T ) such that Ax = By, (1.2)
where A : H1 → H3 and B : H2 → H3 are two bounded linear operators,
U : H1 → H1, T : H2 → H2, F (U) and F (T ) denote the fixed point sets of
U and T , respectively. Note that problem (1.2) reduces to problem (1.1) if H2 = H3

and B = I (where I is the identity map on H2) in (1.2).

In order to approximate a solution of problem (1.2), Moudafi and Al­Shemas [9]
introduced the following iterative scheme: xn+1 = U(xn − γnA

∗(Axn −Byn));

yn+1 = T (yn + γnB
∗(Axn −Byn)), ∀n ≥ 1,

(1.3)

where U : H1 → H1, T : H2 → H2 are two firmly quasi­nonexpansive mappings,
A : H1 → H3, B : H2 → H3 are two bounded linear operators, A∗ and B∗ are
the adjoints of A and B, respectively, {γn} ⊂ (ϵ, 2

λA∗A+λB∗B
− ϵ), λA∗A and λB∗B

denote the spectral radii of A∗A and B∗B, respectively. Using the iterative scheme
(1.3), Moudafi obtained a weak convergence result for problem (1.2).

Yuan­Fang et al. [15] introduced the following algorithm for solving problem (1.2):
∀x1 ∈ H1, ∀y1 ∈ H2;
xn+1 = (1− αn)xn + αnU(xn − γnA

∗(Axn −Byn));

yn+1 = (1− αn)yn + αnT (yn + γnB
∗(Axn −Byn)), ∀n ≥ 1,

(1.4)

where U : H1 → H1, T : H2 → H2 are two firmly quasi­nonexpansive mappings,
A : H1 → H3, B : H2 → H3 are two bounded linear operators, A∗ and B∗ are the
adjoints of A and B, respectively, {γn} ⊂ (ϵ, 2

λA∗A+λB∗B
− ϵ) (for ϵ small enough),
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where λA∗A and λB∗B denote the spectral radii of A∗A and B∗B, respectively and
{αn} ⊂ [α, 1] (for some α > 0). Under some conditions, the authors obtained strong
and weak convergence results.

Motivated by the work of Moudafi [8], Moudafi and Al­Shemas [9], Moudafi [10]
and Yuan­Fang et al. [15], we define the following iterative algorithm to solve the
split equality fixed point problem (1.2) in the case that U and T are demi­contractive.



∀x1 ∈ H1, ∀y1 ∈ H2;

xn+1 = (1− α)
(
xn − γA∗(Axn −Byn)

)
+ αU

(
xn − γA∗(Axn −Byn)

)
;

yn+1 = (1− α)
(
yn + γB∗(Axn −Byn)

)
+ αT

(
yn + γB∗(Axn −Byn)

)
, ∀n ≥ 1,

(1.5)
where U : H1 → H1, T : H2 → H2 are two demi­contractive mappings. The
important class of demi­contractive mappings properly includes the class of firmly
quasi­nonexpansive mappings studied by Moudafi and Al­Shemas [9]. Under suit­
able conditions, we prove weak and strong convergence theorems of the iterative
scheme (1.5) to a solution of the split equality problem in real Hilbert spaces. Our
theorems extend and complement the results of Censor and Segal [5], Maruster
et al. [7], Moudafi and Al­Shemas [9], Moudafi [10], [11], Xu [13], Yang [14], Yuan­
Fang et al. [15], and a host of other results.

2. PRELIMINARIES AND NOTATIONS

We recall some definitions and lemmas which will be needed in the proof of our
main theorems.
In the sequel, we denote strong and weak convergence by “ −→’’ and “ ⇀’’, respec­
tively, the fixed point set of a mapping T by F (T ) and the solution set of problem
(1.2) by Ω, namely,

Ω := {(x∗, y∗) ∈ F (U)× F (T ) : Ax∗ = By∗}.

Definition 2.1. Let H be a real Hilbert space.

(1) Let T : H → H be a mapping. Then, (I − T ) is said to be demi­closed at
zero if for any sequence {xn} ⊂ H with xn ⇀ x∗, and xn − Txn −→ 0, we
have x∗ = Tx∗.

(2) A mapping T : H → H is said to be semi­compact if for any bounded
sequence {xn} ⊂ H with xn − Txn −→ 0, there exists a subsequence
{xnj} ⊂ {xn} such that {xnj} converges strongly to some x∗ ∈ H.

Definition 2.2. Let H be a real Hilbert space.

(1) A mapping T : H → H is said to be nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥ ∀ (x, y) ∈ H ×H. (2.1)

(2) A mapping T : H → H is said to be quasi­nonexpansive if F (T ) ̸= ∅ and

∥Tx− x∗∥ ≤ ∥x− x∗∥ ∀x∗ ∈ F (T ), x ∈ H. (2.2)
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(3) A mapping T : H → H is said to be firmly quasi­nonexpansive if F (T ) ̸= ∅
and

∥Tx− x∗∥2 ≤ ∥x− x∗∥2 − ∥x− Tx∥2 ∀x∗ ∈ F (T ), x ∈ H. (2.3)

(4) Let D be a nonempty subset of H. A map T : D → D is said to be k­strictly
pseudo­contractive if there exists a constant k ∈ (0, 1) such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2 ∀x, y ∈ D.

(5) T : D → D is said to be demi­contractive if F (T ) ̸= ∅ and there exists a
constant k ∈ (0, 1) such that

∥Tx− x∗∥2 ≤ ∥x− x∗∥2 + k∥x− Tx∥2 ∀x ∈ D, x∗ ∈ F (T ).

Remark 2.3. The following inclusions are obvious.

Firmly quasi­nonexpansive ⊂ Quasi­nonexpansive ⊂ Demi­contractive.

We give examples to show that the above inclusions are proper.

Example 2.4. Let H = l2; D := {x ∈ l2 : ∥x∥2 ≤ 1} and T : D → D be
defined by T (x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ). Then, T has a unique fixed
point, zero. Clearly, T is a quasi­nonexpansive mapping which is not firmly quasi­
nonexpansive.
In fact, we have:

∥Tx− 0∥ = ∥x− 0∥, (∗)
so T is quasi­nonexpansive, and for every x ̸= 0, suppose

∥Tx− 0∥2 ≤ ∥x− 0∥2 − ∥x− Tx∥2.
Then, using (∗), we obtain that x = 0, which is a contradiction. Therefore, T is not
firmly quasi­nonexpansive.

Example 2.5. Let H = l2 and T : l2 → l2 be defined by T (x1, x2, x3, · · · ) =
−5

2 (x1, x2, x3, · · · ), for arbitrary (x1, x2, x3, · · · ) ∈ l2. Then, F (T ) = {0}, and T is a
demi­contractive mapping which is not quasi­nonexpansive.
Indeed, for each x ∈ l2, we have

∥Tx− 0∥2 =
25

4

∥∥∥x− 0
∥∥∥2,

which implies that T is not quasi­nonexpansive. We also have that

∥x− Tx∥2 =

∥∥∥∥x−
(
− 5

2
x
)∥∥∥∥2 =

49

4

∥∥∥x− 0
∥∥∥2,

so that
∥x− 0∥2 =

4

49

∥∥∥x− Tx
∥∥∥2. (∗∗)

Thus, using (∗∗), we have:

∥Tx− 0∥2 = ∥x− 0∥2 + 21

4

∥∥∥x− 0
∥∥∥2 = ∥x− 0∥2 + 3

7

∥∥∥x− Tx
∥∥∥2.

Hence, T is a demi­contractive mapping with constant k = 3
7 ∈ (0, 1).

Lemma 2.6. (Opial’s Lemma [12]) Let H be a real Hilbert space and {µn} be a
sequence in H such that there exists a nonempty set W ⊂ H satisfying the following
conditions:
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(i) For every µ ∈ W, limn→∞ ∥µn − µ∥ exists;
(ii) Any weak­cluster point of the sequence {µn} belongs to W .

Then, there exists w∗ ∈ W such that {µn} converges weakly to w∗.

Lemma 2.7. (see e.g., Chidume, [6]) Let H be a real Hilbert space and λ ∈ [0, 1].
Then, for any x, y, z ∈ H,

∥λx+ (1− λ)y − z∥2 = λ∥x− z∥2 + (1− λ)∥y − z∥2 − λ(1− λ)∥x− y∥2.

3. MAIN RESULTS

To approximate a solution of the split equality fixed point problem (1.2), we make
the following assumptions:
(A1) H1, H2 and H3 are real Hilbert spaces, A : H1 → H3 and B : H2 → H3

are bounded linear operators.
(A2) U : H1 → H1, T : H2 → H2 are demi­contractive mappings with constants

k1 and k2, respectively.
(A3) I − U and I − T are demi­closed at zero, and U and T are uniformly

continuous.
For arbitrary x1 ∈ H1 and y1 ∈ H2 define an iterative algorithm by


xn+1 = (1− α)

(
xn − γA∗(Axn −Byn)

)
+ αU

(
xn − γA∗(Axn −Byn)

)
;

yn+1 = (1− α)
(
yn + γB∗(Axn −Byn)

)
+ αT

(
yn + γB∗(Axn −Byn)

)
, ∀n ≥ 1,

(3.1)
where α ∈ (0, 1− k) and γ ∈

(
0, 2

(λA∗A+λB∗B)

)
, where λA∗A and λB∗B denote the

spectral radii of A∗A and B∗B, respectively and k = max{k1, k2}.

We now prove the following theorem.

Theorem 3.1. Suppose assumptions (A1)− (A3) hold.
If Ω := {(x∗, y∗) ∈ F (U) × F (T ) : Ax∗ = By∗} ̸= ∅, then the sequence {(xn, yn)}
generated by (3.1) converges weakly to a solution of problem (1.2).

Proof. Let (x∗, y∗) ∈ Ω. Using lemma 2.7 and assumption A2, we have∥∥∥xn+1 − x∗
∥∥∥2 =

∥∥∥(1− α)
(
xn − γA∗(Axn −Byn)

)
+ αU

(
xn − γA∗(Axn −Byn)

)
− x∗

∥∥∥2
= (1− α)

∥∥∥xn − γA∗(Axn −Byn)− x∗
∥∥∥2 + α

∥∥∥U(
xn − γA∗(Axn −Byn)

)
− x∗

∥∥∥2
− α(1− α)

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥2
≤ (1− α)

∥∥∥xn − γA∗(Axn −Byn)− x∗
∥∥∥2 + α

∥∥∥xn − γA∗(Axn −Byn)− x∗
∥∥∥2

+ αk1

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥2
− α(1− α)

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥2
=

∥∥∥xn − γA∗(Axn −Byn)− x∗
∥∥∥2
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− α(1− k1 − α)
∥∥∥xn − γA∗(Axn −Byn)− U

(
xn − γA∗(Axn −Byn)

)∥∥∥2
≤

∥∥∥xn − x∗
∥∥∥2 − 2γ⟨Axn −Byn, Axn −Ax∗⟩+ γ2λA∗A

∥∥∥Axn −Byn

∥∥∥2
− α(1− k1 − α)

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥2.
Similary, we have that∥∥∥yn+1 − y∗

∥∥∥2 ≤
∥∥∥yn − y∗

∥∥∥2 + 2γ⟨Axn −Byn, Byn −By∗⟩+ γ2λB∗B

∥∥∥Axn −Byn

∥∥∥2
− α(1− k2 − α)

∥∥∥yn + γB∗(Axn −Byn)− T
(
yn + γB∗(Axn −Byn)

)∥∥∥2.
Adding the above two inequalities and using k = max{k1, k2} and the fact that
Ax∗ = By∗, we have that

∥∥∥xn+1 − x∗
∥∥∥2 + ∥∥∥yn+1 − y∗

∥∥∥2 ≤
∥∥∥xn − x∗

∥∥∥2 + ∥∥∥yn − y∗
∥∥∥2 + γ2(λA∗A + λB∗B)

∥∥∥Axn −Byn

∥∥∥2
− 2γ

∥∥∥Axn −Byn

∥∥∥2
− α(1− k − α)

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥2
− α(1− k − α)

∥∥∥yn + γB∗(Axn −Byn)− T
(
yn + γB∗(Axn −Byn)

)∥∥∥2.
That is,

∥∥∥xn+1 − x∗
∥∥∥2 + ∥∥∥yn+1 − y∗

∥∥∥2 ≤
∥∥∥xn − x∗

∥∥∥2 + ∥∥∥yn − y∗
∥∥∥2 − γ

(
2− γ(λA∗A + λB∗B)

)∥∥∥Axn −Byn

∥∥∥2
− α(1− k − α)

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥2
− α(1− k − α)

∥∥∥yn + γB∗(Axn −Byn)− T
(
yn + γB∗(Axn −Byn)

)∥∥∥2.
Now set Ωn(x

∗, y∗) =
∥∥∥xn − x∗

∥∥∥2 + ∥∥∥yn − y∗
∥∥∥2. Then, it follows that

Ωn+1(x
∗, y∗) ≤ Ωn(x

∗, y∗)− γ
(
2− γ(λA∗A + λB∗B)

)∥∥∥Axn −Byn

∥∥∥2
− α(1− k − α)

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥2
− α(1− k − α)

∥∥∥yn + γB∗(Axn −Byn)− T
(
yn + γB∗(Axn −Byn)

)∥∥∥2.
(3.2)

Since α ∈
(
0, 1− k

)
and γ ∈

(
0, 2

(λA∗A+λB∗B)

)
,

we have 2− γ(λA∗A + λB∗B) > 0 and 1− k − α > 0. It follows that

Ωn+1(x
∗, y∗) ≤ Ωn(x

∗, y∗).
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So, the sequence {Ωn(x
∗, y∗)} is non­increasing and bounded below, therefore, it

converges. On the other hand, it follows from inequality (3.2) and the convergence
of the sequence {Ωn(x

∗, y∗)} that

lim
n→∞

∥∥∥Axn −Byn

∥∥∥ = 0, (3.3)

lim
n→∞

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥ = 0, (3.4)

and

lim
n→∞

∥∥∥yn + γB∗(Axn −Byn)− T
(
yn + γB∗(Axn −Byn)

)∥∥∥ = 0. (3.5)

Furthermore, since {Ωn(x
∗, y∗)} converges, we have that {xn} and {yn} are bounded.

Let x∗∗ and y∗∗ be the weak­cluster points of the sequences {xn} and {yn}, respec­
tively. Then, there exists a subsequence of {(xn, yn)} (without loss of generality,
still denoted by {(xn, yn)}) such that xn ⇀ x∗∗ and yn ⇀ y∗∗. Next, we show that
Ux∗∗ = x∗∗ and Ty∗∗ = y∗∗. Since U is uniformly continuous, it follows from (3.3)
that

lim
n→∞

∥∥∥U(
xn − γA∗(Axn −Byn)

)
− Uxn

∥∥∥ = 0. (3.6)

Similarly, we have that

lim
n→∞

∥∥∥T(yn + γB∗(Axn −Byn)
)
− Tyn

∥∥∥ = 0. (3.7)

We now show that limn→∞

∥∥∥Uxn − xn

∥∥∥ = 0. Using (3.4) and (3.6), we have∥∥∥Uxn − xn

∥∥∥ ≤
∥∥∥xn − γA∗(Axn −Byn)− U

(
xn − γA∗(Axn −Byn)

)∥∥∥
+

∥∥∥U(
xn − γA∗(Axn −Byn)

)
− Uxn

∥∥∥
+

∥∥∥xn − γA∗(Axn −Byn)− xn

∥∥∥
≤

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥
+

∥∥∥U(
xn − γA∗(Axn −Byn)

)
− Uxn

∥∥∥
+ γ

∥∥∥A∗
∥∥∥∥∥∥Axn −Byn

∥∥∥ −→ 0 as n → ∞.

This implies that

lim
n→∞

∥∥∥Uxn − xn

∥∥∥ = 0. (3.8)

Similarly, we have that

lim
n→∞

∥∥∥Tyn − yn

∥∥∥ = 0. (3.9)

Now, since xn ⇀ x∗∗, I − U is demi­closed at zero, and limn→∞

∥∥∥Uxn − xn

∥∥∥ = 0,
we have that Ux∗∗ = x∗∗, which shows that x∗∗ ∈ F (U). Similarly, we have that
y∗∗ ∈ F (T ). Since A and B are bounded linear operators, and {xn} and {yn}
converge weakly to x∗∗ and y∗∗, respectively, we have that for arbitrary f ∈ H∗

3 ,

f(Axn) = (f ◦A)(xn) −→ (f ◦A)(x∗∗) = f(Ax∗∗).

Similarly,
f(Byn) = (f ◦B)(yn) −→ (f ◦B)(y∗∗) = f(By∗∗).
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These convergences imply that

Axn −Byn ⇀ Ax∗∗ −By∗∗,

which, in turn, implies that∥∥∥Ax∗∗ −By∗∗
∥∥∥ ≤ lim inf

n→∞

∥∥∥Axn −Byn

∥∥∥ = 0,

so that Ax∗∗ = By∗∗. Hence, we have (x∗∗, y∗∗) ∈ Ω.
Summing up, we have proved that:

(1) for each (x∗, y∗) ∈ Ω, limn→∞

(∥∥∥xn − x∗
∥∥∥2 + ∥∥∥yn − y∗

∥∥∥2) exists;
(2) each weak cluster point of the sequence {(xn, yn)} belongs to Ω.

Taking H = H1 × H2 with the norm
∥∥∥(x, y)∥∥∥ =

(∥∥∥x∥∥∥2 + ∥∥∥y∥∥∥2) 1
2

, W = Ω, µn =

(xn, yn), and µ = (x∗, y∗) in lemma 2.6, we have that there exists (x̄, ȳ) ∈ Ω such
that xn ⇀ x̄ and yn ⇀ ȳ. Hence, the sequence {(xn, yn)} generated by the iterative
scheme (3.1) converges weakly to a solution of problem (1.2) in Ω. This completes
the proof. �

We now prove the following strong convergence theorem.

Theorem 3.2. Suppose assumptions (A1) − (A3) hold and let {xn} and {yn} be
as in theorem 3.1. If Ω ̸= ∅, and the mappings U and T are semi­compact, then, the
sequence {(xn, yn)} generated by (3.1) converges strongly to a solution of problem
(1.2) in Ω.

Proof. Since U and T are semi­compact, {xn} and {yn} are bounded (by theorem
3.1), and limn→∞

∥∥∥(I − U)xn

∥∥∥ = 0, limn→∞

∥∥∥(I − T )yn

∥∥∥ = 0, there exist (without
loss of generality) subsequences {xnj} ⊂ {xn} and {ynj} ⊂ {yn} such that {xnj}
and {ynj} converge strongly to some points x∗ and y∗, respectively. It follows from
the demi­closedness of I − U and I − T that x∗ ∈ F (U) and y∗ ∈ F (T ).
Thus, ∥∥∥Ax∗ −By∗

∥∥∥ = lim
j→∞

∥∥∥Axnj −Bynj

∥∥∥ = 0.

This implies that Ax∗ = By∗. Hence, (x∗, y∗) ∈ Ω. On the other hand, since

Ωn(x, y) =
∥∥∥xn−x

∥∥∥2+∥∥∥yn−y
∥∥∥2 for any (x, y) ∈ Ω, we know that limj→∞ Ωnj (x

∗, y∗) =

0. From theorem 3.1, we have limn→∞ Ωn(x
∗, y∗) exists, therefore limn→∞ Ωn(x

∗, y∗) =
0. So, as in the proof of theorem 3.1, the iterative scheme converges strongly to a
solution of problem (1.2) in Ω. The proof is complete. �
Corollary 3.1. Suppose assumptions (A1) − (A3) hold and let {xn} and {yn} be
as in theorem 3.1. If Ω ̸= ∅, and the mappings U and T have convex and compact
domain D, then, the sequence {(xn, yn)} generated by (3.1) converges strongly to a
solution of problem (1.2) in Ω.

Proof. Since every map T : D ⊂ H → D, with D compact, is semi­compact, the
proof follows from theorem 3.2. �
Corollary 3.2. Suppose assumptions (A1) and (A3) hold and let {xn} and {yn} be
as in theorem 3.1. If Ω ̸= ∅, and the mappings U and T are quasi­nonexpansive and
semi­compact, then, the sequence {(xn, yn)} generated by (3.1) converges strongly
to a solution of problem (1.2) in Ω.
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Corollary 3.3. Suppose assumptions (A1) and (A3) hold and let {xn} and {yn}
be as in theorem 3.1. If Ω ̸= ∅, and the mappings U and T are firmly quasi­
nonexpansive and semi­compact, then, the sequence {(xn, yn)} generated by (3.1)
converges strongly to a solution of problem (1.2) in Ω.

Remark 3.4. Our theorems 3.1 and 3.2 extend and complement the results of
Moudafi et al. [9], Moudafi [10], and Yuan­Fang et al. [15].

Remark 3.5. The recursion formula considered in this paper is of Krasnoselskii­
type which, in general, converges as fast as a geometric progression.
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