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ABSTRACT. The aim of this paper is to present some fixed point theorems for generalized
contractions by altering distance functions in a complete cone metric spaces endowed with
a partial order. We also generalize fixed point theorems of J. Harjani, K. Sadarangani [J.
Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and
applications to ordinary differential equations, Nonlinear Analysis 72 (2010) 1188-1197]
from metric spaces to cone metric spaces.
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1. INTRODUCTION AND PRELIMINARIES

Let E be a real Banach space. A nonempty convex closed subset P C E is called
a cone in F if it satisfies:

(i) P is closed, nonempty and P # {0},

(i) a,b € R, a,b>0and z,y € P imply that ax + by € P,

(i) x € P and —z € P imply that x = 0.
The space E can be partially ordered by the cone P C E; that is, z < y if and only
ify —x € P. Also we write x < y if y —z € P°, where P° denotes the interior of P.
A cone P is called normal if there exists a constant K > 0 such that 0 < z <y
implies ||z < K|y].
In the sequel we always suppose that E is a real Banach space, P is a cone in E
with nonempty interior i.e. P° # () and < is the partial ordering with respect to P.

Definition 1.1. ([1]) Let X be a nonempty set. Assume that the mapping
d: X x X — F satisfies
) 0 <d(z,y) forallz,y € X andd(z,y) =0 ifzx =y
(i) d(z,y) =d(y,z) forallz,y € X
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(i) d(z,y) < d(z,z) +d(z,y) forallz,y,z € X.
Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 1.2. Let (X,d) be a cone metric space, x € X and {z,} a sequence in
X. Then

() {x,} is said to be convergent to x € X whenever for every c € E with(0 < ¢
there is N such that for alln > N, d(z,,z) < ¢, that is, lim,,_,c T, = .
(i) {z,} is called a Cauchy sequence in X whenever for every ¢ € E with(0 < ¢
there is N such that for alln,m > N, d(Zn, Tm) < c.
(iii) (X,d) is a complete cone metric space if every Cauchy sequence is conver-
gent.

The following remark will be useful in the sequel.

Remark 1.3. ([2])

(1) Ifu<vandv K€ w, thenu <K< w.

(2) If0 < u <K cforeachc € P°, thenu = 0.

(3) Ifa < b+ cforeachc € P° thena < b.

4 o<z <y,and0 < a, then0 < ax < ay.

B) If0 <z, <y, foreachn € N, and lim,,_, o x,, = z,limy, 0 Yy = y, then
0<z<y.

©) If0 < d(zp,x) < b, and b, — 0, then d(z,,z) < ¢ where x,,x are,
respectively, a sequence and a given point in X .

(7) If E is a real Banach space with a cone P and if a < \a where a € P and
0<A<1,thena=0.

8) Ifce P° 0 < a, and a, — 0, then there exists N such that for alln > N
we have a,, < c.

The altering distance functions were introduced by Khan et al. in [3] and now
we define this functions on a cone. If P := Rt then we have the definition 1.1 in

Definition 1.4. An altering distance function is a function1 : P — P which satisfies

(@) ¥ is continuous and nondecreasing.
(b) ¥(z) =0 if and only if x = 0.

Definition 1.5. If (X,C) is a partially ordered set and f : X — X, we say that f
is monotone nondecreasing if r,y € X,z Cy = fx C fy.

Definition 1.6. The cone P is called regular if every increasing sequence which is
bounded from above is convergent. That is, if {x,} is a sequence such that z1 <
x9 < - <y for somey € E, then there is x € E such that lim,_, ||z, — 2| = 0.
Equivalently the cone P is regular if and only if every decreasing sequence which is
bounded from below is convergent. It has been mentioned that every regular cone is
normal [5].

Definition 1.7. P is called minihedral cone if sup{z,y} exists for all z,y € E, and
strongly minihedral if every subset of E which is bounded above has a supremum
[6]. So if cone P is strongly minihedral then, every subset of P has infimum.

For more details and some examples about definition 1.7 and some applications
on cone metric spaces refer to [7, 8].

The purpose of this paper is to present some fixed point theorems for generalized
contractions involving altering distance functions that generalize the theorems of
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the paper [4] by Harjani and Sadarangani in the context of ordered cone metric
spaces with arbitrary cones.
Existence of fixed point in partially ordered sets has been considered recently in

[91-[16].
2. MAIN RESULTS

Let (X, C) be a partially ordered set and suppose there exists a cone metric d in
X. We define (ID) property as follows,

for all z,y € X if there exists z € X such that, z C y C z then d(x,y) and d(y, 2)
are comparable.

Theorem 2.1. Let (X, C) be a partially ordered set and suppose there exists a cone
metric d in X such that (X, d) is a complete cone metric space which the (ID) property
holds and if there exists a bounded decreasing sequence in P, then it converges to
an element in P. Let f : X — X be a continuous and nondecreasing mapping such
that
d(fx, fy)) < P(d(x,y)) — e(d(z,y)), forzEy, 2.1)
where 1 and ¢ are altering distance functions. If there exists o € X with
zg C fxg then f has a fixed point. Further if fixed points of f are comparable, then
f has a unique fixed point.

Proof. If x9 = fxo then the proof is finished. Suppose that xqg # fzy. Since
29 C fzo and f is a nondecreasing function, so
20 C fog C fPao C fPu0 C - .
Put ©,,+1 := fx, = f"x¢ and a,, := d(zp41,T,). Then for n > 1 we have
P(d(Tnt1,2n)) = (d(fon, frn-1)) < P(d(Tn, Tn-1)) = P(d(@n, Tn-1)),

therefore

0 S q/}(an) S d)(an—l) - So(an—l) § 1,[1(0%_1). (22)
Since z,, C z,,11 C x,42 by the (ID) property we have
ap < Apy1 (2.3)
or
ny1 < Q. (2.4)
If (2.3) holds, since v is nondecreasing by (2.2) we have
0 S ¢(an) S w(an—l) - @(an—l) S w(an) - @(an—l) S w(an)~ (25)

This implies that ¢(a,—1) = 0 and so a,,—1 = 0 for n > 1 hence
Tp = Tp—-1 = fxn—l

for n > 1 are fixed points of f. If (2.4) holds, since 1 and ¢ are nondecreasing by
relation (2.2) and induction we have

plant1) < olan) < Ylan) < YPlan-1) — p(an-1)
< (an 1) (an)
< YPlan—2) — plan—2) — v(an)
< Y(an—2) — 2p(an) <
< lao) — n(an),

SO
1
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for all n. By Remark 1.3-5 and since lim,,_,, a,, exists by (2.4), so

0 < pla,) < P(ag) = 0 < ¢( ILm ap) < lim

T n—ooon+1

m ¢(ao) =0,

thus ¢(lim, . a,) € PN —P and we obtain ¢(lim,_, a,) = 0 and since ¢ is
altering distance function, hence lim,,_, o, a,, = 0 so

nh_)ngo d(xpy1,2n) = 0. (2.7)

Now, we will show that {z,} is a Cauchy sequence. Suppose that {x,} is not a
Cauchy sequence. Then, there exists ¢ >> 0 for which we can find subsequences
{zm, } and {z,, } of {z,} with n; > my; > k such that
(X, Tm,, ) = C. (2.8)
Further, corresponding to m; we can choose n; in such a way that it is the
smallest integer with n; > m;, and satisfying (2.8). Then
ATy -1, Tm,,) < C. (2.9)
Using (2.8), (2.9) and the triangular inequality, we have

¢ < d(xn,,Tm,)
< d@ng, Tnp—1) + d(Tny—1, Tmy )
< d(Tpyy Tny—1) +
Letting kK — oo and using (2.7)
lim d(zp,,zm,) =c. (2.10)

k—oc0

Again, the triangular inequality gives us

d(fvnwmmk) < d(xnwxnkfl) + d(fvnkflﬂxmkfl) + d(xmk*17xmk)7
d(xnk—laxmk—l) S d(xnk—laxnk) +d(xnkaxm,k) +d(xm,k>$mk—l)a
Letting k — oo in the above two inequalities and using (2.7) and (2.10), we have

lim d(zn, -1, Tm,—1) = ¢ (2.11)
k—o0

As nj > my and x,, and z,,, are comparable (in fact, z,,,—1 & x,,_1, setting
T = Tp,—1 and y 1= Ty,, —1 in (2.1), we obtain

w(d(‘rnw ‘rmk)) < w(d(mnk*17xmk*1)) - So(d(xnk*hxmk*l))'
Letting kK — oo and taking into account (2.10) and (2.11), we have

¥(e) < ¥(c) — ¢(o).

As 1 is an altering distance function, the last inequality gives us ¢(¢) = 0 and,
consequently, ¢ = 0 which is a contradiction. This implies that the sequence {x,, }
is Cauchy and since (X, d) is complete, thus there exists z* € X such that x,, — z*
and on the other hand f is continuous and x,,+1 = fx,, so we obtain z* = fz*.

For uniqueness let x,y € X be fixed points and x is comparable to y. Hence
fx =z is comparable to fy = y and

P(d(z,y)) = v(d(fz, fy)) < ¢(d(z,y)) — p(d(z,y)).

The last inequality gives us ¢(d(x,y)) = 0 and by altering distance functions prop-
erties this implies d(z,y) = 0 therefore z = y.
O
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Example 2.1. Let E = (C'([0,1],R"), [L}), with [f]| = [[fllcc + [f'llcc, X =
{f,9:h} C E, and

L= {(fa f)> (979)7 (h7 h)v (ga h)7 (h= f)7 (9> f)}

where f(t) = 0,9(t) = ' = 2h(t), forallt € [0,1], so C is a partial order on X.
Defined: X x X — Ebyd(f,g) = f+gand f # gandd(f,f) =0. Itis easy to
see that every Cauchy sequence on X is convergent, i.e., (X,d) is a complete cone
metric space, and if we put P = {f € E : f(t) > 0}, then P is a non-normal cone
while is not minihedral by [7]. Further, letT : X — X beTf = f,Tg=h,Th = f,
V(f) = fand ¢(f) = g,for all f € P. We notice that g C T'g, ID property and all
conditions of Theorem 2.1 hold. Therefore T' has a unique fixed point, i.e., Tf = f.

Example 2.2. With hypothesis of Example 2.1, define X = {f,g,h,k} C E, and

L= {(f7 f)7 (979)7 (h7 h)? (k, k)v (97 h)v (h7 f)ﬂ (97 f)}
where f(t) =0, g(t) = €' = 2h(t) = 3k(t), for allt € [0, 1], so C is a partial order on
X.LetT:X = X beTf=fTg=hTh=fTk=k(f)=fandp(f) =L, for
all f € P. Therefore T have two fixed points, i.e., Tf = f and Tk = k, where f and
k aren’t comparable.

In the next theorem, we replace the (ID) property by strongly minihedrallity of
the cone.

Theorem 2.2. Let (X, C) be a partially ordered set and suppose that there exists a
cone metric d in X with strongly minihedral cone P, such that (X, d) is a complete
cone metric space. Let f : X — X be a continuous and nondecreasing mapping such
that

d(fz, fy)) < d(d(z,y)) — e(d(z,y)),
Sor x C y, where v and ¢ are altering distance functions. If there exists xo € X with
g C fxg then f has a fixed point.

Proof. By the proof of the Theorem 2.1 the sequence {¢(a,)} has infimum. Put
b = inf,, ¥(a,). So there exists {¢(ay, )}r such that ¢)(a,,) — bas k — co. Now by
(2.2)

0< d)(ank) < ¢(ank—1) - @(ank—l) < ¢(ank—1)7 (2.12)
letting k£ — oo
b<b—(lim an,—1)<b,
k—o0
this implies that ¢(limg_ye0 an,—1) € P\ —P so p(limg_ 0 an,—1) = 0. O

In the next corollary, we replace the (ID) property and strongly minihedrality of
the cone by regularity.

Corollary 2.3. Let (X,C) be a partially ordered set and suppose that there exists
a cone metric d in X with regular cone P such that (X, d) is a complete cone metric
space. Let f : X — X be a continuous and nondecreasing mapping such that

P(d(fz, fy)) < Pd(z,y) — (d(z,y),
Jorz C y, where v and ¢ are altering distance functions. If there exists xo € X with
xo C fxo then f has a fixed point.

Proof. By proofing of the Theorem 2.1 and relation (2.2) the sequence {¢(a,)} is
decreasing and bounded below and P is regular cone so

@(nlgngc ap) = 0.

Now similar as the proof of the previous theorem the proof is completed. O
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In the sequel, we prove that Theorems 2.1, 2.2 and corollary 2.3 are still valid
where f is not necessarily continuous, but the following hypothesis holds in X,
“4f {x,} is a nondecreasing sequence in X such that x,, — z then z,, C z for all
n € N".

Theorem 2.3. Let (X,C) be a partially ordered set and suppose that there exists
a cone metric d in X such that (X, d) is a complete cone metric space which the (ID)
property holds. Let f : X — X be a nondecreasing mapping such that

Pd(fx, fy)) < Pld(z,y)) — e(d(z,y)),
forxz C y, where ¥ and ¢ are altering distance functions. If there exists xo € X with
xo E fxg and X satisfies in _following condition
if {x,,} is a nondecreasing sequence in X such that x,, — z then z, C z for all
n € N, then f has a fixed point.

*

Proof. Following the proof of Theorem 2.1 it is enough to prove that faz* = z*.
Since {z,} C X is a nondecreasing sequence and z,, — z* as n — co0. Now by
hypothesis we conclude that z,, C z* for all n € N and for all ¢ > 0 there exists N
such that d(x,,2*) < ¢ and

Pd(zni1, f27)) = p(d(fon, f27)) < P(d(zn, 27)) — e(d(zn, 27)) < ¢(c),

for all n > N. Since 1 and ¢ are altering distance function if n — oo we have,
0 < 1/}( lim d(:rn-‘rla fLE*)) < ¢(C)7
n— oo

for all ¢ > 0. Thus 0 < ¥(lim, 00 d(Zny1, f2*)) < P(55), for all ¢ > 0 and every
m € N, hence

Y( lim d(zp41, f2")) =0
n—oo

)

lim d(xp41, fz*) = 0.

n—oo
Let ¢ € F and ¢ > 0 so there exists N such that d(z,1, fz*) < ¢ for every n > N.
Thus for some N we have

d(SC*, fSC*) < d(x*a xn-‘rl) + d(xn-‘rla fI]C*) <¢,

for every n > N. This implies that 0 < d(z*, fz*) < ¢ for all ¢ > 0. Then
d(z*, fz*) = 0 and consequently z* = fz*. 0

In what follows, we give a sufficient condition for the uniqueness of the fixed
point in Theorem 2.2 and corollary 2.3. This condition is:

“for x,y € X there exists z € X which is comparable to « and y.” (2.13)

Theorem 2.4. Adding condition (2.13) to the hypothesis of Theorem 2.2 (resp. corol-
lary 2.3) we obtain uniqueness of the fixed point of f.

Proof. Let x,y € X are fixed points. We distinguish two cases:
Case 1. If z is comparable to y then fx = x is comparable to fy = y and

Pld(z,y)) = (d(fz, fy)) < Pd(x,y)) — (d(z,y)).

The last inequality gives us ¢(d(x,y)) = 0 and by altering distance functions prop-
erties this implies d(z,y) = 0 therefore = = y.
Case 2. If z is not comparable to y then there exists z € X comparable to z and y.
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Monotonicity of f implies that f™z is comparable to f"x = x and to f"y = y, for
n=20,1,2,---. Moreover,

Y(d(z, [2))

Pd(f ", f"2))
< W(d(f e, f1T2) = eld(fr T e, [T 2))
Y(d(x, [7712)) — pla, [1712) < Pld(e, f712)). (2.14)
according to regularity or strongly minihedrality of the cone P, there exists b €
E such that ¢(d(z, f"z)) — b as n — co. Now by (2.14) and altering distance
functions properties 1 and ¢ we have

D(d(x, f*2)) < y(d(w, f*712)) = p(d(x, f7712)) < Pd(x, f7712)),

letting n — oo

b<b—(lim d(e, f'2) <b,

n— oo
this implies that
o( lim d(x, f*'2)) e PN-P
n—oo

50 ¢(lim,, 0 d(z, f712)) = 0 thus lim,,_,« d(z, f"~'2) = 0. And similarly d(y, f"z) —
0. Letc > 0and ¢ € F, so there exists N such that d(z, f"z) < cand d(y, f"z) < ¢
for all n > N. Now by triangle inequality

d(z,y) < d(z, f"z) +d(f"z,y) < 2
for all n > N. Namely 0 < d(x,y) < cforall ¢> 0. Then d(z,y) =0soz =y. O

Our Theorems 2.1, 2.2 with non-normal cone and Corollary 2.3 with normal
cone generalize Theorems 2.1, 2.2 [4] and also Theorem 2.4 extend Theorem 2.3 [4]
to cone metric version.

ACKNOWLEDGMENTS

The authors express their deep gratitude to the referee for his/her valuable
comments and suggestions. The authors would like to thank Professor S. Mansour
Vaezpour for his helpful advise which led them to present this paper. This research
has been supported by the Zanjan Branch, Islamic Azad University, Zanjan, Iran.
The first author would like to thank this support.

REFERENCES

[1] Long-Guang, Z. Xian, Cone metric spaces and fixed point theorems of contractive mapping, J. Math.
Anal. Appl. 322(2007), 1468-1476.

[2] Z. Kadelburg, M. Pavlovic, S. Radenovic, Common fixed point theorems for ordered contractions and
quasicontractions in ordered cone metric spaces, Comput. Math. Appl. 2010, in press.

[3] M.S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points,
Bull. Austral. Math. Soc. 30(1)(1984), 1-9.

[4] J. Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and appli-
cations to ordinary differential equations, Nonlinear Anal. 72(2010), 1188-1197.

[5] Sh. Rezapour, R. Hamlbarani, Some notes on the paper cone metric spaces and fixed point theorems
of contractive mappings, J. Math. Anal. Appl. 345(2008), 719-724.

[6] K. Deimling, Nonlinear Functional Analysis, Springer-Verlage, 1985.

[7] M. Asadi, H. Soleimani, S. M. Vaezpour, An Order on Subsets of Cone Metric Spaces and Fixed
Points of Set-Valued Contractions, Fixed Point Theory Appl. Article ID 723203, (2009) .

[8] M. Asadi, H. Soleimani, S. M. Vaezpour, Rhoades B. E.,On T-Stability of Picard Iteration in Cone
Metric Spaces, Fixed Point Theory Appl. Article ID 751090, (2009).

[9] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47(2001), 2683-2693.



60 M. ASADI AND H. SOLEIMANI/JNAO : VOL.6, NO.1, (2015), 53-60

[10] P. N. Dhutta, B. S. Choudhury, A generalization of contraction principle in metric spaces, Fixed
Point Theory Appl. Article ID 406368 (2008).

[11] R. P. Agarwal, M. A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric
spaces, Appl. Anal. 87(2008), 109-116.

[12] Dz. Burgic, S. Kalabusic, M.R.S. Kulenovic, Global attractivity results for mixed monotone map-
pings in partially ordered complete metric spaces, Fixed Point Theory Appl. Article ID 762478,
(2009).

[13] T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces
and applications, Nonlinear Anal. 65(2006), 1379-1393.

[14] J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially
ordered sets, Nonlinear Anal. 71(2009), 3403-3410.

[15] D. O’Regan, A. Petrusel, Fixed point theorems for generalized contractions in ordered metric spaces,
J. Math. Anal. Appl. 341(2008), 1241-1252.

[16] L. Ciric, N. Cakid, M. Rajovic, J.S. Uma, Monotone generalized nonlinear contractions in partially
ordered metric spaces, Fixed Point Theory Appl. Article ID 131294, (2008) .



	1. INTRODUCTION AND PRELIMINARIES
	2. MAIN RESULTS
	ACKNOWLEDGMENTS
	References

