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1. INTRODUCTION

The fundamental idea of wavelet packet analysis is to construct a library of
orthonormal bases for L?(R), which can be searched in real time for the best ex-
pansion with respect to a given application. Wavelet packets, due to their nice
characteristics have been widely applied to signal processing, coding theory, image
compression, fractal theory and solving integral equations and so on. Coifman et
al.[8] firstly introduced the notion of univariate wavelet packets. Chui and Li [7]
generalized the concept of orthogonal wavelet packets to the case of non-orthogonal
wavelet packets so that they can be applied to the spline wavelets and so on. Shen
[18] generalized the notion of univariate orthogonal wavelet packets to the case
of multivariate wavelet packets. Other notable generalizations are the p-wavelet
packets and p-wavelet frame packets on a half-line R [13, 14, 16], higher dimen-
sional wavelet packets with arbitrary dilation matrix [9], the orthogonal version of
vector-valued wavelet packets [6] and the M -band framelet packets [17].

On the other hand, multiwavelets are natural extension and generalization of
traditional wavelets. They have received considerable attention from the wavelet re-
search communities both in the theory as well as in applications. They can be seen
as vector valued-wavelets that satisfy conditions in which matrices are involved
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rather than scalars as in the wavelet case. Multiwavelets can own symmetry, or-
thogonality, short support and high order vanishing moments, however traditional
wavelets can not possess all these properties at the same time (see [4, 10]). Yang
and Cheng [20] generalized the concept of wavelet packets to the case of multi-
wavelet packets associated with a dilation factor ¢ which were more flexible in
applications. Subsequently, Behera [1] extended the results of Yang and Cheng
to the multivariate multiwavelet packets associated with a dilation matrix A. He
proved lemmas on the so-called splitting trick and several theorems concerning the
Fourier transform of the multiwavelet packets and the construction of multiwavelet
packets to show that their translates form an orthonormal basis of L? (Rd). Re-
cently, Sun and Li [19] have given the construction and properties of generalized
orthogonal multiwavelet packets based on the results discussed in [20].

As far as the characterization of multiwavelets is concerned, Calogero studied
the characterization of all multiwavelets associated with general expanding maps of
R™ in [5]. The Calogero’s work was extended by Bownik [2], taking into considera-
tion the dilation matrices which preserves the standard lattice Z" in terms of affine
systems. In the same year, another characterization of multiwavelets was given
by Rzeszotnik [12] for expanding dilations that preserves the lattice Z". However,
Bownik [3] has presented a new approach to characterize all orthonormal multi-
wavelets by means of basic equations in the Fourier domain. This characterization
was obtained by using the results about shift invariant systems and quasi-affine
systems in [11].

The characterization of multiwavelet packets associated with the general dila-
tion matrix A has been given by Shah and Ahmad in [15] by following dual Gramian
approach of Bownik [2]. In the present paper, we study the characterization of mul-
tiwavelet packets associated with expansive dilation matrices in terms of the two
simple equations in the Fourier domain based on results on affine and quasi-affine
frames.

In order to make the paper self-contained, we state some basic preliminaries,
notations and definitions including the multiresoltion analysis associated with a
dilation matrix A and corresponding multiwavelet packets in Section 2. In Sec-
tion 3, we establish the characterization of multiwavelet packets associated with a
dilation matrix A based on results on affine and quasi-affine frames.

2. NOTATIONS AND PRELIMINARIES

Throughout, this paper, we use the following notations. Let R and C be all
real and complex numbers, respectively. Z and Z* denote all integers and all non-
negative integers, respectively. Z? and R? denote the set of all d-tuples integers
and d-tuples of reals, respectively. Assume that we have a lattice I' (' = PZ¢
for some non-degenerate d x d matrix P) of R?. Let A denotes a d x d dilation
matrix, whose determinant is a(a € Z,a > 2). A d X d matrix A is said to be a
dilation matrix for R if A(Z?) C Z? and all eigenvalues \ of A satisfy |\| > 1. Let
a = |det A|, B = transpose of A and, if A is expanding, so is B. Let I'* be the dual
lattice; that is,

r* = {7’ eRY:Vy el (y,7) € Z} — (P~ 174,
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By taking the transpose of P~! AP we observe that B = A? is a dilation preserving
the dual lattice: BT'™ C I'* and let S = T'* \ BI'™.

We recall the notion of higher dimensional multiresolution analysis associated
with multiplicity L and orthogonal multiwavelets of L?(R?).

Definition 2.1. A sequence {V; : j € Z} of closed subspaces of L? (Rd) is called
a multiresolution analysis (MRA) of L? (Rd) of multiplicity L associated with the
dilation matrix A if the following conditions are satisfied:

() V;CVjy forallje€Z;
(id) UjeZVj is dense in L? (Rd) and njeZVj = {0};

(i) f eV ifandonlyif f(A) € Vj4q forall j € Z;

(iv) there exist L-functions ¢, € V;, such that the system of functions {¢.(z — k) }ZL:1 rezd

forms an orthonormal basis for subspace V.

The L-functions whose existence is asserted in (iv) are called scaling functions
of the given MRA. Given a multiresolution analysis {V}, ;. we define another

sequence {W; }jGZ of closed subspaces of L?(R?) by W; = V;11©Vj, j € Z. These
subspaces inherit the scaling property of {V;}, namely
feW; ifandonlyif f(A)e€ W;y1. (2.1)

Further, they are mutually orthogonal, and we have the following orthogonal de-
compositions:

—@w;=voo (Pw). (2.2)
JEL j=0

A set of functions {¢} : 1 < ¢ < L,1<r <a-—1}in L*(R?) is said to be a set of
basic multiwavelets associated with the MRA of multiplicity L if the collection

{w;(.—k):1grga—1,1gfgL,kezd}

forms an orthonormal basis for Wy. Now, in view of (2.1) and (2.2), it is clear that
if{¢; : 1 <{<L,1<r<a-—1}1isabasic set of multiwavelets, then

{|detA|j/2w£(Aj.fk):jeZ,keZd,lgfgL,lgrgafl}

forms an orthonormal basis for L?(R?) (see [1, 4]).

For any n € Z*, we define the basic multiwavelet packets wy’; 1 < ¢ < L
recursively as follows. We denote w? = gy, 1 < ¢ < L, the scaling functions and
wy = j,r € Z*,1 < ¢ < L as the possible candidates for basic multiwavelets.
Then, define

L
witar(z Zthal/Q (Az —k), 1<l<L0<s<a-1 (2.3)
j=1kezd

where (hj y k) is a unitary matrix (see [1]).

5
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Taking Fourier transform on both sides of (2.3), we obtain

L
(wpt*r) (€)= 3omis (B0 (wf) (B9, (2.4)

Note that (2.3) defines w;’ for every non-negative integer n and every ¢ such that
1 < ¢ < L. The set of functions {w} : n € Z*,1 < /¢ < L} as defined above are
called the basic multiwavelet packets corresponding to the MRA {V}},_; of L?(RY)
of multiplicity L associated with matrix dilation A.

Definition 2.2. Let {w} :n € Z",1 < ¢ < L} be the basic multiwavelet packets.
The collection

P = {|detA|ﬂ'/2wg(A. —k):1<(<LjeZke Zd}

is called the general multiwavelet packets associated with MRA {V; : j € Z} of
L?(R%) of multiplicity L over matrix dilation A.

Corresponding to some orthonormal scaling vector ® = w?, the family of

multiwavelet packets wy' defines a family of subspaces of L?(R%) as follows:

Ur = m{\ det AP/ 2wp (Al — k) : ke Z41 <0< L}; JEL, nel. (2.5)

Observe that

a—1
Uy =V;, U =w;=EpU;, jeiz
r=1

so that the orthogonal decomposition V;; = V; @ W}, can be written as

a—1
0 :
Ui, =@pur. (2.6)
r=0
A generalization of this result for other values of n = 1,2, ... can be written as
a—1
no=urtr, jer. (2.7)
r=0

The following proposition is proved in [1].

Proposition 2.3. If j > 0, then

a—1 a’—1 attt -1 aitt -1
— r__ o _ T _ T
W,=QPUui=PUui=-= U= @ U
r=0 r=a r=at r=aj

where U} is defined in (2.5). Using this decomposition, we get the multiwavelet
packets decomposition of subspaces W;, j > 0.

Let {w}! : n > 0,1 < ¢ < L} be a family of functions in L?(R?). Then, the affine
system generated by wj and associated with (A, ") is the collection
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Flwyp) = {wg]k jEZ, kEF1<€<LaJ<n<aJ+1} (2.8)

where wj'; () = Da; T wi' () = |det AP2wp(Alz — k). The quasi-affine system
generated by wy' is

Flwy) = {whk JEZ,kET, 1<£<La3<n<a3+1} (2.9)

where

Dai Ty wit(x) = | det AP 2wp(Alx — k), j>0,keTl,
Wi g,k (%) = | -
|det AJP/2T,D pswit(z) = | det A w] (Ai(z—k)), j<O0, kel,

where 7,f(z) = f(z — y) is translation by a vector y € R? and D, f(z) =
|det A|7/2f(Azx) is dilation by the matrix A. Since A is a dilation matrix, A = B
so there exist constants A > 1 and ¢ > 0 such that

|B'¢| > eNe|, |B79¢| < 1/eA|¢] for j > 0. (2.10)

The following two lemma’s are proved in [2].

Lemma 2.4. Suppose b > 0,9 € L®(R%), suppg C {§ eR?: ¢ > b}, and
supp g C B¥oI; + &, for some &, € R¢ and Jo € Z, then

2. X

JEL keza\{0}
where § = diam(B/°1;), T = Uj<s, B (B 1;+ &) and I; = (—1/2,1/2)%.

ig)g(B (E+k) ‘ < 2d|detAVOM<(b+6)/b>||g||2 Ir(€),a.e. € € RY

Lemma 2.5. Suppose F, G € L?(R%), and supp F, supp G are bounded. Then

> F(k)G(k / Y F(E+0) | G(E)ds.

kezd Lezd

Definition 2.6. Let H be a separable Hilbert space. A sequence { fk}zozl in H is
called a frame if there exist constants A and B with 0 < A < B < oo such that

AFIP < ST fa) P < BIS|P forall f e H. (2.11)
k=1

The largest constant A and the smallest constant B satisfying (2.11) are called the
upper and the lower frame bound, respectively. The sequence { fk},;'il is called a
Bessel sequence in H if only the right-hand side inequality in (2.11) holds. The
sequence { fk}zil is called a tight frame for H if the upper frame bound A and the
lower frame bound B coincide. A frame is called Parseval frame or normalized tight
frame if A = B =1 and in this case, every function f € H can be written as

ST =I5 (2.12)
k=1
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The following theorem gives us an elementary characterization of tight frames.

Theorem 2.7. Let {f;},-, be a sequence in a Hilbert space H such that

S UL =IfIP, forall f € H
k=1
() ||fx]| >1, fork e Z*.

Then, the sequence { fi},-, forms a Parseval’s frame for H.

We will also consider the set D as a dense subset of L?(R?) defined by

D= {f e L*(RY) : f € L™(R?), supp f for some compact K € R\ {0}} .

3. CHARACTERIZATION OF MULTIWAVELET PACKETS

In this section, we prove our main results concerning the characterization of mul-
tiwavelet packets associated with a dilation matrix A by means of the Fourier
transform. We begin this section with the lemma which gives necessary condition
for the system F(w}) given by (2.8) to be a Bessel family.

Lemma 3.1. Let {w} : n € Z",1 < { < L} be the basic multiwavelet packets asso-
ciated with the scaling functions yy. Then, for f € D and m € Z, we have

a1 L

Z ZZ Z ’<f7WZj,k>|2 < o0.

n=ad {=1j<mkeZd
Moreover,

a?ti-1 L

Do D Wi (B

n=aJ (=1 jEZL

’ s locally integrable on R\ {0} (3.1)

if and only if

a?tt-1 L

Z Z Z frwi )] <00 forallf e D. (3.2)

n=al {=1jkcZd

Proof. Since &}';,; () = |det A|_j/Qw?(B_jg)e_%“k’ij@. Therefore, by applying
Parseval’s formula, we obtain

(frwgjn) = (f, 0k = \detA\‘]/Q/ f(e ?ng) 2mi{k,BI¢) dé

= | det A|77/? / F(B2€) &y (€) ™R8 | det AJ de
Rd

— |det AP/ [ F(B76) BT ) de. (33)
Rd
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With the help of (3.3), we can write the series as

JJti_1

SO Y el

n=al {=1j<m kezd

a’tl-1 L

= >0 Y > [ det A

n=ad ¢=1j<m kezd

2

/ F(BIE) wp(§) ™™o e . (3.4)

For any fixed j € Z, let F(¢) = f(B?) @y (€): then by Lemma 2.5 when F' = G, we
have

a?tl-1 L

DI

n=al f=1 kecz

Z_li{/ f(Bg) e (ZfBJSHc)) (§+k))d§}.

2

/ (BI€) (D) 2™tk dg

n=al £=1 keza
Hence
atl-1 L att-1 L
_ Zz|detA|J/ FB)] ep@ e+ Y D3 det Ay
n=ai £=1j5<m n=al £=1j<m

X /Rdf(ng) a;;}(g){ > f(Bj(erk))w;’(erk)} de. (3.5)

kezZ4\{0}
Note that forany ¢ = 1,..., L and n € Z", we have
~n 2
€+ k’)’ .

2|07 )@y (€ + k)| < |or(©)|” +

Therefore, the second sum is absolutely convergent in L' (Rd) and, thus absolutely
summable for a.e. ¢ € R? even if we extend the summation over all j € Z: i.e.,

adtl-1 L

(XXX X et Ap|f(Be) ar @) [£(B (€ + k) o (e + k| e

n=al £=1 jEZ keZ4\{0}

a?ti-1 L

[N X 1denal [[F(BOF(B €+ )|+ 17 (B~ k) F(BE)|

n=al £=1 jEZ kez4\{0}

n=aj f=1 JEZ keza\{0}

ajzlf)/ 2 {Z > ldevAp|f(B7e) f BJ£+k))|}d§
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a3+1—1 L

ey e

n=aj (=1

7€) de < oo, (3.6)

where C' is the constant appearing in Lemma 2.4 depending on the size and the

location of supp f. Furthermore, the first sum appearing in (3.5) can be estimated
crudely by

att—-1 L att—-1 L
> ZZmetA\J/ |F(BIE)|*|wp(©)[Pde < |1 F1% > ZZ|detA|J/
n=al £=1j<m n=aj €=1j<m

| det A|™+1

- . 7
de A I B

In order to prove the second part of the theorem, we have

Jti_1 L Jt1_1

S XX el = X XX ldear [ |7 e el as
n=al {=1 j kec7d n=al (=1 jEZL
Tl -1 L
£ S det ap / FBeep©! S F(BE+R)GHETR b de,
n=al (=1 jEZL kez4\{0}

where the second expression in this decomposition is always finite by (3.6). Thus,
the first implication follows from the fact that

a?tt-1 L a’tt-1 L

S Y S jaear [ |imolaela- Y S Y [ it

n=aj (=1 ;€74 n=aj {=1 ;€74

An j§>| df

atl-1 L

<||f|\2/ Y

n=al (=1 je€74

ap (B¢)[de < oo,

where as the converse implication is simply the consequence of applying the above

to f = xx for any compact K C R?\ {0}, since we have equality (instead of
inequality) in the above formula. 0

Theorem 3.2. Let {w):n€Z",1<(<L} and {&} :n€Z",1<{<L} be the
dual multiwavelet packets associated with the dilation matrix A. Then

a?ti-1 L

”}i_{nw Z Z Z Z(fvwzl,j,ﬁ@z]‘,mf

n=al {=1j<m keZd

if and only if

forall f € D (3.8)
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a?tt-1 L

lim SN ap G (Big) =1, weakly in L'(K), K C R?\ {0}
n=al £=1j>—m
(3.9)
at'-1 L o
= > Y N p(BEap(Bi(E+5s) =0, ae. £ €RY, s €S=12"\ BZ”.
n=al £=1j=0

(3.10)

Proof. We first show that the series given by (3.8), (3.9) and (3.10) are all absolutely
convergent. Since

2 [(f ol (@8 1| < [l ) |+ 1@ D

Therefore, the series in (3.8) is summable by Lemma 3.1. Moreover, by the polar-
ization identity, condition (3.8) is equivalent to

a1 L

(f,9) = mlgnoo Z Z Z Z <f,ij,k><‘:’Zj,ka9> forall f,g € D. (3.11)

n=ai £=1j<m keczd

Thus, for s € R? and w} € L*(R?), we have

i1 L ati-1 L
op (B (€ +9))|*de = Z D) ldet Al O (6 + Bls)Pde
n=al {=1j>—m n=al =1 —j3<m
adtl-1 L
| det A+ 2
= d .
[det A]—1 - GF O de < o0
=al £=1
Therefore, we have
at-1 L
¢ (B (€ +s) )| < oo fora.e. . (3.12)

n=al £=1j>—

Using the above when s = 0 yields

at-1 L at-1 L
op (Big)ap (BIe)|” <

n=al £=1j>—m n=al f=1j>—m

& (B[ +]57 (BE)|* < 0. ac.t.

Similarly, implementation of (3.12) when m = 0 implies

-1 L oo -1 L o

B+ < 3 3

n=aJ (=1 35=0 n=aj £=135=0

&y (B¢) |+

(Bjﬁ—i—s)’ < 00.
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Next, we prove that (3.9) and (3.10) implies (3.8). To do so, let us suppose that
f»g € D. Then, by equation (3.3), we have

(ol ) (@7 a0 9) = | det AP / f(BIE) Gp(e) e dg /R GBI (e de.

For any fixed /= 1,...,L and j € Z, let

F(&) = f(B &) wp(§), G(&) = a(B € @p(€), nez™.

Then, using the Lemma 2.5 and the above fact, we obtain

att—-1 L at -1 L
SN @t e = Y Z/ {ZfB%Hf We(€+k)}

n=al {=1 kecza n=al (=1 keZd
x §(BIE)Gy (€) dé.
(3.13)
Hence
adtl-1 L
I=1I(m)= Z (fs WZj,k><®Zj,/c79> =h+1D (3.14)
n=al £=1j<m kezd
where

- Y 323 tetay JRCGEERERGEAGE:

ot -1 L
I(m) D 2. ldetap /R d@(ij)c%Z(f){ > F(BE+R)w(E+E)

n=ai £=1j<m keza\{o}

by splitting the sum (3.13) into terms corresponding to k¥ = 0 and k # 0. Moreover,
we can interchange the summation and integration in /; and Is, since for h € D,
defined by h = max(|f|,|g|), we have

atl-1 L

S S fdetap / h(B7)

n=aJ ¢=1j<m

w; Ewp(€)|de < oo

and

GJZ_liZdetAl’/ (BT \{ > !ﬁ(Bj(£+k))w?(£+k>\}ds<oo.

n=ai (=1 jEL keZA\ {0}
(3.15)
Now, in order to estimate (3.15), we use (3.6), (3.7) and the fact that
~n Zn ~ 2 2n 2 2n ~7 2m
2|@p (&)wi ()] < @@ +|@p (9)]” and 2|wp(&)ap(E+k)| < |wf | +|w f+k)‘ .

L
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Therefore, we can manipulate the sums as

adtl-1 L
I ZZZuetAv/ G(Bi&) &y (¢ {Z F(BI(E+k)w <£+k)}dg

n=al £=1j<m

Il
v
ling
ilng

%\

+Bﬂk)(B-j§+k:)} de¢

BDID /R ©8r (B 33 e+ BB 5 (BIE+ Broje
r>0 s€S

n=aJ €=1j<m

= [ X 3 3 3 G (BB O) (e B ) (B (B )

a1 L
= / 9(¢) > &} (BT (B™7€)Gp (BT (B PE+9)) f (€ + BPs) dé
Re n=aj f¢=1 s€S r>0p<m+r
a’tt-1 L ) )
- /Rdg@ ,Z wy (BT (B7P€))wp (Br(BPE + 5)) f(€ + BPs)de,

for m sufficiently large so that g(f)f(f—i-Bps) =(0forallp>m,s €S, ie., (suppf—
supp §)NBPS = () for all p > m. Now, if we take, b = sup {|§| : & € (supp f — supp g)} :

then, by (2.10) any m > [log, (b/c)] works. Therefore, for any f,g € D and suffi-
ciently large m, we have

where
atl-1 L . . 4
hm= Y 3 3 [ HOTO G E (B de
n=ail {=1j>-—m Re
fa(m)Z/ 9(8) f(€+ BPs) t,(B7P¢) de. (3.16)
R? pEZ s€S

Here I; follows by a simple change of variables, and I does not depend on m.
Equation (3.16), combined with assumptions (3.9) and (3.10) immediately implies

lim I(m)= lim I(m)+ Io(m) = <f,g> = (f.9).

m—r oo m—r oo

Conversely, we shall prove that (3.8) implies (3.10). For any fixed sy € S and g > 0,
we define

Qq) = {€ € R :[¢] > q, €+ 50| > a -

Now for any &y € Q(g) and j > 0, define
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F3(€) = |B7 14|72 argt,, (©)XB-i1,+¢,(§) and g;(§) = |B_j[dlfl/QXBfHdJrswsD(&)’

where for the purpose of the proof, we define, for z € C,

argz{ T/M’ 270

, z=0.

By separating the term corresponding to p = 0 and s = s( in equation (3.16) for
I,(m), f = fj,g = g;, from the rest, which we denote by R(j). we have

bmw:l;Z/', hm@M%+/)m@) S i€+ BPs)t (BPE) de.
dl JBi 1,16 Rd peZ.seS
(p,s)#(0,50)

(3.17)
Next, if |§;(€) f;(€+BPs)| # 0 for some & € RY, then (B~9 I;4&) N (B~ I3+&+s0—
BPs) # 0, hence B~7(21,) N (sg — BPS) # () which means 21, (B’ sq — BPTIS) # ().
Also, if p+j > 0, then B7sy — BP*IS C Z4, and since 2I;NZ? = {0}, so & BPS for
p # 0, the only nonzero term happens for p = 0 and s = sy. Therefore, the other
nonzero terms can contribute only if p+ j < 0, so we can restrict the sum in (3.17)

top < —j.
Using the estimate
a1 L

JNGIESSD IS

n=ad £=1m’>0

P (B™E)| + o7 (B™ (€ +9)) [P < T(€) + T(E + 9),

where

a1 L

TO= > > >

n=aj f=1m'>0

(f)? (Bm/f) |2 + |y (Bm'g) {2, is locally integrable on R9.

Therefore, we have

RGI<5 [, 3 Y ldetar

p<—j s€S

3, (BPE) || 3 (BP (& + )| T(€)de

N %/Rd > DI det AP|g; (BPE)||f; (B (€ + 9) [T (€ + s)dg

p<—j s€S

/Rd > et AP

p<—j s€S

35 (BPE) || 3 (BP (€ + )| T(€)de

N |

N %/Rd D D et AP[g;(BP(E — 5)) || f3(BPE)|T()dé.  (3.18)

p<—j s€S
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Using Lemma 2.4 with the assumptions that v > 0, where v = v(j 1nf{ €] : € €
B4+ &}, 0 = 6(j) = diam(B~714),T = T(j) = U,._; B~ (B iI4+ &) and
the fact that ‘fj (©)] =1;(€ — s0)|. we obtain

>N et APP|g; (BPE)| £ (BP(E+ )| = DD | det A]P|g;( 35 (BP(£+s) — s0)|
p<—j seS p<—j s€S
= Z Z\detAP’!gj §;(BP(€+s— B "sg))]
p<—j s€S
<> > | det AP|g; (BPE)|]9;(BP(E + k)|

p<—J keZ\{0}

< 29| det A\JM((v + 5)/@)\\9JHOOXT( )

- ZdM((v +6)/v)xT (), (3.19)

Similarly, we have

Do D et AP[gi(BPE = 9))|[f5(BPO) < Y D Idet AP|f;(BPE) || f;(BP (& + k)|

p<—j s€S p<—j keZ4\{0}
< 2| det AP M (o' +0)/0') 12, (€)

=2M (0 +9)/0 )x, (6), (3:20

by Lemma 2.4, assuming v’ > 0, where

v ='(j) = inf{\§| €€ B*de+§o+so} and Y =Y'(j) = U B7? (B*jld+§0+so).

p<—j

For any £ > 0, there exists r > 0, so that f\f\>r (&) d¢ < e. By (2.10), we can

find jo > 0 so that §(j) < ¢/2 and consequently v(j) > q/2,v'(j) > q/2 for j > jo.
Furthermore, by (2.10) we can choose jj large enough so that for all j > jo, we
have

inf{|¢]: £ € Y(j)} = inf{|§| e | BB+ go)} > cMq/2 > r, and

p>j

inf{l¢|: € €T/ (j)} = inf{|§\ cee |UBP(B L+ & + so)} > eNg/2 > r.
p>J

Substituting (3.19) and (3.20) into (3.18), we obtain

RG)| < 2 M(2) /

Y (5)

T(€)d 20! / T()d < 2°M(2) / T()d < 2M(2)e

() jE|>r
(3.21)

for j > jo independent of the choice of £y € Q(g). Since the supports of fj and g;
are disjoint I (j) = 0; moreover (3.8) (and thus (3.11)) implies

0={(fj,g5) = 1£n I(m) = lim Iy(m)=I.

m—r 00
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Since ¢ > 0, is arbitrary, therefore (3.17) and (3.21) yields

. 1
lim sup

_ ts, (&) d€ = 0. (3.22)
IO ¢heQ(q) |B—'7Id‘ B=iI3+&o ’ % |

Consider any ball B(r) with radius r > 0 such that B(r) C Q(2q). Let Z = {B_jk :
B7i(I;+ k)N B(r) # 0,k € Z%}. If j is sufficiently large, then diam(B71;) <
min(gq, ), so
Z = (B71+ &) C Q(q) N B(2r).
£o€Z
Hence,

/ |ts ()] dE < /_]tso(f)]df
B(r) VA

< ts(£)|dE
ggz:ez/led,+Eo | 0( )|
< Z |B™7 14+ &ole = |Z|e = 24| B(r)|e

£o€Z

for sufficiently large j = j(e) by (3.22). Since ¢ > 0, is arbitrary so fB(T) [ts, (&) d€ =
0, for any ball B(r) C 2(2q). Therefore, fQ(2q) |ts, (£)|d§ = 0 and since ¢ > 0 is
arbitrary [, [ts,(£)] d¢ = 0 which implies ¢,,(£) = 0 for a.e. £ € R 59 € S.

Finally, (3.8) implies that (3.9). Equation (3.9) follows easily from (3.10) and

(3.16) since any function h € L*®(K) can be represented as h = f§ for some

f,gGD.D

Theorem 3.3. Let {w):n€Z",1<(<L} and {&} :n€Z",1<{<L} be the
dual multiwavelet packets associated with the dilation matrix A such that

a?tl-1 L a?t-1 L
S 3Dl ana 30 3N [E (B[ (3.23)
n=al (=1 j€Z n=al £=1 jEZL

are locally integrable on R% \ {0}. Then

a1 L

SOSS S e @ ) = £l SoraltfeD (3.24)

n=ai 0=1 €7 kezd

if and only if

a?tt—1 L

Yo Y @ (BE)op(Big) =1  aefeR? (3.25)

n=ai (=1 j€EZ

(3.26)
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Proof. By Lemma 3.1 and (3.23), the series in (3.24) is absolutely convergent. Also,
by (3.23), the series in (3.25) converges absolutely in L{ (R¢\ {0}) and, hence, is
absolutely convergent for a.e. £. Therefore, under the hypothesis, (3.23),(3.9) <
(3.24) and (3.10) < (3.25). Hence, the desired result follows from Theorem 3.2.

Theorem 3.4. Let {w}' : n € Z",1 < { < L} be the basic multiwavelet packets as-
sociated with the scaling functions y. Then

ati-1 L

oS S e = 1]l forat fe LARY)  (3.27)

n=aJ (=1 jEL k74
if and only if
adtt-1 L

S NN |wr (B =1, ae. £ eR? (3.28)

n=aJ (=1 j€EZL
att-1 L oo

= D > > op(BE)wp(BIE+5) =0, ae £ €RY s eS=7\ BZ”.

n=al {=1j=0
(3.29)

In particular, the system F(w}') given by (2.8) forms Parseval’s frame for L?(R?) if
and only if (3.28), (3.29) hold and |lwille =1, forneZ*,£=1,.., L.

Proof. Using Lemma 3.1 and (3.27), we have

a’tt-1 L

76)[* € Lio(RT\ {0}).

n=al {=1jEL

Therefore, we can apply Theorem 3.3 with w} = @} € L?(R?) to obtain (3.28) and
(3.29). Conversely, assume (3.28) and (3. 29) then again by Theorem 3.3, we have

a’tt-1 L

PO DD DD DRIy

n=a’l (=1 jEZL keZ?

for all f € D.

By Theorem 2.7, we have the above for all f € L?(R?). Furthermore, the system
F(wp) forms Parseval’s frame for L?(R?) if |[w}|s > 1 forn € ZT,¢ = 1,...,L.

O

Acknowledgement

The author was partially supported by the University of Kashmir, under seed money
grant scheme, letter no. F(Seed Money Grant)Res/KU; dated: March 26, 2013.

REFERENCES

1. B. Behera, Multiwavelet packets and frame packets of L2 (Rd), Proc. Indian Acad. Sci.(Math Sci.)
111(4)(2001), 439-463.



26 FIRDOUS A. SHAH/JNAO : VOL.6, NO.1, (2015), 11-26

2. M. Bownik, A characterization of affine dual frames of L2 (R™), J. Appl. Comput. Harmon. Anal.
8(2000), 203-221.

3. M. Bownik, On characterization of multiwavelets in L? (R™), Proc. Amer. Math. Soc. 129(11)(2001),
3265-3274.

4. C. A. Cabrelli, C. Hiel, U. M. Molter, Self-similarity and Multiwavelets in Higher Dimensions, Memoirs
of the Amer. Math. Soc. #807 (2004), 170.

5. A. Calogero, A characterization of wavelets on general lattices, J. Geom. Anal. 10(2000), 597-622.

6. Q. Chen, Z. Chang, A study on compactly supported orthogonal vector valued wavelets and wavelet
packets, Chaos. Solitons and Fractals. 31(2007), 1024-1034.

7. C. Chui, C. Li, Non-orthogonal wavelet packets, SIAM J. Math. Anal. 24(3)(1993), 712-738.

8. R. Coifman, Y. Meyer, S. Quake, M. V. Wickerhauser, Signal processing and compression with wavelet
packets, Technical Report, Yale University (1990).

9. J. Han, Z. Cheng, On the splitting trick and wavelets packets with arbitrary dilation matrix of L2 (R®),
Chaos. Solitons and Fractals. 40(2009), 130-137.

10. F. Keinert, Wavelets and Multiwavelets, Chapman & Hall, CRC, 2004.

11. A. Ron, Z. Shen, Affine systems in LQ(Rd): the analysis of the analysis operator, J. Funct. Anal.
148(1997), 408-447.

12. Z. Rzeszotnik, Calderén’s condition and wavelets, Collect. Math. 52(2001), 181-191.

13. F. A. Shah, Construction of wavelet packets on p-adic field, Int. J. Wavelets Multiresolut. Inf.
Process. 7(5)(2009), 553-565.

14. F. A. Shah, On some properties of p-wavelet packets via the Walsh-Fourier transform, J. Nonlinear
Anal. Optimiz. 3(2)(2012), 185-193.

15. F. A. Shah, K. Ahmad, Characterization of multiwavelet packets in L?(R?), Jordan J. Math. Statist.
3(3)(2010), 159-180.

16. F. A. Shah, L. Debnath, p-Wavelet frame packets on a half-line using the Walsh-Fourier transform,
Integ. Transf. Spec. Funct. 22(12)(2011), 907-917.

17. F. A. Shah, L. Debnath, Explicit construction of M-band tight framelet packets, Analysis.
32(4)(2012), 281-294.

18. Z. Shen, Non-tensor product wavelet packets in L2 (R#), SIAM J. Math. Anal. 26(4)(1995), 1061-
1074.

19. L. Sun, G. Li, Generalized orthogonal multiwavelet packets, Chaos. Solitons and Fractals. 42(2009),
2420-2424.

20. S.Yang, Z. Cheng, a-Scale multiple orthogonal wavelet packets, Appl. Math. China Series. 13(2000),
61-65.



	1. INTRODUCTION
	2. NOTATIONS AND PRELIMINARIES
	3. CHARACTERIZATION OF MULTIWAVELET PACKETS
	References

