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ABSTRACT. In this paper, we introduce a modified inertial subgradient extragradient
algorithm featuring self-adaptive step sizes. Our focus is on solving split equilibrium
problems that involve pseudomonotone bifunctions satisfying Lipschitz-type continuity
within real Hilbert spaces. We demonstrate a strong convergence theorem for the proposed
algorithm, requiring neither prior knowledge of the operator norm of the bounded linear
operator nor the Lipschitz constants of bifunctions. This convergence holds under certain
constraint qualifications of the scalar sequences.
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1. Introduction

The equilibrium problem introduced by Blum and Oettli [1] is a problem of
finding a point x∗ ∈ C such that

f(x∗, y) ≥ 0,∀y ∈ C, (1.1)

where C is a nonempty closed convex subset of a real Hilbert space H, and f :
H × H → R is a bifunction. The solution set of the equilibrium problem (1.1)
will be denoted by EP (f, C). The equilibrium problem is a broad framework that
includes many mathematical problems, such as fixed point problems, optimization
problems, variational inequality problems, minimax problems, Nash equilibrium
problems, and saddle point problems, see [2, 3, 4, 5], and the references therein.

In the most appeared papers, the proposed method for solving the equilibrium
problem (1.1), when f is a monotone bifunction, is the proximal point method, see
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[6]. However, if the bifunction f satisfies a weaker assumption as pseudomonotone,
the proximal point method cannot be applied in this situation. To overcome this
drawback, Tran et al. [7] proposed the following so-called extragradient method
for solving the equilibrium problem when the bifunction f is pseudomonotone and
satisfies Lipschitz-type continuous with positive constants c1 and c2:

x0 ∈ C,

yk = argmin
{
λf(xk, y) +

1
2∥xk − y∥2 : y ∈ C

}
,

xk+1 = argmin
{
λf(yk, y) +

1
2∥xk − y∥2 : y ∈ C

}
,

(1.2)

where 0 < λ < min
{

1
2c1

, 1
2c2

}
. They proved that the sequence {xk} generated by

Algorithm 1.2 converges weakly to a solution of the equilibrium problem. It should
be noted that in order to get yk and xk+1 in each iteration of the extragradient
method, the optimization problems on the feasible set C must be solved twice. It is
common knowledge that the optimization problem will not be simple if the feasible
set C has a complex structure. To improve this one, Hieu [8] proposed the follow-
ing so-called subgradient extragradient method for solving the equilibrium problem
when the bifunction f is pseudomonotone and satisfies Lipschitz-type continuous
with positive constants c1 and c2:

x0 ∈ H,

yk = argmin
{
λkf(xk, y) +

1
2∥y − xk∥2 : y ∈ C

}
,

Tk = {z ∈ H : ⟨xk − λkrk − yk, z − yk⟩ ≤ 0} , rk ∈ ∂2f(xk, yk),

zk = argmin
{
λkf(yk, y) +

1
2∥y − xk∥2 : y ∈ Tk

}
,

xk+1 = αkx0 + (1− αk)zk,

(1.3)

where 0 < λk < min
{

1
2c1

, 1
2c2

}
, {αk} ⊂ (0, 1) such that

∞∑
k=0

αk = +∞ and

lim
k→∞

αk = 0, and ∂2f(xk, yk) is the subdifferential of f(xk, · ) at yk. The author

proved that the sequence {xk} generated by Algorithm 1.3 converges strongly to
PEP (f,C)(x0). It is highlighted that in the second step for determining zk in each
iteration, the subgradient extragradient method translates to solve the optimization
problem on the feasible set C to the half-space Tk. Consequently, the computational
efficiency of this method is significantly improved by solving optimization problem
on the feasible set C only once for finding yk in each iteration. Meanwhile, the
inertial method which was first proposed in Polyak [9] was regarded to speed up the
convergence properties of the algorithm and was used in the implicit discretization
algorithm of the heavy ball with friction system [10, 11]. This method is character-
ized that the next iteration is determined by the combination of the previous two
(or more) iterations and has received a lot of attention from many researchers, see
[12, 13] and the references therein.

In 2012, He [14] (see also Moudafi [15]) introduced the split equilibrium problems
as follows: {

Find x∗ ∈ C such that f(x∗, y) ≥ 0,∀y ∈ C,

and u∗ := Ax∗ ∈ Q solves g(u∗, v) ≥ 0,∀v ∈ Q,
(1.4)

where C, Q are two nonempty closed convex subsets of the real Hilbert spaces H1

and H2, respectively, f : H1 ×H1 → R and g : H2 ×H2 → R are bifunctions, and
A : H1 → H2 is a bounded linear operator. To solve the split equilibrium problems
(1.4), Suantai et al. [16] proposed the following algorithm by using the techniques of
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inertial and extragradient method for solving the split equilibrium problems when
the bifunctions f and g are pseudomonotone and satisfy Lipschitz-type continuous
conditions with some positive constants {c1, c2} and {d1, d2}, respectively:

x0, x1 ∈ C,

wk = xk + θk(xk − xk−1),

yk = argmin
{
λkf(wk, y) +

1
2∥y − wk∥2 : y ∈ C

}
,

zk = argmin
{
λkf(yk, y) +

1
2∥y − wk∥2 : y ∈ C

}
,

uk = argmin
{
µkg(Azk, u) +

1
2∥u−Azk∥2 : u ∈ Q

}
,

vk = argmin
{
µkg(uk, u) +

1
2∥u−Azk∥2 : u ∈ Q

}
,

xk+1 = PC(zk + ηA∗(vk −Azk)),

(1.5)

where η ∈ (0, 1/∥A∥2), τ ∈ [0, 1), 0 < λk < min
{

1
2c1

, 1
2c2

}
, 0 < µk < min

{
1

2d1
, 1
2d2

}
,

and 0 ≤ θk ≤ θk with

θk =

min

{
τ,

ϵk
∥xk − xk−1∥

}
, if xk ̸= xk−1,

τ, otherwise.

They proved that the sequence {xk} generated by Algorithm 1.5 converges weakly
to a solution of the split equilibrium problems (1.4). It is worth noting that this
algorithm used step sizes λk, µk, and η that are dependent on the Lipschitz constants
of the bifunctions f , g, and the operator norm of the bounded linear operator A,
respectively. However, these step sizes are typically not easily obtainable in practical
applications.

In this paper, we focus on the methods for solving the split equilibrium problems
(1.4). That is, we present a new algorithm without the prior knowledge of both
the operator norm of the bounded linear operator and the Lipschitz constants of
the bifunctions for finding the solutions of the split equilibrium problems when the
bifunctions are pseudomonotone and satisfy Lipschitz-type continuous.

This paper is organized as follows: In Section 2, some necessary definitions and
properties will be reviewed. Section 3 presents the modified inertial subgradient
extragradient algorithm with self-adaptive step sizes and proves the strong conver-
gence theorem.

2. Preliminaries

In this section, we provide some definitions and properties which are used in the
sequel. Let H be a real Hilbert space with the inner product ⟨· , · ⟩ and norm ∥ · ∥.
The notation R and N will stand for the set of the real numbers and the natural
numbers, respectively.

First, we state some definitions and results involving the equilibrium problems.

Definition 2.1. Let C be a nonempty closed convex subset of H. A bifunction
f : H ×H → R is said to be:

(i) monotone on C if

f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;

(ii) pseudomonotone on C if

f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0, ∀x, y ∈ C;
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(iii) Lipshitz-type continuous on H if there exists two positive constants c1 and
c2 such that

f(x, y) + f(y, z) ≥ f(x, z)− c1∥x− y∥2 − c2∥y − z∥2,∀x, y, z ∈ H.

Remark 2.2. We observe that a monotone bifunction is a pseudomonotone bifunc-
tion, but the converse is not true, for instance, see [17].

In what follows, we recall the projection mapping and calculus concepts in Hilbert
space.

Let C be a nonempty closed convex subset of H. For each x ∈ H, we denote the
metric projection of x onto C by PC(x), that is

∥x− PC(x)∥ ≤ ∥y − x∥,∀y ∈ C.

Lemma 2.3. [18, 19] Let C be a nonempty closed convex subset of H. Then,

(i) PC(x) is singleton and well-defined for each x ∈ H;
(ii) z = PC(x) if and only if ⟨x− z, y − z⟩ ≤ 0, ∀y ∈ C;
(iii) PC is a nonexpansive operator, that is,

∥PC(x)− PC(y)∥ ≤ ∥x− y∥,∀x, y ∈ H.

For a function f : H → R, the subdifferential of f at z ∈ H is defined by

∂f(z) = {w ∈ H : f(y)− f(z) ≥ ⟨w, y − z⟩,∀y ∈ H}.
The function f is said to be subdifferentiable at z if ∂f(z) ̸= ∅.
Lemma 2.4. [18] For any z ∈ H, the subdifferentiable ∂f(z) of a continuous convex
function f is a weakly closed and bounded convex set.

Lemma 2.5. [3] Let C be a convex subset of H and f : C → R be subdifferentiable
on C. Then, x∗ is a solution to the following convex problem:

min {f(x) : x ∈ C}
if and only if 0 ∈ ∂f(x∗) + NC(x

∗), where NC(x
∗) := {y ∈ H : ⟨y, z − x∗⟩ ≤

0,∀z ∈ C} is the normal cone of C at x∗.

This section will be closed by collecting some facts which are important to obtain
the convergence theorems.

Lemma 2.6. [20] Let {ak} and {ck} be sequences of non-negative real numbers
such that

ak+1 ≤ (1− γk)ak + γkbk + ck,∀k ∈ N ∪ {0},

where {γk} is a sequence in (0, 1) and {bk} is a sequence in R. Assume that
∞∑
k=0

ck <

∞. If
∞∑
k=0

γk = ∞ and lim sup
k→∞

bk ≤ 0, then lim
k→∞

ak = 0.

Lemma 2.7. [21] Let {ak} be a sequence of real numbers such that there exists a
subsequence {aki} of {ak} such that aki < aki+1, for all i ∈ N. Then, there exists a
non-decreasing sequence {mn} of positive integers such that lim

n→∞
mn = ∞ and the

following properties hold:

amn
≤ amn+1 and an ≤ amn+1,

for all (sufficiently large) numbers n ∈ N. Indeed, mn is the largest number k in
the set {1, 2, . . . , n} such that

ak < ak+1.
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3. Main Results

Let C be a nonempty closed convex subset of a real Hilbert space H. For a
bifunction f : H × H → R, the following assumptions will be concerned in this
paper:

(A1) f(· , y) is sequentially weakly upper semicontinuous on C, for each fixed
y ∈ C, that is if {xk} ⊂ C is a sequence converging weakly to x ∈ C, then
lim sup
k→∞

f(xk, y) ≤ f(x, y);

(A2) f(x, · ) is convex, subdifferentiable and lower semicontinuous onH, for each
fixed x ∈ H;

(A3) f is psuedomonotone on C;
(A4) f is Lipshitz-type continuous on H.

Remark 3.1. (i) It is well-known that the solution set EP (f, C) is closed
and convex, when the bifunction f satisfies the assumptions (A1)− (A3),
see [7, 22, 23].

(ii) If the bifunction f satisfies the assumptions (A3) and (A4), then f(x, x) =
0, for each x ∈ C, see [13].

Now, let H1 and H2 be two real Hilbert spaces and C and Q be nonempty closed
convex subsets of H1 and H2, respectively. We recall the split equilibrium problems:{

Find x∗ ∈ C such that f(x∗, y) ≥ 0,∀y ∈ C,

and u∗ = Ax∗ ∈ Q solves g(u∗, v) ≥ 0,∀v ∈ Q,
(3.1)

where f : H1 × H1 → R, g : H2 × H2 → R are bifunctions, and A : H1 → H2 is a
bounded linear operator with its adjoint operator A∗. From now on, the solution
set of problem (3.1) will be represented by Ω. That is,

Ω := {p ∈ EP (f, C) : Ap ∈ EP (g,Q)} .

Next, we introduce the modified inertial subgradient extragradient algorithm for
solving the split equilibrium problems (3.1).

Algorithm 3.2. Modified inertial subgradient extragradient algorithm

Initialization. Choose parameters λ1 > 0, µ1 > 0, τ ∈ [0, 1), β ∈ (0, 1),
γ ∈ (0, 1), {φk} ⊂ (0, 1), {ξk} ⊂ [1,∞) with lim

k→∞
ξk = 1, {σk} ⊂ [1,∞) with

lim
k→∞

σk = 1, {ϵk} ⊂ [0,∞), {αk} ⊂ (0, 1) such that
∞∑
k=0

αk = ∞, lim
k→∞

αk = 0, and

lim
k→∞

ϵk
αk

= 0. Pick x0, x1 ∈ H and set k = 1.

Step 1. Choose θk such that 0 ≤ θk ≤ θk, where

θk =

min

{
τ,

ϵk
∥xk − xk−1∥

}
, if xk ̸= xk−1,

τ, otherwise,

and compute

wk = (1− αk) (xk + θk(xk − xk−1)) .
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Step 2. Solve the strongly convex program

yk = argmin{λkf(wk, y) +
1

2
∥y − wk∥2 : y ∈ C}.

Step 3. Construct a half-space

Tk = {z ∈ H1 : ⟨wk − λksk − yk, z − yk⟩ ≤ 0} ,

where sk ∈ ∂2f(wk, yk).

Step 4. Solve the strongly convex program

zk = argmin{ξkλkf(yk, y) +
1

2
∥y − wk∥2 : y ∈ Tk}.

Step 5. Solve the strongly convex program

uk = argmin{µkg(Azk, y) +
1

2
∥u−Azk∥2 : u ∈ Q}.

Step 6. Construct a half-space

Sk = {v ∈ H2 : ⟨Azk − µkrk − uk, v − uk⟩ ≤ 0} ,

where rk ∈ ∂2g(Azk, uk).

Step 7. Solve the strongly convex program

vk = argmin{σkµkg(uk, y) +
1

2
∥u−Azk∥2 : u ∈ Sk}.

Step 8. The next approximation xk+1 is defined as

xk+1 = PC(zk + ηkA
∗(vk −Azk)),

where

ηk =


φk∥vk −Azk∥2

∥A∗(vk −Azk)∥2
, if vk ̸= Azk,

φk, otherwise.

Step 9. Compute

λk+1 =


min

{
λk,

β(∥wk − yk∥2 + ∥zk − yk∥2)
2 [f(wk, zk)− f(wk, yk)− f(yk, zk)]

}
,

if f(wk, zk)− f(wk, yk)− f(yk, zk) > 0,

λk, otherwise,

and

µk+1 =


min

{
µk,

γ(∥Azk − uk∥2 + ∥vk − uk∥2)
2 [g(Azk, vk)− g(Azk, uk)− g(uk, vk)]

}
,

if g(Azk, vk)− g(Azk, uk)− g(uk, vk) > 0,

µk, otherwise.

Step 10. Put k := k + 1 and go to Step 1.

Remark 3.3. i) The new control sequences {ξk} and {σk} in Algorithm 3.2
are proposed to modify the subgradient extragradient method. Note that
if ξk = σk = 1, for each k ∈ N, then the modified subgradient extragradient
method which is included in Algorithm 3.2 reduces to the general situation
such as presented in [8].
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ii) The step sizes ηk, λk, and µk in Algorithm 3.2 are self-adaptive, which
are introduced to provide Algorithm 3.2 without prior knowledge of the
operator norm of the bounded linear operator A, and the Lipschitz con-
stants of the bifunctions f , and g, respectively. This means Algorithm 3.2
automatically updates the iteration step sizes ηk, λk, and µk by utilizing
some previously known data.

The following lemma is critical for analyzing the convergence of Algorithm 3.2.

Lemma 3.4. Let f : H1×H1 → R and g : H2×H2 → R be bifunctions which satisfy
(A1)−(A4), and A : H1 → H2 be a bounded linear operator with its adjoint operator
A∗. Suppose that the solution set Ω is nonempty. Let wk ∈ H1 and Azk ∈ H2. If
yk, zk, uk, vk, λk+1, and µk+1 are constructed as in the process of Algorithm 3.2,
then the following results hold:

∥zk − p∥2 ≤ ∥wk − p∥2 −
(
2− ξk − βξkλk

λk+1

)
∥wk − yk∥2

−
(
2− ξk − βξkλk

λk+1

)
∥yk − zk∥2,

and

∥vk −Ap∥2 ≤ ∥Azk −Ap∥2 −
(
2− σk − γσkµk

µk+1

)
∥Azk − uk∥2

−
(
2− σk − γσkµk

µk+1

)
∥uk − vk∥2,

∀p ∈ Ω.

Proof. Firstly, let us assert that C ⊂ Tk, for each k ∈ N. Let k ∈ N be fixed and
y ∈ C. By the definition of yk and Lemma 2.5, we have

0 ∈ ∂2

{
λkf(wk, yk) +

1

2
∥yk − wk∥2

}
+NC(yk).

Thus, there exists sk ∈ ∂2f(wk, yk) and qk ∈ NC(yk) such that

λksk + yk − wk + qk = 0. (3.2)

It follows from qk ∈ NC(yk) that

⟨wk − λksk − yk, y − yk⟩ = ⟨qk, y − yk⟩ ≤ 0. (3.3)

This implies that y ∈ Tk. Since k ∈ N is arbitrary, we can conclude that C ⊂ Tk,
for each k ∈ N. Consequently, we can guarantee that Algorithm 3.2 is well-defined.

Next, we will show the conclusion of the Lemma by using the above facts. Let
p ∈ Ω. So, p ∈ EP (f, C) and Ap ∈ EP (g,Q). By the definition of zk and Lemma
2.5, we obtain that

0 ∈ ∂2

{
ξkλkf(yk, zk) +

1

2
∥zk − wk∥2

}
+NTk

(zk).

Then, there exists s ∈ ∂2f(yk, zk) and q ∈ NTk
(zk) such that

ξkλks+ zk − wk + q = 0. (3.4)

It follows from the subdifferentiability of f that

f(yk, y)− f(yk, zk) ≥ ⟨s, y − zk⟩,∀y ∈ H. (3.5)

Additionally, from q ∈ NTk
(zk), we have

⟨q, zk − y⟩ ≥ 0,∀y ∈ Tk.
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Combining with the equality (3.4), we get

⟨wk − zk, zk − y⟩ ≥ ξkλk⟨s, zk − y⟩,∀y ∈ Tk. (3.6)

This together with the relation (3.5) yields that

⟨wk − zk, zk − y⟩ ≥ ξkλk[f(yk, zk)− f(yk, y)],∀y ∈ Tk. (3.7)

Indeed, from p ∈ C ⊂ Tk, we obtain

⟨wk − zk, zk − p⟩ ≥ ξkλk[f(yk, zk)− f(yk, p)].

It follows from the pseudomonotonic of f that

⟨wk − zk, zk − p⟩ ≥ ξkλkf(yk, zk). (3.8)

Moreover, by utilizing the subdifferentiability of f and sk ∈ ∂2f(wk, yk), we get

f(wk, y)− f(wk, yk) ≥ ⟨sk, y − yk⟩,∀y ∈ H.

So, from zk ∈ Tk ⊂ H, we have

f(wk, zk)− f(wk, yk) ≥ ⟨sk, zk − yk⟩. (3.9)

Also, by using the definition of Tk and zk ∈ Tk, we obtain

⟨wk − λksk − yk, zk − yk⟩ ≤ 0

Due to the inequality (3.9), we get

λk[f(wk, zk)− f(wk, yk)] ≥ ⟨yk − wk, yk − zk⟩. (3.10)

Using this one together with the inequality (3.8), we have

ξkλk[f(wk, zk)− f(wk, yk)− f(yk, zk)] ≥ ⟨zk − wk, zk − p⟩
+ξk⟨yk − wk, yk − zk⟩. (3.11)

On the other hand, from the definition of λk+1, we observe that

f(wk, zk)− f(wk, yk)− f(yk, zk) ≤
β(∥wk − yk∥2 + ∥yk − zk∥2)

2λk+1
. (3.12)

This together with the inequality (3.11) yields that

⟨wk − zk, zk − p⟩ ≥ ξk⟨yk − wk, yk − zk⟩ −
βξkλk(∥wk − yk∥2 + ∥yk − zk∥2)

2λk+1
.

By using the above inequality, we note that

∥wk − p∥2 − ∥wk − zk∥2 − ∥zk − p∥2 = 2⟨wk − zk, zk − p⟩
≥ 2ξk⟨yk − wk, yk − zk⟩

−βξkλk(∥wk − yk∥2 + ∥yk − zk∥2)
λk+1

.

This implies that

∥zk − p∥2 ≤ ∥wk − p∥2 − ∥wk − zk∥2 − 2ξk⟨yk − wk, yk − zk⟩

+
βξkλk(∥wk − yk∥2 + ∥yk − zk∥2)

λk+1

= ∥wk − p∥2 − ∥wk − zk∥2 + ξk∥wk − zk∥2 − ξk∥wk − yk∥2

−ξk∥yk − zk∥2 +
βξkλk(∥wk − yk∥2 + ∥yk − zk∥2)

λk+1

= ∥wk − p∥2 −
(
ξk − βξkλk

λk+1

)
∥wk − yk∥2
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−
(
ξ − βξkλk

λk+1

)
∥yk − zk∥2 − (1− ξk)∥wk − zk∥2. (3.13)

We observe that

∥wk − zk∥2 ≤ (∥wk − yk∥+ ∥yk − zk∥)2 ≤ 2
(
∥wk − yk∥2 + ∥yk − zk∥2

)
,

which together with the condition of parameter ξk ∈ [1,∞) implies that

−(1− ξk)∥wk − zk∥2 ≤ −2(1− ξk)
(
∥wk − yk∥2 + ∥yk − zk∥2

)
.

Combining with the relation (3.13) implies that

∥zk − p∥2 ≤ ∥wk − p∥2 −
(
2− ξk − βξkλk

λk+1

)
∥wk − yk∥2

−
(
2− ξk − βξkλk

λk+1

)
∥yk − zk∥2.

Similarly, we can show that

∥vk −Ap∥2 ≤ ∥Azk −Ap∥2 −
(
2− σk − γσkµk

µk+1

)
∥Azk − uk∥2

−
(
2− σk − γσkµk

µk+1

)
∥uk − vk∥2.

This completes the proof. □

Now, we are ready to analyze the convergence of Algorithm 3.2.

Theorem 3.1. Let f : H1 × H1 → R and g : H2 × H2 → R be bifunctions which
satisfy (A1)− (A4), and A : H1 → H2 be a bounded linear operator with its adjoint
operator A∗. Suppose that the solution set Ω is nonempty. Then, the sequence
{xk} which is generated by Algorithm 3.2 converges strongly to the minimum-norm
element of Ω.

Proof. Let p ∈ Ω. That is, p ∈ EP (f, C) and Ap ∈ EP (g,Q). Firstly, we observe
that {λk} is a nonincreasing sequence. On the other hand, by the Lipschitz-type
continuity of f on H1, there exists two positive constants c1 and c2 such that

f(wk, zk)− f(wk, yk)− f(yk, zk) ≤ c1∥wk − yk∥2 + c2∥yk − zk∥2

≤ max {c1, c2} (∥wk − yk∥2 + ∥yk − zk∥2).

Thus, by the definition of λk, we obtain

λk+1 ≥ min

{
λk,

β

2max {c1, c2}

}
≥ . . . ≥ min

{
λ1,

β

2max {c1, c2}

}
.

This implies that {λk} is bounded from below. Consequently, we have that the
limit of {λk} exists. Similarly, we can show that the limit of {µk} exists. Thus, by
the assumptions on the parameter β ∈ (0, 1) together with the existence of lim

k→∞
λk

and lim
k→∞

ξk = 1, we have

lim
k−→∞

(
2− ξk − βξkλk

λk+1

)
= 1− β > 0.

Then, there exists k1 ∈ N such that

2− ξk − βξkλk

λk+1
> 0,∀k ≥ k1. (3.14)
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Additionally, by the conditions on the parameter γ ∈ (0, 1) together with the
existence of lim

k→∞
µk and lim

k→∞
σk = 1, we obtain that

lim
k−→∞

(
2− σk − γσkµk

µk+1

)
= 1− γ > 0.

Thus, there exists k2 ∈ N such that

2− σk − γσkµk

µk+1
> 0,∀k ≥ k2. (3.15)

Choose k0 = max{k1, k2}. Then, by using (3.14), (3.15), and Lemma 3.4, we have

∥zk − p∥ ≤ ∥wk − p∥, (3.16)

and

∥vk −Ap∥ ≤ ∥Azk −Ap∥, (3.17)

for each k ≥ k0.
Now, let us consider for each k ∈ N such that k ≥ k0. By the definition of xk+1

and the nonexpansivity of PC , we have

∥xk+1 − p∥2 ≤ ∥(zk − p) + ηkA
∗(vk −Azk)∥2

= ∥zk − p∥2 + η2k∥A∗(vk −Azk)∥2

+2ηk⟨Azk −Ap, vk −Azk⟩. (3.18)

Consider,

2⟨Azk −Ap, vk −Azk⟩ = 2⟨vk −Ap, vk −Azk⟩ − 2∥vk −Azk∥2

= ∥vk −Ap∥2 − ∥vk −Azk∥2 − ∥Azk −Ap∥2.

Combining with the relation (3.18) implies that

∥xk+1 − p∥2 ≤ ∥zk − p∥2 − ηk
(
∥vk −Azk∥2 − ηk∥A∗(vk −Azk)∥2

)
+ηk(∥vk −Ap∥2 − ∥Azk −Ap∥2).

This together with the relation (3.17) yields that

∥xk+1 − p∥2 ≤ ∥zk − p∥2 − ηk
(
∥vk −Azk∥2 − ηk∥A∗(vk −Azk)∥2

)
.

It follows from the choices of the parameters ηk and φk that

∥xk+1 − p∥2 ≤ ∥zk − p∥2 − ηk(1− φk)∥vk −Azk∥2 (3.19)

≤ ∥zk − p∥2. (3.20)

Thus, the relations (3.16) and (3.20) imply that

∥xk+1 − p∥ ≤ ∥wk − p∥. (3.21)

In addition, from the definition of wk, we observe that

∥wk − p∥ = ∥(1− αk)(xk − p) + (1− αk)θk(xk − xk−1)− αkp∥
≤ (1− αk)∥xk − p∥+ (1− αk)θk∥xk − xk−1∥+ αk∥p∥

= (1− αk)∥xk − p∥+ αk

[
(1− αk)

θk
αk

∥xk − xk−1∥+ ∥p∥
]
.(3.22)

Due to the choices of the sequences {θk}, we have

(1− αk)
θk
αk

∥xk − xk−1∥ ≤ (1− αk)
ϵk
αk

.
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Using this one together with the fact that lim
k→∞

ϵk
αk

= 0, we get

lim
k−→∞

(1− αk)
θk
αk

∥xk − xk−1∥ = 0. (3.23)

Thus, there exists a constant M1 > 0 such that

(1− αk)
θk
αk

∥xk − xk−1∥ ≤ M1. (3.24)

This together with the relations (3.21) and (3.22) yields that

∥xk+1 − p∥ ≤ (1− αk)∥xk − p∥+ αk (M1 + ∥p∥)
≤ max {∥xk − p∥,M1 + ∥p∥}
≤ · · ·
≤ max {∥xk0 − p∥,M1 + ∥p∥} .

This implies that the sequence {∥xk − p∥} is bounded. Consequently, {xk} is a
bounded sequence.

Furthermore, the relations (3.22) and (3.24) imply that

∥wk − p∥2 ≤ [(1− α)∥xk − p∥+ αk(M1 + ∥p∥)]2

= (1− αk)
2∥xk − p∥2 + αk

[
2(1− αk)(M1 + ∥p∥)∥xk − p∥

+αk(M1 + ∥p∥)2
]

≤ ∥xk − p∥2 + αkM2, (3.25)

where M2 = sup
k≥k0

{
2(1− αk)(M1 + ∥p∥)∥xk − p∥+ αk(M1 + ∥p∥)2

}
> 0. Thus, by

using the relations (3.20), (3.25), and Lemma 3.4, we have

∥xk+1 − p∥2 ≤ ∥xk − p∥2 + αkM2 −
(
2− ξk − βξkλk

λk+1

)
∥wk − yk∥2

−
(
2− ξk − βξkλk

λk+1

)
∥yk − zk∥2. (3.26)

This implies that(
2− ξk − βξkλk

λk+1

)
∥wk − yk∥2 +

(
2− ξk − βξkλk

λk+1

)
∥yk − zk∥2

≤ ∥xk − p∥2 − ∥xk+1 − p∥2 + αkM2. (3.27)

Next, to show that the sequence {xk} converges strongly to p̃ := PΩ(0), we will
consider the proof in two cases.

Case 1. Suppose that ∥xk+1 − p̃∥ ≤ ∥xk − p̃∥, for all k ≥ k0. This means
that {∥xk − p̃∥}k≥k0

is a non-increasing sequence. Consequently, by utilizing this
one together with the boundness property of {∥xk − p̃∥}, we have that the limit of
∥xk − p̃∥ exists. It follows from the relation (3.27) and lim

k→∞
αk = 0 that

lim
k−→∞

∥wk − yk∥ = 0, (3.28)

and

lim
k−→∞

∥yk − zk∥ = 0. (3.29)

These imply that

lim
k−→∞

∥wk − zk∥ = 0. (3.30)
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Additionally, from ∥wk −xk∥ ≤ θk∥xk −xk−1∥+αkθk∥xk −xk−1∥+αk∥xk∥, which
together with lim

k→∞
θk∥xk − xk−1∥ = 0 and lim

k→∞
αk = 0 implies that

lim
k−→∞

∥wk − xk∥ = 0. (3.31)

This together with (3.30) yields that

lim
k−→∞

∥xk − zk∥ = 0. (3.32)

It follows from (3.29) that

lim
k−→∞

∥xk − yk∥ = 0. (3.33)

On the other hand, we provide the following:

∥wk − p̃∥2 = ∥(1− αk)(xk − p̃) + (1− αk)θk(xk − xk−1)− αkp̃∥2

≤ (1− αk)∥xk − p̃∥2 + 2(1− αk)θk⟨xk − xk−1, wk − p̃⟩
+2αk⟨−p̃, wk − p̃⟩

≤ (1− αk)∥xk − p̃∥2 + 2(1− αk)θk∥xk − xk−1∥∥wk − p̃∥
+2αk⟨−p̃, wk − xk⟩+ 2αk⟨−p̃, xk − p̃⟩

≤ (1− αk)∥xk − p̃∥2 + 2(1− αk)θk∥xk − xk−1∥∥wk − p̃∥
+2αk∥p̃∥∥wk − xk∥+ 2αk⟨xk − p̃,−p̃⟩

= (1− αk)∥xk − p̃∥2 + αk

(
2(1− αk)

θk
αk

∥xk − xk−1∥∥wk − p̃∥

+2∥p̃∥∥wk − xk∥+ 2⟨xk − p̃,−p̃⟩
)
.

Using this one together with the relation (3.21), we have

∥xk+1 − p̃∥2 ≤ (1− αk)∥xk − p̃∥2 + αk

(
2(1− αk)

θk
αk

∥xk − xk−1∥∥wk − p̃∥

+2∥p̃∥∥wk − xk∥+ 2⟨xk − p̃,−p̃⟩
)
. (3.34)

Furthermore, from (3.19), one sees that

ηk(1− φk)∥vk −Azk∥2 ≤ ∥zk − p∥2 − ∥xk+1 − p∥2

≤ (∥zk − xk∥+ ∥xk − p∥ − ∥xk+1 − p∥) (∥zk − p∥
+∥xk+1 − p∥).

Thus, by using (3.32) and the existence of lim
k→∞

∥xk − p̃∥, we obtain

lim
k−→∞

∥vk −Azk∥ = 0. (3.35)

On the other hand, from Lemma 3.4, we get that(
2− σk − γσkµk

µk+1

)
∥Azk − uk∥2 +

(
2− σk − γσkµk

µk+1

)
∥uk − vk∥2

≤ ∥Azk −Ap∥2 − ∥vk −Ap∥2

= ∥Azk − vk∥(∥Azk −Ap∥+ ∥vk −Ap∥).

Then, applying (3.35) to the above relation, we have

lim
k−→∞

∥Azk − uk∥ = 0, (3.36)
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and

lim
k−→∞

∥uk − vk∥ = 0. (3.37)

These imply that

lim
k−→∞

∥Azk − vk∥ = 0. (3.38)

Now, let x∗ ∈ ωw(xk) and {xkn
} be a subsequence of {xk} such that xkn

⇀ x∗, as
n → ∞. We know that, by using (3.31), (3.32), and (3.33), we also have wkn

⇀ x∗,
ykn ⇀ x∗, and zkn ⇀ x∗, as n → ∞. This implies that Azkn ⇀ Ax∗, as n → ∞.
This together with (3.36) yields that ukn ⇀ Ax∗, as n → ∞. Since C and Q
are closed convex subsets, so C and Q are weakly closed, therefore, x∗ ∈ C and
Ax∗ ∈ Q.

Next, in view of the relations (3.7), (3.10), and (3.12), we have

ξkn
λkn

f(ykn
, y) ≥ ξkn

λkn
f(ykn

, zkn
) + ⟨wkn

− zkn
, y − zkn

⟩

≥ ξkn
λkn

f(wkn
, zkn

)− ξkn
λkn

f(wkn
, ykn

)− βξkn
λkn

2λkn+1
∥wkn − ykn∥2

−βξkn
λkn

2λkn+1
∥ykn − zkn∥2 + ⟨wkn − zkn , y − zkn⟩

≥ ξkn⟨ykn − wkn , ykn − zkn⟩ −
βξkn

λkn

2λkn+1
∥wkn − ykn∥2

−βξknλkn

2λkn+1
∥ykn − zkn∥2 + ⟨wkn − zkn , y − zkn⟩, (3.39)

for each y ∈ C. Thus, by using (3.28), (3.29), (3.30), and the boundedness of {zk},
we have the right-hand side of the above inequality tends to zero. It follows from
the sequentially weakly upper semicontinuity of f and the parameters ξkn

, λkn
> 0

that

0 ≤ lim sup
n→∞

f(ykn
, y) ≤ f(x∗, y),∀y ∈ C.

Then, we showed that x∗ ∈ EP (f, C). Similarly, we can show that

σkn
µkn

g(ukn
, u) ≥ σkn

⟨ukn
−Azkn

, ukn
− vkn

⟩ − γσkn
µkn

2µkn+1
∥Azkn

− ukn
∥2

−γσkn
µkn

2µkn+1
∥ukn − vkn∥2 + ⟨Azkn − vkn , u− vkn⟩, (3.40)

for each u ∈ Q. It follows from the facts (3.36), (3.37), (3.38), and the bounded-
ness of {vk} that the right-hand side of the above inequality tends to zero. Thus,
by utilizing the sequentially weakly upper semicontinuity of g and the parameters
σkn

, µkn
> 0, we have

0 ≤ lim sup
n→∞

g(ukn
, u) ≤ g(Ax∗, u),∀u ∈ Q.

Then, we show that Ax∗ ∈ EP (g,Q) and so x∗ ∈ Ω. This shows that ωw(xk) ⊂ Ω.
Finally, by the properties of p̃ := PΩ(0) and x∗ ∈ ωw(xk) ⊂ Ω, we get

lim sup
k→∞

⟨xk − p̃,−p̃⟩ = lim
n→∞

⟨xkn
− p̃,−p̃⟩ = ⟨x∗ − p̃,−p̃⟩ ≤ 0. (3.41)

Hence, by using (3.23), (3.31), (3.34), (3.41), and Lemma 2.6, we have

lim
k−→∞

∥xk − p̃∥ = 0. (3.42)
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Case 2. Suppose that there exists a subsequence {∥xki
− p̃∥} of {∥xk − p̃∥} such

that

∥xki
− p̃∥ < ∥xki+1 − p̃∥, ∀i ∈ N.

According to Lemma 2.7, there exists a non-decreasing sequence {mn} ⊂ N such
that lim

n→∞
mn = ∞, and

∥xmn
− p̃∥ ≤ ∥xmn+1 − p̃∥ and ∥xn − p̃∥ ≤ ∥xmn+1 − p̃∥, ∀n ∈ N. (3.43)

Combining with the relation (3.27) implies that(
2− ξkn

− βξkn
λmn

λmn+1

)
∥wmn

− ymn
∥2 +

(
2− ξkn

− βξkn
λmn

λmn+1

)
∥ymn

− zmn
∥2

≤ ∥xmn
− p̃∥2 − ∥xmn+1 − p̃∥2 + αmn

M2

≤ ∥xmn+1 − p̃∥2 − ∥xmn+1 − p̃∥2 + αmn
M2

= αmnM2.

Following the line proof of Case 1, we can show that

lim
n−→∞

∥wmn
− ymn

∥ = 0, lim
n−→∞

∥ymn
− zmn

∥ = 0, (3.44)

lim
n−→∞

∥wmn
− zmn

∥ = 0, lim
n−→∞

∥xmn
− ymn

∥ = 0, (3.45)

lim
n−→∞

∥wmn − xmn∥ = 0, lim
n−→∞

∥umn − vmn∥ = 0, (3.46)

lim
n−→∞

∥Azmn − vmn∥ = 0, lim
n−→∞

∥Azmn − umn∥ = 0, (3.47)

lim sup
n→∞

⟨xmn − p̃,−p̃⟩ ≤ 0, (3.48)

and

∥xmn+1 − p̃∥2 ≤ (1− αmn
)∥xmn

− p̃∥2 + αmn

(
2∥p̃∥∥wmn

− xmn
∥

+2(1− αmn
)
θmn

αmn

∥xmn − xmn−1∥∥wmn − p̃∥+ 2⟨xmn − p̃,−p̃⟩
)
.

This together with the relation (3.43) yields that

∥xmn+1 − p̃∥2 ≤ (1− αmn
)∥xmn+1 − p̃∥2 + αmn

(
2∥p̃∥∥wmn

− xmn
∥

+2(1− αmn
)
θmn

αmn

∥xmn
− xmn−1∥∥wmn

− p̃∥+ 2⟨xmn
− p̃,−p̃⟩

)
.

Using this one together with the relation (3.43) again, we obtain

∥xn − p̃∥2 ≤ 2∥p̃∥∥wmn
− xmn

∥+ 2(1− αmn
)
θmn

αmn

∥xmn
− xmn−1∥∥wmn

− p̃∥

+2⟨xmn
− p̃,−p̃⟩.

Then, by utilizing (3.23), (3.46), and (3.48), we have

lim sup
n→∞

∥xn − p̃∥2 ≤ 0.

Hence, we can conclude that the sequence {xn} converges strongly to p̃ = PΩ(0).
This completes the proof. □
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4. Conclusion

We present the algorithm for finding a solution of the split equilibrium prob-
lems for pseudomonotone bifunctions which satisfy Lipschitz-type continuous in
real Hilbert spaces. We consider both inertial and subgradient extragradient meth-
ods without the prior knowledge of both the operator norm of the bounded linear
operator and the Lipschitz constants of bifunctions for establishing the sequence
which is strongly convergent to a solution of the split equilibrium problems.
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