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1. INTRODUCTION

The fundamental idea of wavelet packet analysis is to construct a library of
orthonormal bases for L2(R), which can be searched in real time for the best ex-
pansion with respect to a given application. Wavelet packets, due to their nice
characteristics have been widely applied to signal processing, coding theory, image
compression, fractal theory and solving integral equations and so on. Coifman et
al.[8] firstly introduced the notion of univariate wavelet packets. Chui and Li [7]
generalized the concept of orthogonal wavelet packets to the case of non-orthogonal
wavelet packets so that they can be applied to the spline wavelets and so on. Shen
[18] generalized the notion of univariate orthogonal wavelet packets to the case
of multivariate wavelet packets. Other notable generalizations are the p-wavelet
packets and p-wavelet frame packets on a half-line R+ [13, 14, 16], higher dimen-
sional wavelet packets with arbitrary dilation matrix [9], the orthogonal version of
vector-valued wavelet packets [6] and the M -band framelet packets [17].

On the other hand, multiwavelets are natural extension and generalization of
traditional wavelets. They have received considerable attention from the wavelet re-
search communities both in the theory as well as in applications. They can be seen
as vector valued-wavelets that satisfy conditions in which matrices are involved
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rather than scalars as in the wavelet case. Multiwavelets can own symmetry, or-
thogonality, short support and high order vanishing moments, however traditional
wavelets can not possess all these properties at the same time (see [4, 10]). Yang
and Cheng [20] generalized the concept of wavelet packets to the case of multi-
wavelet packets associated with a dilation factor a which were more flexible in
applications. Subsequently, Behera [1] extended the results of Yang and Cheng
to the multivariate multiwavelet packets associated with a dilation matrix A. He
proved lemmas on the so-called splitting trick and several theorems concerning the
Fourier transform of the multiwavelet packets and the construction of multiwavelet
packets to show that their translates form an orthonormal basis of L2

(
Rd
)
. Re-

cently, Sun and Li [19] have given the construction and properties of generalized
orthogonal multiwavelet packets based on the results discussed in [20].

As far as the characterization of multiwavelets is concerned, Calogero studied
the characterization of all multiwavelets associated with general expanding maps of
Rn in [5]. The Calogero’s work was extended by Bownik [2], taking into considera-
tion the dilation matrices which preserves the standard lattice Zn in terms of affine
systems. In the same year, another characterization of multiwavelets was given
by Rzeszotnik [12] for expanding dilations that preserves the lattice Zn. However,
Bownik [3] has presented a new approach to characterize all orthonormal multi-
wavelets by means of basic equations in the Fourier domain. This characterization
was obtained by using the results about shift invariant systems and quasi-affine
systems in [11].

The characterization of multiwavelet packets associated with the general dila-
tion matrixA has been given by Shah and Ahmad in [15] by following dual Gramian
approach of Bownik [2]. In the present paper, we study the characterization of mul-
tiwavelet packets associated with expansive dilation matrices in terms of the two
simple equations in the Fourier domain based on results on affine and quasi-affine
frames.

In order to make the paper self-contained, we state some basic preliminaries,
notations and definitions including the multiresoltion analysis associated with a
dilation matrix A and corresponding multiwavelet packets in Section 2. In Sec-
tion 3, we establish the characterization of multiwavelet packets associated with a
dilation matrix A based on results on affine and quasi-affine frames.

2. NOTATIONS AND PRELIMINARIES

Throughout, this paper, we use the following notations. Let R and C be all
real and complex numbers, respectively. Z and Z+ denote all integers and all non-
negative integers, respectively. Zd and Rd denote the set of all d-tuples integers
and d-tuples of reals, respectively. Assume that we have a lattice Γ (Γ = PZd
for some non-degenerate d × d matrix P ) of Rd. Let A denotes a d × d dilation
matrix, whose determinant is a(a ∈ Z, a ≥ 2). A d × d matrix A is said to be a
dilation matrix for Rd if A(Zd) ⊂ Zd and all eigenvalues λ of A satisfy |λ| > 1. Let
a = |detA|, B = transpose of A and, if A is expanding, so is B. Let Γ∗ be the dual
lattice; that is,

Γ∗ =
{
γ′ ∈ Rd : ∀ γ ∈ Γ 〈γ, γ′〉 ∈ Z

}
= (P t)−1Zd.
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By taking the transpose of P−1AP we observe that B = At is a dilation preserving
the dual lattice: BΓ∗ ⊂ Γ∗ and let S = Γ∗ \BΓ∗.

We recall the notion of higher dimensional multiresolution analysis associated
with multiplicity L and orthogonal multiwavelets of L2(Rd).

Definition 2.1. A sequence {Vj : j ∈ Z} of closed subspaces of L2
(
Rd
)

is called
a multiresolution analysis (MRA) of L2

(
Rd
)

of multiplicity L associated with the
dilation matrix A if the following conditions are satisfied:

(i) Vj ⊂ Vj+1 for all j ∈ Z;

(ii)
⋃
j∈ZVj is dense in L2

(
Rd
)

and
⋂
j∈ZVj = {0};

(iii) f ∈ Vj if and only if f(A·) ∈ Vj+1 for all j ∈ Z;

(iv) there existL-functions ϕ` ∈ V0, such that the system of functions {ϕ`(x− k)}L`=1,k∈Zd,

forms an orthonormal basis for subspace V0.

The L-functions whose existence is asserted in (iv) are called scaling functions
of the given MRA. Given a multiresolution analysis {Vj}j∈Z, we define another
sequence {Wj}j∈Z of closed subspaces of L2

(
Rd
)

by Wj = Vj+1	Vj , j ∈ Z. These
subspaces inherit the scaling property of {Vj}, namely

f ∈Wj if and only if f(A·) ∈Wj+1. (2.1)

Further, they are mutually orthogonal, and we have the following orthogonal de-
compositions:

L2(Rd) =
⊕
j∈Z

Wj = V0 ⊕
(⊕
j≥0

Wj

)
. (2.2)

A set of functions {ψr` : 1 ≤ ` ≤ L, 1 ≤ r ≤ a− 1} in L2(Rd) is said to be a set of
basic multiwavelets associated with the MRA of multiplicity L if the collection{

ψr` (.− k) : 1 ≤ r ≤ a− 1, 1 ≤ ` ≤ L, k ∈ Zd
}

forms an orthonormal basis for W0. Now, in view of (2.1) and (2.2), it is clear that
if {ψr` : 1 ≤ ` ≤ L, 1 ≤ r ≤ a− 1} is a basic set of multiwavelets, then{

|detA|j/2ψr` (Aj .− k) : j ∈ Z, k ∈ Zd, 1 ≤ ` ≤ L, 1 ≤ r ≤ a− 1
}

forms an orthonormal basis for L2(Rd) (see [1, 4]).

For any n ∈ Z+, we define the basic multiwavelet packets ωn` ; 1 ≤ ` ≤ L
recursively as follows. We denote ω0

` = ϕ`, 1 ≤ ` ≤ L, the scaling functions and
ωr` = ψr` , r ∈ Z+, 1 ≤ ` ≤ L as the possible candidates for basic multiwavelets.
Then, define

ωs+ar` (x) =

L∑
j=1

∑
k∈Zd

hs`jk a
1/2 ωr` (Ax− k), 1 ≤ ` ≤ L, 0 ≤ s ≤ a− 1 (2.3)

where
(
hs`jk

)
is a unitary matrix (see [1]).



14 FIRDOUS A. SHAH/JNAO : VOL.6, NO.1, (2015), 11-26

Taking Fourier transform on both sides of (2.3), we obtain

(
ωs+ar`

)∧
(ξ) =

L∑
j=1

hs`j(B
−1ξ)

(
ωr`
)∧

(B−1ξ). (2.4)

Note that (2.3) defines ωn` for every non-negative integer n and every ` such that
1 ≤ ` ≤ L. The set of functions {ωn` : n ∈ Z+, 1 ≤ ` ≤ L} as defined above are
called the basic multiwavelet packets corresponding to the MRA {Vj}j∈Z of L2(Rd)
of multiplicity L associated with matrix dilation A.

Definition 2.2. Let {ωn` : n ∈ Z+, 1 ≤ ` ≤ L} be the basic multiwavelet packets.
The collection

P =
{
|detA|j/2ωn` (A.− k) : 1 ≤ ` ≤ L, j ∈ Z, k ∈ Zd

}
is called the general multiwavelet packets associated with MRA {Vj : j ∈ Z} of
L2(Rd) of multiplicity L over matrix dilation A.

Corresponding to some orthonormal scaling vector Φ = ω0
` , the family of

multiwavelet packets ωn` defines a family of subspaces of L2(Rd) as follows:

Unj = span
{
|detA|j/2ωn` (Ajx− k) : k ∈ Zd, 1 ≤ ` ≤ L

}
; j ∈ Z, n ∈ Z+. (2.5)

Observe that

U0
j = Vj , U1

j = Wj =

a−1⊕
r=1

Urj , j ∈ Z

so that the orthogonal decomposition Vj+1 = Vj ⊕Wj , can be written as

U0
j+1 =

a−1⊕
r=0

Urj . (2.6)

A generalization of this result for other values of n = 1, 2, . . . can be written as

Unj+1 =

a−1⊕
r=0

Uan+r
j , j ∈ Z. (2.7)

The following proposition is proved in [1].

Proposition 2.3. If j ≥ 0, then

Wj =

a−1⊕
r=0

Urj =

a2−1⊕
r=a

Urj−1 = · · · =
at+1−1⊕
r=at

Urj−t =

aj+1−1⊕
r=aj

Ur0

where Unj is defined in (2.5). Using this decomposition, we get the multiwavelet
packets decomposition of subspaces Wj , j ≥ 0.

Let {ωn` : n ≥ 0, 1 ≤ ` ≤ L} be a family of functions in L2(Rd). Then, the affine
system generated by ωn` and associated with (A,Γ) is the collection
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F(ωn` ) =
{
ωn`,j,k : j ∈ Z, k ∈ Γ, 1 ≤ ` ≤ L, aj ≤ n < aj+1

}
, (2.8)

where ωn`,j,k(x) = DAjTk ω
n
` (x) = |detA|j/2ωn` (Ajx − k). The quasi-affine system

generated by ωn` is

Fq(ωn` ) =
{
ω̃n`,j,k : j ∈ Z, k ∈ Γ, 1 ≤ ` ≤ L, aj ≤ n < aj+1

}
, (2.9)

where

ω̃n`,j,k(x) =

 DAjTk ω
n
` (x) = |detA|j/2ωn` (Ajx− k), j ≥ 0, k ∈ Γ,

|detA|j/2TkDAjωn` (x) = |detA|jωn`
(
Aj(x− k)

)
, j < 0, k ∈ Γ,

where τyf(x) = f(x − y) is translation by a vector y ∈ Rd and DAjf(x) =

|detA|j/2f(Ax) is dilation by the matrix A. Since A is a dilation matrix, At = B
so there exist constants λ > 1 and c > 0 such that∣∣Bj

ξ
∣∣ > cλj |ξ|,

∣∣B−jξ∣∣ < 1/cλ−j |ξ| for j > 0. (2.10)

The following two lemma’s are proved in [2].

Lemma 2.4. Suppose b > 0, g ∈ L∞(Rd), supp g ⊂
{
ξ ∈ Rd : |ξ| > b

}
, and

supp g ⊂ Bj0Id + ξ0 for some ξ0 ∈ Rd and j0 ∈ Z, then

∑
j∈Z

∑
k∈Zd\{0}

|detA|i
∣∣∣g(Bjξ)g

(
Bj(ξ+k)

)∣∣∣ ≤ 2d|detA|j0M
(

(b+δ)/b
)
‖g‖2∞IΥ(ξ), a.e. ξ ∈ Rd

where δ = diam(Bj0Id),Υ =
⋃
j<J0

B−j(Bj0Id + ξ0) and Id = (−1/2, 1/2)d.

Lemma 2.5. Suppose F,G ∈ L2(Rd), and suppF, suppG are bounded. Then

∑
k∈Zd

F̂ (k)Ĝ(k) =

∫
Rd

∑
`∈Zd

F (ξ + `)

G(ξ) dξ.

Definition 2.6. Let H be a separable Hilbert space. A sequence {fk}∞k=1 in H is
called a frame if there exist constants A and B with 0 < A ≤ B <∞ such that

A
∥∥f∥∥2 ≤

∞∑
k=1

∣∣〈f, fα〉∣∣2 ≤ B∥∥f∥∥2
, for all f ∈ H. (2.11)

The largest constant A and the smallest constant B satisfying (2.11) are called the
upper and the lower frame bound, respectively. The sequence {fk}∞k=1 is called a
Bessel sequence in H if only the right-hand side inequality in (2.11) holds. The
sequence {fk}∞k=1 is called a tight frame for H if the upper frame bound A and the
lower frame bound B coincide. A frame is called Parseval frame or normalized tight
frame if A = B = 1 and in this case, every function f ∈ H can be written as

∞∑
k=1

∣∣〈f, fα〉∣∣2 =
∥∥f∥∥2

. (2.12)
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The following theorem gives us an elementary characterization of tight frames.

Theorem 2.7. Let {fk}∞k=1 be a sequence in a Hilbert space H such that

(i)
∞∑
k=1

|〈f, fk〉|2 = ‖f‖2, for all f ∈ H

(ii) ‖fk‖ ≥ 1, for k ∈ Z+.

Then, the sequence {fk}∞k=1 forms a Parseval’s frame for H.

We will also consider the set D as a dense subset of L2(Rd) defined by

D =
{
f ∈ L2(Rd) : f̂ ∈ L∞(Rd), supp f̂ for some compact K ⊂ Rd \ {0}

}
.

3. CHARACTERIZATION OF MULTIWAVELET PACKETS

In this section, we prove our main results concerning the characterization of mul-
tiwavelet packets associated with a dilation matrix A by means of the Fourier
transform. We begin this section with the lemma which gives necessary condition
for the system F(ωn` ) given by (2.8) to be a Bessel family.

Lemma 3.1. Let {ωn` : n ∈ Z+, 1 ≤ ` ≤ L} be the basic multiwavelet packets asso-
ciated with the scaling functions ϕ`. Then, for f ∈ D and m ∈ Z, we have

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

∑
k∈Zd

∣∣〈f, ωn`,j,k〉∣∣2 <∞.
Moreover,

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∣∣ωn` (Bjξ)∣∣2, is locally integrable on Rd \ {0} (3.1)

if and only if

aj+1−1∑
n=aj

L∑
`=1

∑
j,k∈Zd

∣∣〈f, ωn`,j,k〉∣∣2 <∞ for all f ∈ D. (3.2)

Proof. Since ω̂n`,j,k(ξ) = |detA|−j/2ωn` (B−jξ)e−2πi〈k,B−jξ〉. Therefore, by applying
Parseval’s formula, we obtain

〈f, ωn`,j,k〉 = 〈f̂ , ω̂n`,j,k〉 = |detA|−j/2
∫
Rd

f̂(ξ) ω̂n`
(
B−jξ

)
e2πi〈k,B−jξ〉 dξ

= |detA|−j/2
∫
Rd

f̂
(
Bjξ

)
ω̂n` (ξ) e2πi〈k,ξ〉|detA|j dξ

= |detA|j/2
∫
Rd

f̂
(
Bjξ

)
ω̂n` (ξ) e2πi〈k,ξ〉 dξ. (3.3)
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With the help of (3.3), we can write the series as

I =

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

∑
k∈Zd

∣∣〈f, ωn`,j,k〉∣∣2

=

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

∑
k∈Zd

|detA|j
∣∣∣∣∫

Rd

f̂
(
Bjξ

)
ω̂n` (ξ) e2πi〈k,ξ〉 dξ

∣∣∣∣2 . (3.4)

For any fixed j ∈ Z, let F (ξ) ≡ f̂(Bj) ω̂n` (ξ); then by Lemma 2.5 when F = G, we
have

aj+1−1∑
n=aj

L∑
`=1

∑
k∈Zd

∣∣∣∣∫
Rd

f̂
(
Bjξ

)
ω̂n` (ξ) e2πi〈k,ξ〉dξ

∣∣∣∣2

=

aj+1−1∑
n=aj

L∑
`=1


∫
Rd

f̂
(
Bjξ

)
ω̂n` (ξ)

∑
k∈Zd

f̂
(
Bj(ξ + k)

)
ω̂n` (ξ + k)

 dξ

 .

Hence

I =

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

|detA|j
∫
Rd

∣∣∣f̂(Bjξ)∣∣∣2 ∣∣ω̂n` (ξ)
∣∣2 dξ +

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

|detA|j

×
∫
Rd

f̂
(
Bjξ

)
ω̂n` (ξ)

 ∑
k∈Zd\{0}

f̂
(
Bj(ξ + k)

)
ω̂n`
(
ξ + k

) dξ. (3.5)

Note that for any ` = 1, . . . , L and n ∈ Z+, we have

2
∣∣ω̂n` (ξ)ω̂n` (ξ + k)

∣∣ ≤ ∣∣ω̂n` (ξ)
∣∣2 +

∣∣ω̂n` (ξ + k)
∣∣2.

Therefore, the second sum is absolutely convergent in L1(Rd) and, thus absolutely
summable for a.e. ξ ∈ Rd even if we extend the summation over all j ∈ Z; i.e.,

∫
Rd

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∑
k∈Zd\{0}

|detA|j
∣∣∣f̂(Bjξ) ω̂n` (ξ)

∣∣∣ ∣∣∣f̂(Bj(ξ + k)
)
ω̂n` (ξ + k)

∣∣∣ dξ

≤ 1

2

∫
Rd

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∑
k∈Zd\{0}

|detA|j
[∣∣f̂(Bjξ)f̂(Bj(ξ + k)

)∣∣+
∣∣f̂(Bj(ξ − k)

)
f̂
(
Bjξ

)∣∣]

=

aj+1−1∑
n=aj

L∑
`=1

∫
Rd

∣∣ω̂n` (ξ)
∣∣2∑

j∈Z

∑
k∈Zd\{0}

|detA|j
∣∣f̂(Bjξ)f̂(Bj(ξ + k)

)∣∣ dξ
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≤ C
aj+1−1∑
n=aj

L∑
`=1

∫
Rd

∣∣ω̂n` (ξ)
∣∣2dξ <∞, (3.6)

where C is the constant appearing in Lemma 2.4 depending on the size and the
location of supp f̂ . Furthermore, the first sum appearing in (3.5) can be estimated
crudely by

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

|detA|j
∫
Rd

∣∣f̂(Bjξ)∣∣2∣∣ω̂n` (ξ)
∣∣2dξ ≤ ‖f̂‖2∞ aj+1−1∑

n=aj

L∑
`=1

∑
j≤m

|detA|j
∫
Rd

∣∣ω̂n` (ξ)
∣∣2dξ

=
|detA|m+1

|detA| − 1
‖f̂‖2∞‖ωn` ‖2. (3.7)

In order to prove the second part of the theorem, we have

aj+1−1∑
n=aj

L∑
`=1

∑
j,k∈Zd

∣∣〈f, ωn`,j,k〉∣∣2 =

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z
|detA|j

∫
Rd

∣∣f̂(Bjξ)∣∣2∣∣ω̂n` (ξ)
∣∣2dξ

+

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z
|detA|j

∫
Rd

f̂
(
Bjξ

)
ω̂n` (ξ)

 ∑
k∈Zd\{0}

f̂
(
Bj(ξ + k)

)
ω̂n` (ξ + k)

 dξ,

where the second expression in this decomposition is always finite by (3.6). Thus,
the first implication follows from the fact that

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Zd

|detA|j
∫
Rd

∣∣f̂(Bjξ)∣∣2∣∣ω̂n` (ξ)
∣∣2dξ =

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Zd

∫
Rd

∣∣f̂(ξ)
∣∣2∣∣ω̂n` (B−jξ)∣∣2dξ

≤ ‖f̂‖2∞
∫

suppf̂

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Zd

∣∣ω̂n` (B−jξ)∣∣2dξ <∞,
where as the converse implication is simply the consequence of applying the above
to f̂ = χK for any compact K ⊂ Rd \ {0}, since we have equality (instead of
inequality) in the above formula.

Theorem 3.2. Let {ωn` : n ∈ Z+, 1 ≤ ` ≤ L} and {ω̃n` : n ∈ Z+, 1 ≤ ` ≤ L} be the
dual multiwavelet packets associated with the dilation matrix A. Then

lim
m→∞

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

∑
k∈Zd

〈f, ωn`,j,k〉〈ω̃n`,j,k, f〉 =
∥∥f∥∥2

2
, for all f ∈ D (3.8)

if and only if
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lim
m→∞

aj+1−1∑
n=aj

L∑
`=1

∑
j≥−m

ω̂n`
(
Bjξ

)
ˆ̃ωn`
(
Bjξ

)
= 1, weakly in L1(K), K ⊂ Rd \ {0}

(3.9)

ts(ξ) =

aj+1−1∑
n=aj

L∑
`=1

∞∑
j=0

ˆ̃ωn`
(
Bjξ

)
ω̂n`
(
Bj(ξ + s)

)
= 0, a.e. ξ ∈ Rd, s ∈ S = Zd \BZd.

(3.10)

Proof. We first show that the series given by (3.8), (3.9) and (3.10) are all absolutely
convergent. Since

2
∣∣〈f, ωn`,j,k〉〈ω̃n`,j,k, f〉∣∣ ≤ ∣∣〈f, ωn`,j,k〉∣∣2 +

∣∣〈ω̃n`,j,k, f〉∣∣2.
Therefore, the series in (3.8) is summable by Lemma 3.1. Moreover, by the polar-
ization identity, condition (3.8) is equivalent to

〈f, g〉 = lim
m→∞

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

∑
k∈Zd

〈f, ωn`,j,k〉〈ω̃n`,j,k, g〉 for all f, g ∈ D. (3.11)

Thus, for s ∈ Rd and ωn` ∈ L2(Rd), we have∫
Rd

aj+1−1∑
n=aj

L∑
`=1

∑
j≥−m

∣∣ω̂n` (Bj(ξ + s)
)∣∣2dξ =

∫
Rd

aj+1−1∑
n=aj

L∑
`=1

∑
−j≤m

|detA|−j
∣∣ω̂n` (ξ +Bjs

)∣∣2dξ
=
|detA|m+1

|detA| − 1

aj+1−1∑
n=aj

L∑
`=1

∫
Rd

∣∣ω̂n` (ξ)
∣∣2 dξ <∞.

Therefore, we have

aj+1−1∑
n=aj

L∑
`=1

∑
j≥−m

∣∣ω̂n` (Bj(ξ + s)
)∣∣2 <∞ for a.e. ξ. (3.12)

Using the above when s = 0 yields

2

aj+1−1∑
n=aj

L∑
`=1

∑
j≥−m

∣∣ω̂n` (Bjξ) ˆ̃ωn` (Bjξ)∣∣2 ≤ aj+1−1∑
n=aj

L∑
`=1

∑
j≥−m

∣∣ω̂n` (Bjξ)∣∣2+
∣∣ ˆ̃ωn` (Bjξ)∣∣2 <∞, a.e. ξ.

Similarly, implementation of (3.12) when m = 0 implies

2

aj+1−1∑
n=aj

L∑
`=1

∞∑
j=0

∣∣ ˆ̃ωn` (Bjξ)ω̂n` (Bj(ξ + s)
)∣∣2 ≤ aj+1−1∑

n=aj

L∑
`=1

∞∑
j=0

∣∣ ˆ̃ωn` (Bjξ)∣∣2+
∣∣ω̂n` (Bj(ξ + s)

)∣∣2 <∞.
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Next, we prove that (3.9) and (3.10) implies (3.8). To do so, let us suppose that
f, g ∈ D. Then, by equation (3.3), we have

〈f, ωn`,j,k〉〈ω̃n`,j,k, g〉 = |detA|j
∫
Rd

f̂
(
Bjξ

)
ω̂n` (ξ) e2πi〈k,ξ〉dξ

∫
Rd

ĝ(Bjξ)ˆ̃ωn` (ξ)e−2πi〈k,ξ〉dξ.

For any fixed ` = 1, . . . , L and j ∈ Z, let

F (ξ) ≡ f̂(Bjξ)ωn` (ξ), G(ξ) ≡ ĝ(Bjξ) ω̃n` (ξ), n ∈ Z+.

Then, using the Lemma 2.5 and the above fact, we obtain

aj+1−1∑
n=aj

L∑
`=1

∑
k∈Zd

〈f, ωn`,j,k〉〈ω̃n`,j,k, g〉 =

aj+1−1∑
n=aj

L∑
`=1

∫
Rd

∑
k∈Zd

f̂
(
Bj(ξ + k)

)
ωn` (ξ + k)


× ĝ(Bjξ)ˆ̃ωn` (ξ) dξ.

(3.13)

Hence

I = I(m) =

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

∑
k∈Zd

〈f, ωn`,j,k〉〈ω̃n`,j,k, g〉 = I1 + I2 (3.14)

where

I1(m) =

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

|detA|j
∫
Rd

f̂
(
Bjξ

)
ĝ(Bjξ) ω̂n` (ξ) ˆ̃ω

n

` (ξ) dξ

I2(m) =

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

|detA|j
∫
Rd

ĝ(Bjξ) ˆ̃ω
n

` (ξ)

 ∑
k∈Zd\{0}

f̂
(
Bj(ξ + k)

)
ωn` (ξ + k)

 dξ

by splitting the sum (3.13) into terms corresponding to k = 0 and k 6= 0. Moreover,
we can interchange the summation and integration in I1 and I2, since for h ∈ D,
defined by ĥ = max(|f̂ |, |ĝ|), we have

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

|detA|j
∫
Rd

∣∣∣ĥ(Bjξ)∣∣∣2 ∣∣ω̂n` (ξ)ˆ̃ωn` (ξ)
∣∣dξ <∞

and

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z
|detA|j

∫
Rd

∣∣∣ĥ(Bjξ) ˆ̃ωn` (ξ)
∣∣∣
 ∑
k∈Zd\{0}

∣∣∣ĥ(Bj(ξ + k)
)
ω̂n` (ξ + k)

∣∣∣
 dξ <∞.

(3.15)

Now, in order to estimate (3.15), we use (3.6), (3.7) and the fact that

2
∣∣ω̂n` (ξ)ˆ̃ωn` (ξ)

∣∣ ≤ ∣∣ω̂n` (ξ)
∣∣2+
∣∣ ˆ̃ωn` (ξ)

∣∣2 and 2
∣∣ ˆ̃ωn` (ξ)ω̂n` (ξ+k)

∣∣ ≤ ∣∣ ˆ̃ωn` (ξ)
∣∣2+
∣∣ω̂n` (ξ+k)

∣∣2.
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Therefore, we can manipulate the sums as

I2 =

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

|detA|j
∫
Rd

ĝ(Bjξ) ˆ̃ωn` (ξ)

 ∑
k∈Zd\{0}

f̂
(
Bj(ξ + k)

)
ω̂n` (ξ + k)

 dξ

=

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

∫
Rd

ĝ(ξ) ˆ̃ωn`
(
B−jξ

) ∑
k∈Zd\{0}

f̂
(
ξ +Bjk

)
ω̂n` (B−jξ + k)

 dξ

=

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

∫
Rd

ĝ(ξ) ˆ̃ωn`
(
B−jξ

)∑
r≥0

∑
s∈S

f̂
(
ξ +BjBrs

)
ω̂n` (B−jξ +Brs)dξ

=

∫
Rd

ĝ(ξ)

aj+1−1∑
n=aj

L∑
`=1

∑
s∈S

∑
r≥0

∑
j≤m

ω̂n`
(
Br(B−r−jξ)

)
f̂
(
ξ +Bj+rs

)
ω̂n`
(
Br(B−r−jξ + s)

)
dξ

=

∫
Rd

ĝ(ξ)

aj+1−1∑
n=aj

L∑
`=1

∑
s∈S

∑
r≥0

∑
p≤m+r

ˆ̃ωn`
(
Br(B−pξ

)
ω̂n` (Br(B−pξ + s)) f̂

(
ξ +Bps

)
dξ

=

∫
Rd

ĝ(ξ)

aj+1−1∑
n=aj

L∑
`=1

∑
s∈S

∑
r≥0

∑
p∈Z

ˆ̃ωn`
(
Br(B−pξ)

)
ω̂n`
(
Br(B−pξ + s)

)
f̂
(
ξ +Bps

)
dξ,

form sufficiently large so that ĝ(ξ)f̂(ξ+Bps) = 0 for all p ≥ m, s ∈ S, i.e., (suppf̂−
supp ĝ)∩BpS = ∅ for all p ≥ m. Now, if we take, b = sup

{
|ξ| : ξ ∈ (supp f̂ − supp ĝ)

}
;

then, by (2.10) any m ≥
[
logλ(b/c)

]
works. Therefore, for any f, g ∈ D and suffi-

ciently large m, we have

I(m) = I1(m) + I2(m),

where

I1(m) =

aj+1−1∑
n=aj

L∑
`=1

∑
j≥−m

∫
Rd

f̂(ξ) ĝ(ξ) ω̂n` (Bjξ) ˆ̃ωn` (Bjξ) dξ

I2(m) =

∫
Rd

ĝ(ξ)
∑
p∈Z

∑
s∈S

f̂
(
ξ +Bps

)
ts
(
B−pξ

)
dξ. (3.16)

Here I1 follows by a simple change of variables, and I2 does not depend on m.
Equation (3.16), combined with assumptions (3.9) and (3.10) immediately implies

lim
m→∞

I(m) = lim
m→∞

I1(m) + I2(m) =
〈
f̂ , ĝ
〉

=
〈
f, g
〉
.

Conversely, we shall prove that (3.8) implies (3.10). For any fixed s0 ∈ S and q > 0,
we define

Ω(q) =
{
ξ ∈ Rd : |ξ| > q, |ξ + s0| > q

}
.

Now for any ξ0 ∈ Ω(q) and j ≥ 0, define
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f̂j(ξ) = |B
−j

Id|−1/2 arg ts0(ξ)χB−jId+ξ0(ξ) and ĝj(ξ) = |B
−j

Id|−1/2χB−jId+ξ0+s0(ξ),

where for the purpose of the proof, we define, for z ∈ C,

argz =

{
z/|z|, z 6= 0
1, z = 0.

By separating the term corresponding to p = 0 and s = s0 in equation (3.16) for
I2(m), f = fj , g = gj , from the rest, which we denote by R(j), we have

I2(m) =
1

|B−jId|

∫
B
−j
Id+ξ0

∣∣ts0(ξ)
∣∣ dξ+

∫
Rd

ĝj(ξ)
∑

p∈Z,s∈S
(p,s)6=(0,s0)

f̂j
(
ξ+Bps

)
ts
(
B−pξ

)
dξ.

(3.17)

Next, if |ĝj(ξ)f̂j(ξ+Bps)| 6= 0 for some ξ ∈ Rd, then (B−jId+ξ0)∩(B−jId+ξ0+s0−
Bps) 6= ∅, hence B−j(2Id)∩ (s0−BpS) 6= ∅ which means 2Id∩ (Bjs0−Bp+jS) 6= ∅.
Also, if p+ j ≥ 0, then Bjs0−Bp+jS ⊂ Zd, and since 2Id ∩Zd = {0} , s0 6∈ BpS for
p 6= 0, the only nonzero term happens for p = 0 and s = s0. Therefore, the other
nonzero terms can contribute only if p+ j < 0, so we can restrict the sum in (3.17)
to p < −j.

Using the estimate

2
∣∣ts(ξ)∣∣ ≤ aj+1−1∑

n=aj

L∑
`=1

∑
m′≥0

∣∣ ˆ̃ωn` (Bm′ξ)∣∣2 +
∣∣ω̂n` (Bm′(ξ + s)

)∣∣2 ≤ T (ξ) + T (ξ + s),

where

T (ξ) ≡
aj+1−1∑
n=aj

L∑
`=1

∑
m′≥0

∣∣ ˆ̃ωn` (Bm′ξ)∣∣2 +
∣∣ω̂n` (Bm′ξ)∣∣2, is locally integrable on Rd.

Therefore, we have

|R(j)| ≤ 1

2

∫
Rd

∑
p<−j

∑
s∈S
|detA|p

∣∣ĝj(Bpξ)∣∣∣∣f̂j(Bp(ξ + s)
)∣∣T (ξ)dξ

+
1

2

∫
Rd

∑
p<−j

∑
s∈S
|detA|p

∣∣ĝj(Bpξ)∣∣∣∣f̂j(Bp(ξ + s)
)∣∣T (ξ + s)dξ

=
1

2

∫
Rd

∑
p<−j

∑
s∈S
|detA|p

∣∣ĝj(Bpξ)∣∣∣∣f̂j(Bp(ξ + s)
)∣∣T (ξ)dξ

+
1

2

∫
Rd

∑
p<−j

∑
s∈S
|detA|p

∣∣ĝj(Bp(ξ − s))∣∣∣∣f̂j(Bpξ)∣∣T (ξ)dξ. (3.18)
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Using Lemma 2.4 with the assumptions that v > 0, where v = v(j) = inf
{
|ξ| : ξ ∈

B−jId + ξ0
}
, δ = δ(j) = diam(B−jId),Υ = Υ(j) =

⋃
p<−j B

−p(B−jId + ξ0) and
the fact that

∣∣f̂j(ξ)∣∣ =
∣∣ĝj(ξ − s0)

∣∣, we obtain∑
p<−j

∑
s∈S
|detA|p

∣∣ĝj(Bpξ)∣∣∣∣f̂j(Bp(ξ + s)
)∣∣ =

∑
p<−j

∑
s∈S
|detA|p

∣∣ĝj(Bpξ)∣∣∣∣ĝj(Bp(ξ + s)− s0

)∣∣
=
∑
p<−j

∑
s∈S
|detA|p

∣∣ĝj(Bpξ)∣∣∣∣ĝj(Bp(ξ + s−B−ps0)
)∣∣

≤
∑
p<−j

∑
k∈Zd\{0}

|detA|p
∣∣ĝj(Bpξ)∣∣∣∣ĝj(Bp(ξ + k)

)∣∣
≤ 2d|detA|jM

(
(v + δ)/v

)
‖ĝj‖2∞χΥ

(ξ)

= 2dM
(

(v + δ)/v
)
χ

Υ
(ξ), (3.19)

Similarly, we have∑
p<−j

∑
s∈S
|detA|p

∣∣ĝj(Bp(ξ − s))∣∣∣∣f̂j(Bp(ξ))∣∣ ≤ ∑
p<−j

∑
k∈Zd\{0}

|detA|p
∣∣f̂j(Bpξ)∣∣∣∣f̂j(Bp(ξ + k)

)∣∣
≤ 2d|detA|jM

(
(v′ + δ)/v′

)
‖f̂j‖2∞χΥ′ (ξ)

= 2dM
(

(v′ + δ)/v′
)
χ

Υ′ (ξ), (3.20)

by Lemma 2.4, assuming v′ > 0, where

v′ = v′(j) = inf
{
|ξ| : ξ ∈ B−jId+ξ0+s0

}
and Υ′ = Υ′(j) =

⋃
p<−j

B−p
(
B−jId+ξ0+s0

)
.

For any ε > 0, there exists r > 0, so that
∫
|ξ|>r T (ξ) dξ < ε. By (2.10), we can

find j0 > 0 so that δ(j) < q/2 and consequently v(j) > q/2, v′(j) > q/2 for j > j0.
Furthermore, by (2.10) we can choose j0 large enough so that for all j > j0, we
have

inf {|ξ| : ξ ∈ Υ(j)} = inf
{
|ξ| : ξ ∈

⋃
p>j

Bp(B−jId + ξ0)
}
> cλjq/2 > r, and

inf {|ξ| : ξ ∈ Υ′(j)} = inf
{
|ξ| : ξ ∈

⋃
p>j

Bp(B−jId + ξ0 + s0)
}
> cλjq/2 > r.

Substituting (3.19) and (3.20) into (3.18), we obtain

|R(j)| ≤ 2d−1M(2)

∫
Υ(j)

T (ξ)dξ+2d−1

∫
Υ′(j)

T (ξ)dξ ≤ 2dM(2)

∫
|ξ|>r

T (ξ)dξ < 2dM(2)ε

(3.21)

for j > j0 independent of the choice of ξ0 ∈ Ω(q). Since the supports of f̂j and ĝj
are disjoint I1(j) = 0; moreover (3.8) (and thus (3.11)) implies

0 = 〈fj , gj〉 = lim
m→∞

I(m) = lim
m→∞

I2(m) = I2.
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Since ε > 0, is arbitrary, therefore (3.17) and (3.21) yields

lim
j→∞

sup
ξ0∈Ω(q)

1

|B−jId|

∫
B−jId+ξ0

∣∣ts0(ξ)
∣∣ dξ = 0. (3.22)

Consider any ball B(r) with radius r > 0 such that B(r) ⊂ Ω(2q). Let Z =
{
B−jk :

B−j(Id + k) ∩ B(r) 6= ∅, k ∈ Zd
}
. If j is sufficiently large, then diam(B−jId) <

min(q, r), so
Z̃ =

⋃
ξ0∈Z

(B−jId + ξ0) ⊂ Ω(q) ∩B(2r).

Hence, ∫
B(r)

∣∣ts0(ξ)
∣∣ dξ ≤

∫
Z̃

∣∣ts0(ξ)
∣∣ dξ

≤
∑
ξ0∈Z

∫
B−jId+ξ0

∣∣ts0(ξ)
∣∣ dξ

≤
∑
ξ0∈Z

∣∣B−jId + ξ0
∣∣ε = |Z̃|ε = 2d|B(r)|ε

for sufficiently large j = j(ε) by (3.22). Since ε > 0, is arbitrary so
∫
B(r)
|ts0(ξ)| dξ =

0, for any ball B(r) ⊂ Ω(2q). Therefore,
∫

Ω(2q)
|ts0(ξ)| dξ = 0 and since q > 0 is

arbitrary
∫
Rd |ts0(ξ)| dξ = 0 which implies ts0(ξ) = 0 for a.e. ξ ∈ Rd, s0 ∈ S.

Finally, (3.8) implies that (3.9). Equation (3.9) follows easily from (3.10) and
(3.16) since any function h ∈ L∞(K) can be represented as h = f̂ ĝ for some
f, g ∈ D.

Theorem 3.3. Let {ωn` : n ∈ Z+, 1 ≤ ` ≤ L} and {ω̃n` : n ∈ Z+, 1 ≤ ` ≤ L} be the
dual multiwavelet packets associated with the dilation matrix A such that

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∣∣ω̂n` (Bjξ)∣∣2 and
aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∣∣ ˆ̃ωn` (Bjξ)∣∣2, (3.23)

are locally integrable on Rd \ {0}. Then

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∑
k∈Zd

〈f, ωn`,j,k〉〈ω̃n`,j,k, f〉 =
∥∥f∥∥2

2
, for all f ∈ D (3.24)

if and only if

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

ω̂n`
(
Bjξ

)
ˆ̃ωn`
(
Bjξ

)
= 1 a.e. ξ ∈ Rd (3.25)

ts(ξ) ≡
aj+1−1∑
n=aj

L∑
`=1

∞∑
j=0

ˆ̃ωn`
(
Bjξ

)
ω̂n`
(
Bj(ξ + s)

)
= 0, a.e. ξ ∈ Rd, s ∈ Zd \BZd.

(3.26)
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Proof. By Lemma 3.1 and (3.23), the series in (3.24) is absolutely convergent. Also,
by (3.23), the series in (3.25) converges absolutely in L1

loc(Rd \ {0}) and, hence, is
absolutely convergent for a.e. ξ. Therefore, under the hypothesis, (3.23), (3.9) ⇔
(3.24) and (3.10)⇔ (3.25). Hence, the desired result follows from Theorem 3.2.

Theorem 3.4. Let {ωn` : n ∈ Z+, 1 ≤ ` ≤ L} be the basic multiwavelet packets as-
sociated with the scaling functions ϕ`. Then

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∑
k∈Zd

∣∣〈f, ωn`,j,k〉∣∣2 =
∥∥f∥∥2

2
, for all f ∈ L2(Rd) (3.27)

if and only if
aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∣∣ωn` (Bjξ)∣∣2 = 1, a.e. ξ ∈ Rd (3.28)

ts(ξ) ≡
aj+1−1∑
n=aj

L∑
`=1

∞∑
j=0

ω̂n`
(
Bjξ

)
ω̂n`
(
Bj(ξ + s)

)
= 0, a.e. ξ ∈ Rd, s ∈ S = Zd \BZd.

(3.29)

In particular, the system F(ωn` ) given by (2.8) forms Parseval’s frame for L2(Rd) if
and only if (3.28), (3.29) hold and ‖ωn` ‖2 = 1, for n ∈ Z+, ` = 1, ..., L.

Proof. Using Lemma 3.1 and (3.27), we have

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∣∣ω̂n` (Bjξ)∣∣2 ∈ L1
loc(Rd \ {0}).

Therefore, we can apply Theorem 3.3 with ωn` = ω̃n` ∈ L2(Rd) to obtain (3.28) and
(3.29). Conversely, assume (3.28) and (3.29); then again by Theorem 3.3, we have

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∑
k∈Zd

∣∣〈f, ωn`,j,k〉∣∣2 =
∥∥f∥∥2

2
, for all f ∈ D.

By Theorem 2.7, we have the above for all f ∈ L2(Rd). Furthermore, the system
F(ωn` ) forms Parseval’s frame for L2(Rd) if ‖ωn` ‖2 ≥ 1 for n ∈ Z+, ` = 1, . . . , L.
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