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ABSTRACT. In this thesis, we propose and analyze a new accelerated algorithm for solving
bi-level convex optimization problems in Hilbert spaces in the form of the minimization
of smooth and strongly convex function over the optimal solutions set which is the set
of all minimizers of the sum of smooth and nonsmooth functions. In addition, we apply
our algorithms to solve regression and classification problems by using machine learning
models. Our experiments show that our proposed machine learning algorithm has a better
convergence behaviour than the others.
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1. Introduction

Let H be a real Hilbert space equipped with an inner product ⟨·, ·⟩. For a nonempty
closed convex subset C of H and let T : C → C. A point x ∈ C is a fixed point of
T if Tx = x. We let F (T ) := {x ∈ C : Tx = x}, the fixed point set of T . A mapping
T : C → C is said to be nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ , ∀x, y ∈ C. A
mapping S : C → C is said to be a contraction if there exists δ ∈ [0, 1) such that
∥S(x)− S(y)∥ ≤ δ ∥x− y∥ , ∀x, y ∈ C.

There are many iteration methods for finding a fixed point of nonexpansive map-
pings. In 1953, Mann[13] showed an iteration process, which is defined as

xn+1 = αnxn + (1− αn)Txn, n ∈ N (1.1)
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where the initial value of x1 is taken in C and {αn} ⊂ [0, 1]. He proved a weak
convergence theorem of (1.1) in certain conditions on {αn}. Later, Halpern[8]
presented the algorithm defined as follows

x0, x1 ∈ C

xn+1 = αnx0 + (1− αn)Txn, n ∈ N (1.2)

where {αn} ⊂ [0, 1]. He obtained a strong convergence theorem of (1.2) under some
conditions on {αn}. In 2000, Moudafi[14] introduced a viscosity approximation
method for a nonexpansive mapping as follows:

x0 = x ∈ C,

xn+1 = αnf(xn) + (1− αn)Txn, n ≥ 0 (1.3)

where f : C → C is a contraction. He proved a strong convergence theorem of (1.3)
under some conditions on {αn}.

In 1974, Ishikawa [10] introduced two-steps algorithm given by

x1 ∈ C

yn = βnxn + (1− βn)Txn,

xn+1 = αnxn + (1− αn)Tyn, n ∈ N. (1.4)

In [1], Agarwal et al, introduced a new algorithm, called S-iteration, given by

x1 ∈ C,

yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)Txn + αnTyn, n ∈ N (1.5)

where {αn}, {βn} ⊂ [0, 1]. They showed that the convergence behavior of the (1.5)
is better than the iterations of Mann and Ishikawa.

Now, let {Tn} be a sequence of nonexpansive mappings Tn : C → C and let

F :=

∞⋂
n=1

F (Tn) be the set of all common fixed points of Tn, n ∈ N. Over the

last two decades, many mathematicians have turned their attention to finding a
common fixed points of {Tn}.

Aoyama et al.[3] introduced a Halpern-type iterative scheme for finding a com-
mon fixed point of a countable family of nonexpansive mappings {Tn} as follows
:

x0 ∈ C,

xn+1 = αnx+ (1− αn)Tnxn, n ≥ 0 (1.6)

where x ∈ C is arbitrary and {αn} ⊂ [0, 1].
Later, Takahashi [20] studied the following iteration scheme:

x0 ∈ C,

xn+1 = αnS(xn) + (1− αn)Tnxn, n ≥ 0, (1.7)

where S is a contraction on C. He obtained strong convergence theorem of (1.7)
under some conditions.

In 2010, Klin-eam and Suantai [11] introduced and studied the following algo-
rithm:

x0 ∈ C,

yn = αnS(xn) + (1− αn)Tnxn,
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xn+1 = (1− βn)yn + βnTnyn, n ≥ 0, (1.8)

where S : C → C is a contraction and {αn}, {βn} ⊂ [0, 1]. They proved strong
convergence theorem of the sequence {xn} generated by (1.8) to a common fixed
point of {Tn} under some suitable conditions.

To speed up the convergence behavior of the iteration methods, Polyak [17] in-
troduced an inertial technique to improve the convergence behavior of the method.
Since then, this technique was used widely to accelerate the convergence behavior
of the studied methods.

Beck and Teboulle[5] introduced a fast iterative shrinkase-thresholding algo-
rithm (FISTA) as follows:

x1 = y0 ∈ C, t1 = 1,

yn = Txn,

tn+1 =
1 +

√
1 + 4t2n
2

, θn =
tn − 1

tn+1
,

xn+1 = yn + θn(yn − yn−1). (1.9)

They proved that rate of convergence of FISTA is better than the others.
In 2017, Verma and Shukla [23] introduced a new accelerated proximal gradient

algorithm (NAGA) as follows:

x0, x1 ∈ C

yn = xn + θn(xn − xn−1),

xn+1 = Tn[(1− αn)yn + αnTnyn], (1.10)

where {θn}, {αn} are sequences in (0, 1) and ∥xn−xn−1∥2

θn
→ 0. They proved a

convergence theorem of NAGA and applied this method to solve a non-smooth
convex minimization problem with sparsity-inducing regularizers for the multitask
learning framework.

Now, consider the the following bi-level optimization problem. Here is an inner
level problem,

(P ) min
x∈Rn

{φ (x) = f (x) + g (x)}

where f is convex and continuously differentiable function and g is an extended
valued (possibly nonsmooth) function. The following outer level problem

(MNP ) min
x∈X∗

ω (x)

where ω is a strongly convex and differentiable function whileX∗ is the, assumed
nonempty, set of minimizers of the inner level problem.

In 2017, Sabach and Shtern in [18] introduced a new method based on existing
algorithm, that they call it Sequential Averaging Method (SAM), which was devel-
oped in [24] for solving a certain class of fixed-point problems. For solving the
bi-level optimization problems (P) and (MNP), the Bi-Level Gradient Sequential Av-
eraging Method (BiG-SAM) was defined in [18].

Motivated by the above works, we are interested to introducing new acceler-
ated fixed point algorithm to solve bi-level convex optimization problems in Hilbert
space and analyze the convergence behavior of the proposed algorithm for data
regression, and data classification.
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This paper is divided into three sections. The motivation of this work and some
literature reviews is given in the introduction section. In Section 2, we give some
preliminary materials containing useful definitions and lemmas which will be used
for proving our main results. Finally, the main results and conclusion are in
Section 3.

2. Preliminaries

In this section, we introduce lemmas, definitions and theorems on a real Hilbert
space that will be used in this work. R stands for the set of real numbers and N
denotes the set of natural numbers. Throughout this section, we assume that H is
a real Hilbert space equipped with an inner product ⟨·, ·⟩. We denote that xn → x∗

and xn ⇀ x∗, the strong convergence and weak convergence of a sequence {xn} to
a point x∗, respectively.

Definition 2.1. Let C be a nonempty sebset of H and x ∈ H. If there exists a point
x∗ ∈ C such that

∥x∗ − x∥ ≤ ∥y − x∥ , ∀y ∈ C,

then x∗ is called a metric projection of x onto C and is denoted by PCx. The operator
PC is called the metric projection.

Theorem 2.1 ([22]). Let C be a nonempty closed convex subset of H. Then, for any
x ∈ H there exists a metric projection PCx of x onto C and it is unique.

Proposition 2.2 ([21]). Let C be a nonempty convex subset ofH and let x ∈ H,x∗ ∈
C. Then,

x∗ = PCx⇔ ⟨x− x∗, y − x∗⟩ ≤ 0, ∀y ∈ C.

Definition 2.3. A function f : Rn → R is strongly convex with constant σ > 0 if
for any x, y ∈ Rn and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− σ

2
λ(1− λ) ∥x− y∥2 .

In the case that f is differentiable, then f is strongly convex if and only if for any
x, y ∈ Rn,

f(y)− f(x) ≥ ⟨▽f(x), y − x⟩+ σ

2
∥y − x∥2 .

Definition 2.4. A mapping T : C → C is said to be
(i) Lipschitzian if there exists τ ≥ 0 such that

∥Tx− Ty∥ ≤ τ ∥x− y∥ , ∀x, y ∈ C,

(ii) a contraction if T is Lipschitzian with the coefficient τ ∈ [0, 1),
(iii) nonexpansive if T is Lipschitzian with the coefficient τ = 1.

Let T : C → C be a mapping. We say that an element x ∈ C is a fixed point
of T if x = Tx. The set of all fixed points of T is denoted by Fix(T ) = F (T ) :=
{x ∈ C : Tx = x} and is called the fixed point set of T . Let {Tn} and Ω be families
of nonexpansive operators of C into C such that ∅ ̸= F (Ω) ⊂ Γ :=

⋂∞
n=1 F (Tn),

where F (Ω) is the set of all common fixed points of Ω, and let ωω(xn) denote the
set of all weak-cluster point of a bounded sequence {xn} in C. A sequence {Tn} is
said to satisfy the NST-condition(I) with Ω [16, 20], if for every bounded sequence
{xn} in C,

lim
n→∞

∥xn − Tnxn∥ = 0 implies lim
n→∞

∥xn − Txn∥ for all T ∈ Ω.
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If Ω is singleton, i.e., Ω = {T}, then {Tn} is siad to satisfy the NST-condition(I) with
T . After that, Nakajo et al. [8] presented the NST*-condition which is more general
than that of NST-condition. A sequence {Tn} is siad to satisfy the NST*-condition
if for every bounded sequence {xn} in C,

lim
n→∞

∥xn − Tnxn∥ = lim
n→∞

∥xn − xn+1∥ = 0 implies ωω(xn) ⊂ Γ.

Theorem 2.2 (Banach Fixed Point Theorem). Let C be a nonempty closed subset
of H. If T : C → C is a contraction, then T has a unique fixed point u ∈ C.

Proposition 2.5 ([2]). Let C be a nonempty closed convex subset of H and PC the
metric projection from H onto C. Then the following hold:

(a) PC ∈ C for all x ∈ H ,
(b) PC is firmly nonexpansive: ⟨x− y, PCx− PCy⟩ ≥ ∥PCx− PCy∥2 for all

x, y ∈ H ,
(c) PC is nonexpansive: ∥PCx− PCy∥ ⩽ ∥x− y∥ for all x, y ∈ H ,
(d) PC is monotone: ⟨PCx− PCy, x− y⟩ ≥ 0 for all x, y ∈ H ,
(e) PC is demiclosed: xn ⇀ x0 and PCxn → y ⇒ PCx0 = y0.

Lemma 2.6 ([6]). For a real Hilbert space H , let g : H → R ∪ {∞} be a proper
convex and lower semi-continuous function, and f : H → R be convex differentiable
with gradient ▽f being L-Lipschitz constant for some L > 0. If {Tn} is the forward-
backward operator of f and h with respect to cn ∈ (0, 2/L) such that cn converges
to c, then {Tn} satisfies NST-condition(I) with T, where T is the forward-backward
operator of f and h with respect to c ∈ (0, 2/L).

Proposition 2.7 ([18]). Let ω : Rn → R is strongly convex with parameter σ > 0 and
let ω is a continuously differentiable function such that ▽ω is Lipschitz continuous
with constant Lω. Then, the mapping defined by Ss = I−s▽ω, where I is the identity
operator, is a contraction for all s ≤ 2/(Lω + σ), that is

∥x− s▽ω(x)− (y − s▽ω(y))∥ ≤
√

1− 2sσLω
σ + Lω

∥x− y∥ , ∀x, y ∈ Rn.

Lemma 2.8 ([21],[22]). Let H be a real Hilbert space. Then the following results
hold:

(i) for all t ∈ [0, 1] and x, y ∈ H ,

∥tx+ (1− t)y∥2 = t ∥x∥2 + (1− t) ∥y∥2 − t(1− t) ∥x− y∥2 ;

(ii) ∥x± y∥2 = ∥x∥2 ± 2 ⟨x, y⟩+ ∥y∥2 , ∀x, y ∈ H.;
(iii) ∥x+ y∥2 ≤ ∥x∥2 + 2 ⟨y, x+ y⟩ .

The identity in Lemma 2.8 (i) implies that the following equality holds:

∥αx+ βy + γz∥2 = α ∥x∥2 + β ∥y∥2 + γ ∥z∥2 − αβ ∥x− y∥2 − βγ ∥y − z∥2 − αγ ∥x− z∥2 ,
for all x, y, z ∈ H and α, β, γ ∈ [0, 1] with α+ β + γ = 1. (2.1)

Lemma 2.9 ([19]). Let {an}, {bn} and {γn} be sequences of nonnegative real num-
bers such that

an+1 ≤ (1 + γn)an + bn, n ∈ N.
If
∑∞
n=1 γn <∞ and

∑∞
n=1 bn <∞, then limn−→∞ an exists.

Lemma 2.10 ([15]). Let H be a Hilbert space and {xn} be sequences in H such that
there exists a nonempty set Γ ⊂ H satisfying

(i) for every p ∈ Γ, limn−→∞ ∥xn − p∥ exists;
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(ii) each weak-cluster point of the sequence {xn} is in Γ.

Then there exists x∗ ∈ Γ such that {xn} weakly converges to x∗.

Proposition 2.11 ([6]). Let H be a Hilbert space. Let A : H → 2H be a maximally
monotone operator and B : H → H an L-Lipschitz operator, where L > 0. Let
Tn = JAλn

(I − λnB), where 0 < λn < 2
L for all n ≥ 1 and let T = JAλ (I − λB),

where 0 < λ < 2
L with λn → λ. Then {Tn} satisfies the NST-condition(I) with T.

Lemma 2.12 ([7]). Let H be a Hilbert space and T : H → H a nonexpansive
mapping with F (T ) ̸= ∅. Then the mapping I −T is demiclosed at zero, i.e., for any
sequences {xn} in H such that xn ⇀ x ∈ H and ∥xn − Txn∥ → 0 imply x ∈ F (T ).

Lemma 2.13 ([4],[25]). Let {sn} , {ξn} be sequences of nonnegative real numbers,
{δn} a sequence in [0, 1] and {tn} a sequence of real numbers such that

sn+1 ≤ (1− δn) sn + δntn + ξn,

for all n ∈ N. If the following conditions hold:

(i)
∑∞
n=1 δn = ∞;

(ii)
∑∞
n=1 ξn <∞;

(iii) lim supn−→∞ tn ≤ 0.

Then lim sn = 0.

Lemma 2.14 ([12]). Let {Φn} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence

{
Φnj

}
of {Φn} which satisfies

Φnj
< Φnj+1 for all i ∈ N. Define the sequence {ψ(n)}n≥n0

of integers as follows:

ψ(n) := max {k ≤ n : Φk < Φk+1} ,
where n0 ∈ N such that {k ≤ n0 : Φk < Φk+1} ≠ ∅. Then the following hold:

(i) ψ(n0) ≤ ψ(n0 + 1) ≤ · · ·and ψ(n) −→ ∞;
(ii) Φψ(n) ≤ Φψ(n)+1 and Φn ≤ Φψ(n)+1 for all n ≥ n0.

3. Main Results

In this section, we first introduces a new algorithm for finding a common fixed
point of a family of nonexpansive mappings in a real Hilbert space and then prove
its strong convergence under some suitable conditions.

Here we propose a new accelerated algorithm for approximating the solution of
a common fixed point problem:

Let H be a real Hilbert space. Let {Tn} be a family of nonexpansive mappings
on H into itself. Let f be a k-contraction mapping on H with k ∈ (0, 1) and let
{ηn} ⊂ (0,∞) and {αn} , {βn} , {γn} ⊂ (0, 1).

Next, we prove the convergence of the sequence generated by Algorithm 1.

Theorem 3.1. Let T : H −→ H be a nonexpansive mapping with Fix(T ) ̸= ∅ and
f : H −→ H be contraction mapping with the constant k ∈ (0, 1). Assume that
∅ ̸= F (T ) ⊂

⋂∞
n=1 F (Tn) where {Tn} satisfies NST condition-(I) with T . Let {xn} be

a sequence generated by Algorithm 1 such that the following additional conditions
hold:

(1) limn−→∞ ηn = 0,
(2) limn−→∞ αn = 0 and

∑∞
n=1 αn = ∞,

(3) 0 < a < γn for some a ∈ R,
(4) 0 < b < βn < αn + βn < c < 1 for some b, c ∈ R,
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Algorithm 1 :

Initialize: Take x0, x1 ∈ H. Let {µn} ⊂ (0,∞).
For n ̸= 1:
Set

θn =

{
min

{
µn,

ηnγn
∥xn−xn−1∥

}
if xn ̸= xn−1;

µn otherwise.
Compute 

yn = xn + θn (xn − xn−1)

zn = γnf(yn) + (1− γn)Tnyn

xn+1 = (1− αn − βn)yn + αnzn + βnTnyn

then the sequence {xn} converges strongly to u ∈ F (T ) ⊂
⋂∞
n=1 F (Tn) where u =

PF (T )f(u)

Proof. Let u = PF (T )f(u).
First we prove that the sequence {xn} is bounded.
By the definition of yn and of zn, we have

∥yn − u∥ = ∥xn + θn (xn − xn−1)− u∥
≤ ∥xn − u∥+ θn ∥xn − xn−1∥ , ∀n ≥ 1, (3.1)

and

∥zn − u∥ = ∥γnf(yn) + (1− γn)Tnyn − u∥
≤ γn ∥f(yn)− u∥+ (1− γn) ∥Tnyn − u∥
≤ γn ∥f(yn)− f(u)∥+ γn ∥f(u)− u∥+ (1− γn) ∥Tnyn − u∥ (3.2)

≤ γnk ∥yn − u∥+ γn ∥f(u)− u∥+ (1− γn) ∥yn − u∥
= (1− (1− k)γn) ∥yn − u∥+ γn ∥f(u)− u∥ , ∀n ≥ 1.

From (3.1) and (3.2), we have

∥xn+1 − u∥ = ∥αnzn + βnTnyn + (1− αn − βn)yn − u∥
≤ ∥αn(zn − u) + βn(Tnyn − u) + (1− αn − βn)(yn − u)∥
≤ αn ∥zn − u∥+ βn ∥Tnyn − u∥+ (1− αn − βn) ∥yn − u∥
≤ αn ((1− (1− k)γn) ∥yn − u∥+ γn ∥f(u)− u∥) (3.3)

+ βn ∥yn − u∥+ (1− αn − βn) ∥yn − u∥
≤ αn(1− (1− k)γn) ∥yn − u∥+ αnγn ∥f(u)− u∥+ (1− αn) ∥yn − u∥
= (1− (1− k)αnγn) ∥yn − u∥+ αnγn ∥f(u)− u∥
≤ (1− (1− k)αnγn) (∥xn − u∥+ θn ∥xn − xn−1∥) + αnγn ∥f(u)− u∥
= (1− (1− k)αnγn) ∥xn − u∥+ (1− (1− k)αnγn)θn ∥xn − xn−1∥

+ αnγn ∥f(u)− u∥
= (1− (1− k)αnγn) ∥xn − u∥

+ (1− k)αnγn

[
(1− (1− k)αnγn)

(1− k)γn
· θn
αn

∥xn − xn−1∥+
∥f(u)− u∥

1− k

]
,

for all n ≥ 1
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As specified by the definition of θn and the assumption (1), we have
θn
αn

∥xn − xn−1∥ → 0 as n→ ∞.

Then there exists a positive constant M1 > 0 such that
θn
αn

∥xn − xn−1∥ ≤M1, ∀n ≥ 1.

From (3.3), we obtain

∥xn+1 − u∥ ≤ (1− (1− k)αnγn) ∥xn − u∥

+ (1− k)αnγn

[
ρM1

(1− k)
+

∥f(u)− u∥
1− k

]
= (1− (1− k)αnγn) ∥xn − u∥+ (1− k)αnγn

[
ρM1 + ∥f(u)− u∥

1− k

]
≤ max

{
∥xn − u∥ , ρM1 + ∥f(u)− u∥

1− k

}
...

≤ max

{
∥x1 − u∥ , ρM1 + ∥f(u)− u∥

1− k

}
, ∀n ≥ 1,

where ρ = sup
{

(1−(1−k)αnγn)
γn

: n ∈ N
}

. This implies that the sequence {xn} is
bounded, so are {yn}, {zn}, {f(yn)} and {Tnyn}.
On the other hand, we have

∥yn − u∥2 = ∥xn + θn (xn − xn−1)− u∥2

= ∥(xn − u) + θn (xn − xn−1)∥2 (3.4)

≤ ∥xn − u∥2 + 2θn ∥xn − u∥ ∥xn − xn−1∥+ θ2n ∥xn − xn−1∥2

By Lemma 2.8 (i), (3.1) and (3.2) we have

∥xn+1 − u∥2 = ∥αnzn + βnTnyn + (1− αn − βn)yn − u∥2

= ∥αn [γnf(yn) + (1− γn)Tnyn − u] + βn(Tnyn − u)

+ (1− αn − βn)(yn − u)∥2

= ∥αn [γn(f(yn)− f(u)) + γn(f(u)− u) + (1− γn)(Tnyn − u)]

+ βn(Tnyn − u) + (1− αn − βn) (yn − u)∥2

= ∥αn [γn(f(yn)− f(u)) + (1− γn)(Tnyn − u)] + αnγn(f(u)− u)

+ βn(Tnyn − u) + (1− αn − βn) (yn − u)∥2 (3.5)

≤ ∥αn [γn(f(yn)− f(u)) + (1− γn)(Tnyn − u)] + βn(Tnyn − u)

+ (1− αn − βn) (yn − u)∥2 + 2αnγn ⟨f(u)− u, xn+1 − u⟩

≤ αn ∥γn(f(yn)− f(u)) + (1− γn)(Tnyn − u)∥2 + βn ∥Tnyn − u∥2

+ (1− αn − βn) ∥yn − u∥2 + 2αnγn ⟨f(u)− u, xn+1 − u⟩

≤ αnγn ∥f(yn)− f(u)∥2 + αn(1− γn) ∥Tnyn − u∥2 + βn ∥yn − u∥2

+ (1− αn − βn) ∥yn − u∥2 + 2αnγn ⟨f(u)− u, xn+1 − u⟩

≤ αnγnk ∥yn − u∥2 + αn(1− γn) ∥yn − u∥2 + (1− αn) ∥yn − u∥2
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+ 2αnγn ⟨f(u)− u, xn+1 − u⟩

= (1− (1− k)αnγn) ∥yn − u∥2 + 2αnγn ⟨f(u)− u, xn+1 − u⟩

≤ (1− (1− k)αnγn)
(
∥xn − u∥2 + 2θn ∥xn − u∥ ∥xn − xn−1∥+ θ2n ∥xn − xn−1∥2

)
+ 2αnγn ⟨f(u)− u, xn+1 − u⟩

≤ (1− (1− k)αnγn) ∥xn − u∥2 + (1− (1− k)αnγn) [θn ∥xn − xn−1∥ (2 ∥xn − u∥
+ θn ∥xn − xn−1∥] + 2αnγn ⟨f(u)− u, xn+1 − u⟩ .

Since
θn ∥xn − xn−1∥ = αn

θn
αn

∥xn − xn−1∥ −→ 0 as n −→ ∞,

there exists positive constant M2 > 0 such that

θn ∥xn − xn−1∥ ≤M2, ∀n ≥ 1.

From the inequality (3.5), we get that for n ∈ N,

∥xn+1 − u∥2 ≤ (1− (1− k)αnγn) ∥xn − u∥2 + 3M3(1− (1− k)αnγn)θn ∥xn − xn−1∥
+ 2αnγn ⟨f(u)− u, xn+1 − u⟩ (3.6)

= (1− (1− k)αnγn) ∥xn − u∥2

+ (1− k)αnγn

[
3M3(1− (1− k)αnγn)

(1− k)γn
· θn
αn

∥xn − xn−1∥

+
2

1− k
⟨f(u)− u, xn+1 − u⟩

]
≤ (1− (1− k)αnγn) ∥xn − u∥2

+ (1− k)αnγn

[
3M3ρ

(1− k)
· θn
αn

∥xn − xn−1∥+
2

1− k
⟨f(u)− u, xn+1 − u⟩

]
where M3 = max {supn ∥xn − u∥ ,M2} . From above inequality, we set

sn := ∥xn − u∥2 , δn := αnγn(1− k)

and

tn :=
3M3ρ

(1− k)
· θn
αn

∥xn − xn−1∥+
2

1− k
⟨f(u)− u, xn+1 − u⟩ , ∀n ≥ 1

then, we obtain

sn+1 ≤ (1− δn)sn + δntn, ∀n ≥ 1. (3.7)

Now, we consider the following two cases.
Case 1. Suppose that there exists a natural number n0 such that the se-

quence {∥xn − u∥}n≥n0
is nonincreasing. Hence, {∥xn − u∥} converges due to

it is bounded from below by 0. Using the assumption (2) and (3), we get that∑∞
n−1 δn = ∞. We next claim that

lim sup
n−→∞

⟨f(u)− u, xn+1 − u⟩ ⩽ 0.

Coming back to the definition of xn+1, by Lemma 2.8 (i) and (3.4), one has that

∥xn+1 − u∥2 = ∥αnzn + βnTnyn + (1− αn − βn)yn − u∥2

≤ αn ∥zn − u∥2 + βn ∥Tnyn − u∥2 + (1− αn − βn) ∥yn − u∥2
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− βn(1− αn − βn) ∥yn − Tnyn∥2

≤ αn ∥zn − u∥2 + βn ∥yn − u∥2 + (1− αn − βn) ∥yn − u∥2

− βn(1− αn − βn) ∥yn − Tnyn∥2 (3.8)

≤ αn ∥zn − u∥2 + (1− αn) ∥yn − u∥2

− βn(1− αn − βn) ∥yn − Tnyn∥2

≤ αn

[
∥zn − u∥2 − ∥yn − u∥2

]
+ ∥xn − u∥2

+ 2θn ∥xn − u∥ ∥xn − xn−1∥

+ θ2n ∥xn − xn−1∥2 − βn(1− αn − βn) ∥yn − Tnyn∥2

It implies that for all, n ∈ N,

βn(1− αn − βn) ∥yn − Tnyn∥2 ≤ αn

[
∥zn − u∥2 − ∥yn − u∥2

]
+ ∥xn − u∥2 − ∥xn+1 − u∥2 (3.9)

+ θn ∥xn − xn−1∥ (2 ∥xn − u∥+ θn ∥xn − xn−1∥) .
It follows from the assumption (4) and the convergence of the sequences {∥xn − u∥}
and θn ∥xn − xn−1∥ → 0 that

∥yn − Tnyn∥ −→ 0 as n −→ ∞. (3.10)

According to {Tn} satisfies NST-condition(I) with T, we obtain that

∥yn − Tyn∥ −→ 0 as n −→ ∞. (3.11)

By the definition of zn and xn+1, we have

∥xn+1 − yn∥ = ∥αn(zn − yn) + βn(Tnyn − yn)∥
≤ αn ∥zn − yn∥+ βn ∥Tnyn − yn∥ (3.12)

= αn ∥γn(f(yn)− yn) + (1− γn)(Tnyn − yn)∥+ βn ∥Tnyn − yn∥
≤ αnγn ∥f(yn)− yn∥+ (1− γn)αn ∥Tnyn − yn)∥+ βn ∥Tnyn − yn∥ .

This implies by (3.11) and γn → 0 that

∥xn+1 − yn∥ −→ 0 as n −→ ∞.

By the definition of yn, we obtain

∥yn − xn∥ = θn ∥xn − xn−1∥ → 0 as n −→ ∞. (3.13)

Hence

∥xn+1 − xn∥ ≤ ∥xn+1 − yn∥+ ∥yn − xn∥ −→ 0 as n −→ ∞. (3.14)

Let

v = lim sup
n−→∞

⟨f(u)− u, xn+1 − u⟩ . (3.15)

So, there exists a subsequence {xt} of {xn} such that

v = lim sup
t−→∞

⟨f(u)− u, xt+1 − u⟩ . (3.16)

Since {xt} is bounded, there exists a subsequence {x′t} of {xt} such that x′t ⇀ w ∈
H. Without loss of generality, we may assume that xt ⇀ w.

v = lim sup
t−→∞

⟨f(u)− u, xt+1 − u⟩ .

From (3.11) and (3.13), we derive
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∥xn − Txn∥ ≤ ∥xn − yn∥+ ∥yn − Tyn∥+ ∥Tyn − Txn∥ (3.17)

≤ 2 ∥xn − yn∥+ ∥yn − Tyn∥ → 0, as n→ ∞.

It implies by Lemma (2.12) that w ∈ F (T ). Since ∥xn+1 − xn∥ −→ 0, we get xt+1 ⇀
w. Moreover, using u = PF (T )f(u) and Proposition 2.2 , we obtain

v = lim sup
t−→∞

⟨f(u)− u, xt+1 − u⟩ = ⟨f(u)− u,w − u⟩ ≤ 0. (3.18)

Hence

v = lim sup
n−→∞

⟨f(u)− u, xn+1 − u⟩ ≤ 0. (3.19)

This implies by (3.19) and using the fact of θnαn
∥xn − xn−1∥ → 0 that lim supn→∞ tn ≤

0. So, from (3.6) and using Lemma 2.13, we obtain that xn −→ u.
Case 2. Suppose the sequence {∥xn − u∥}n≥n0

is not a monotonically decreasing
sequence for a a sufficiently large n0. We set

Φ := ∥xn − u∥2 .
So, there exists a subsequence

{
Φnj

}
of {Φn} such that Φnj

≤ Φnj+1 for all j ∈ N.
In this case, define it as ψ : {n : n ≥ n0} −→ N, by

ψ(n) := max {k ∈ N : k ≤ n,Φk ≤ Φk+1} .
By Lemma 2.14, we have that Φψ(n) ≤ Φψ(n)+1 for all n ≥ n0. That is∥∥xψ(n) − u

∥∥ ≤
∥∥xψ(n)+1 − u

∥∥ , ∀n ≥ n0.

As we know from Case 1, we obtain that for all n ≥ n0,

βψ(n)(1− αψ(n) − βψ(n))
∥∥yψ(n) − Tψ(n)yψ(n)

∥∥2 ≤ αψ(n)

[∥∥zψ(n) − u
∥∥2 − ∥∥yψ(n) − u

∥∥2]
+

∥∥xψ(n) − u
∥∥2 − ∥∥xψ(n)+1 − u

∥∥2
+ θψ(n)

∥∥xψ(n) − xψ(n)−1

∥∥
×

(
2
∥∥xψ(n) − u

∥∥
+ θψ(n)

∥∥xψ(n) − xψ(n)−1

∥∥)
≤ αψ(n)

[∥∥zψ(n) − u
∥∥2 − ∥∥yψ(n) − u

∥∥2]
+ θψ(n)

∥∥xψ(n) − xψ(n)−1

∥∥
×

(
2
∥∥xψ(n) − u

∥∥
+ θψ(n)

∥∥xψ(n) − xψ(n)−1

∥∥)
which implies ∥∥yψ(n) − Tψ(n)yψ(n)

∥∥ −→ 0 as n −→ ∞. (3.20)

Similar to the proof in Case 1, we have∥∥xψ(n)+1 − yψ(n)
∥∥ −→ 0 as n −→ ∞ (3.21)

and∥∥yψ(n) − xψ(n)
∥∥ −→ 0 as n −→ ∞. (3.22)

Hence ∥∥xψ(n)+1 − xψ(n)
∥∥ −→ 0 as n −→ ∞. (3.23)
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Next, we show lim supn−→∞
〈
f(u)− u, xψ(n)+1 − u

〉
≤ 0. Put

υ = lim sup
n−→∞

〈
f(u)− u, xψ(n)+1 − u

〉
Without loss of generality, there exists a subsequence

{
xψ(t)

}
of

{
xψ(n)

}
such that{

xψ(t)
}

converges weakly to some point w ∈ H and

υ = lim
t−→∞

〈
f(u)− u, xψ(t)+1 − u

〉
.

By Lemma 2.12, one has
{
Tψ(t)

}
satisfies NST-condition(I) with T, so according

to the equality (3.20),
∥∥yψ(t) − Tψ(t)yψ(t)

∥∥ −→ 0 as n −→ ∞, we obtain that∥∥yψ(t) − Tyψ(t)
∥∥ −→ 0 as n −→ ∞ (3.24)

which implies, by (3.22) and Lemma 2.12 again, thatw ∈ F (T ). Since
∥∥xψ(t)+1 − xψ(t)

∥∥ →
0, we get xψ(t)+1 ⇀ w. Further, using u = PF (T )f(u) and Proposition 2.2, we get

υ = lim
t−→∞

〈
f(u)− u, xψ(t)+1 − u

〉
= ⟨f(u)− u,w − u⟩ ≤ 0 (3.25)

Then

υ = lim sup
t−→∞

〈
f(u)− u, xψ(t)+1 − u

〉
≤ 0 (3.26)

Since Φψ(t) ≤ Φψ(t)+1 and αψ(t)(1− k) > 0 , as in the proof in Case 1, we have for
all n ≥ n0,∥∥xψ(t) − u0

∥∥2 ≤ 3M3σ

(1− k)
· θn
αn

∥∥xψ(t) − xψ(t)−1

∥∥+
2

1− k

〈
f(u)− u, xψ(t)+1 − u

〉
(3.27)

In fact we have that θn
αn

∥xn − xn − 1∥ −→ 0 and (3.26)

lim sup
n−→∞

∥∥xψ(n) − u
∥∥2 ≤ 0

so we get
∥∥xψ(n) − u

∥∥ −→ 0 as n −→ ∞.
This implies by (3.23) that

∥∥xψ(n)+1 − u
∥∥ −→ 0 as n −→ ∞.

By Lemma 2.14, we get

∥xn − u∥ ≤
∥∥xψ(n)+1 − u

∥∥ −→ 0 as n −→ ∞.

Hence xn −→ u. The proof is completed. □

We now consider the following bi-level convex minimization problem:

min
x∈X∗

ω(x), (3.28)

where X∗ is the optimal solution set of problem (3.29). We let Ω be the set of all
solutions of (3.28). For the objective function ω of problem (3.28) we make the
following assumption.
Assumption 1.

C1. ω : Rn → R is strongly convex with parameter σ > 0,
C2. ω is a continuously differentiable function such that ▽ω is Lipschitz con-

tinuous with constant Lω.

For the problem

X∗ = arcmin
x∈Rn

(f(x) + g(x)) (3.29)

we assume the following assumption:
Assumption 2.
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A1. f : Rn → R is convex and continuously differentiable,
A2. ▽f is Lipschitz continuous with constant Lf .
A3. g : Rn → (−∞,∞] is proper, lower semicontinuous, and convex.

Now, we are ready to introduce an algorithm for solving problem (3.28)

Algorithm 2 :

Input: c ∈ (0, 2/Lf ), s ∈ (0, 2/(Lω + σ))
Initialize: Take x0, x1 ∈ Rn. Let {µn} ⊂ (0,∞).
For n ≥ 1:
Set

θn =

{
min

{
µn,

ηnγn
∥xn−xn−1∥

}
if xn ̸= xn−1;

µn otherwise.
Compute

yn = xn + θn (xn − xn−1)

zn = γn(I − s▽ω)(yn) + (1− γn)proxcng(I − cn▽f)yn

xn+1 = (1− αn − βn)yn + αnzn + βnproxcng(I − cn▽f)yn

We obtain the following result as a consequence of Theorem 3.1

Theorem 3.2. Let ω : Rn → R be a function satisfying the assumption 1. Let
f : Rn → R and g : Rn → (−∞,∞] be function satisfying the assumption 2. Let
{cn} be a sequence of positive real numbers in (0, 2/Lf ) and let c ∈ (0, 2/Lf ) such
that cn −→ c as n −→ ∞. Then the sequence {xn} generated by Algorithm 2 with
the same conditions as in Theorem 3.1 converges strongly to u ∈ Ω

Proof. Put Tn = proxcng(I−cn▽f), n ∈ N, and T = proxcg(I−c▽f). By Proposition
2.11 we know that {Tn} satisfies the NST condition-(I) with T. We also know that
Tn and T are nonexpansive mappings. It follows directly from Theorem 3.1 that
{xn} converges to u ∈ F (T ) = arcmin

x∈Rn
(f(x) + g(x)) such that u = PF (T )f(u). By

Proposition 2.7 f := I − s▽ω(x) is a contraction with parameter k =
√
1− 2sσLω

σ+Lω
.

It remains to show that n ∈ Ω. By using u = PF (T )f(u) and Proposition 2.2, we
obtain

u = PF (T )f(u) ⇔ ⟨f(u)− u, z − u⟩ ≤ 0, ∀z ∈ F (T )

⇔ ⟨u− s▽ω(u)− u, z − u⟩ ≤ 0, ∀z ∈ F (T )

⇔ ⟨−s▽ω(u), z − u⟩ ≤ 0, ∀z ∈ F (T )

⇔ ⟨s▽ω(u), z − u⟩ ≥ 0, ∀z ∈ F (T )

⇔ ⟨▽ω(u), z − u⟩ ≥ 0, ∀z ∈ F (T ) = X∗

Hence, u is the optimal solution for the problem (3.28). Therefore, xn −→ u ∈
Ω. □

3.1. Numerical Results. In this section, we apply our algorithms, Forward-backward
Algorithm, FISTA and NAGA to solve some classification problems based on the
method proposed by Huang et al [9], which is called extreme learning machine
(ELM). It is formulated as follows:
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Let {(xk, tk) : xk ∈ Rn, tk ∈ Rm, k = 1, 2, ..., N} be as set of N samples where xk
is an input and tk is a target. A simple mathematical model for the output of ELM
for SLFNs with M hidden nodes and activation function G is defined by

oj =

M∑
i=1

ηiG (⟨wi, xj⟩+ bi) ,

where wi is the weight that connects the i-th hidden node and the input node, ηi
is the weight connecting the i-th hidden node and the output node, and bi is the
bias. The hidden layer output matrix H is defined by

H =

G (⟨w1, x1⟩+ b1) · · · G (⟨w1, x1⟩+ bM )
...

. . .
...

G (⟨w1, xN ⟩+ b1) · · · G (⟨wM , xN ⟩+ bM )

 .
The main objective of ELM is to calculate an optimal weight η = [ηT1 , · · · , ηTM ]T

such that Hη = T, where T = [tT1 , · · · , tTN ]T is the training target.
In machine learning, fitness of model is very important for accuracy on training

sets. Overfitting model cannot be used to predict unknown data. In order to
avoid overfitting, we use most popular technique which is called the least absolute
shrinkage and selection operator (LASSO). It can be formulated as follows:

Minimize:∥Hη − T∥22 + λ∥η∥1, (3.30)

where λ is a regularization parameter.
If we set f(x) := ∥Hη − T∥22 and g(x) := λ∥η∥1, then we know that ▽f(x) =
2HT (Hx− T) and Lipschitz constant of ▽f is L = 2∥H∥2.

Hence, we can use our algorithm as a learning method to find the optimal weight
η and solve classification problems.
Following we consider two data sets:

(i) Iris data set : Each sample in this data set has 4 attributes, and the set
contains 3 classes with 50 samples for each type.

(ii) Heart disease data set : This data set contains 303 samples each of which
has 13 attributes and 2 classes of data.

Data preparation technique : k-fold Cross-validation (k = 10)

Algorithms :

(i) Our Algorithm (Algorithm 3)
(ii) Forward-backward Algorithm (Algorithm 4)
(iii) FISTA (Algorithm 5)
(iv) NAGA (Algorithm 6)

Algorithm 3 :

1: Input x0, x1 ∈ Rn, µn, ηn, γn ∈ (0,∞), ρn ∈ (0, 2
L ) and αn, βn, γn ∈ (0, 1), for

n ∈ N,

θn =

{
min{µn, ηnγn

∥xn−xn−1
∥}, xn ̸= xn−1,

µn, otherwise.

yn = xn + θn(xn − xn−1),

zn = γnh(yn) + (1− γn)proxρng(yn − ρn▽f(yn)),

xn+1 = (1− αn − βn)yn + αnzn + βnproxcng(I − cn▽f)yn,
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Algorithm 4 Forward-backward Algorithm

1: Input x0 ∈ Rn, ρn ∈ (0, 2
L ), for n ∈ N,

xn+1 = proxρng(xn − ρn▽f(xn)),

Algorithm 5 FISTA
1: Input y1 = x0 ∈ Rn, and t1 = 1, for n ∈ N,

yn = prox 1
L g

(xn − 1

L
▽f(xn)),

tn+1 =
1 +

√
1 + 4t2n
2

, θn =
tn − 1

tn+1
,

xn+1 = yn + θn(yn − yn−1),

Algorithm 6 NAGA

1: Input x0, x1 ∈ Rn, θn ≥ 0, αn ∈ (0, 1), ρn ∈ (0, 2
L ), for n ∈ N,

yn = xn + θn(xn − xn−1),

zn = (1− αn)yn + αnproxρng(yn − ρn▽f(yn)),

xn+1 = proxρng(zn − ρn▽f(zn)),
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• Chosen parameters of each algorithm :

• Contraction mapping : h(x) = 0.9x
• Regularization parameter : λ = 0.0333
• Hidden nodes : m = 30
• n = 5000 and ρn = 1

L

Algorithm 3 : θn =

min{0.9, 108

n3∥xn − xn−1
∥}, xn ̸= xn−1,

0.9, otherwise.

αn =
1

3n
, βn =

n

3n+ 1
, γn = 0.5 +

1

n
.

NAGA : θn = 0.9, αn =
9n

10(n+ 1)
.

Table 1. The performance of each algorithm at 5000th iteration
with 10-fold cv. on Iris data set

Algorithm 3 Algorithm 4 Algorithm 5 Algorithm 6
acc.trainacc.test acc.trainacc.test acc.trainacc.test acc.trainacc.test

Fold 1 99.26 100 96.30 100 97.78 100 98.52 100
Fold 2 98.52 100 97.04 93.33 97.78 100 97.78 100
Fold 3 99.26 100 96.30 100 97.78 93.33 97.78 93.33
Fold 4 99.26 100 95.56 100 97.78 100 97.78 100
Fold 5 99.26 100 96.30 100 98.52 93.33 99.26 93.33
Fold 6 100 93.33 97.78 86.67 99.26 93.33 100 93.33
Fold 7 99.26 100 97.04 100 97.78 100 97.78 100
Fold 8 97.78 93.33 95.56 86.67 97.78 100 97.78 100
Fold 9 99.26 100 96.30 86.67 98.52 93.33 98.52 93.33
Fold 10 99.26 100 96.30 100 97.78 100 98.52 100

Average acc. 99.11 98.67 96.44 95.33 98.07 97.33 98.37 97.33
Time 0.1750 0.0986 0.1055 0.1702

We observe from Table 1 that Algorithm 3 has the highest accuracy. It performs
better than the other three algorithms.
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Next we focus on bi-level minimization problem

min
ω∈X∗

ω (β)

where X∗ = arcmin
x∈Rn

(f(x) + g(x)) with f(β) = min ∥Hβ − T∥22 and g(β) = λ∥β∥1.

In case of A = In×n, we can reduce the outer level to ω(x) =
1

2
∥x∥22 with

Lω = 1, κ = 1.

In our problem, we are interested to use ω(β) = 1
2∥β∥

2
2 and we aim to compare

performance of our algorithm (Algorithm 2) and BiG-SAM (Algorithm 7)

Algorithm 7 BiG-SAM

1: Input x0 ∈ Rn, γn ∈ (0, 1), α ∈ (0, 1
Lf

] and s ∈ (0, 2
Lω+κ ), for n ∈ N,

yn = proxαg(xn − α▽f(xn)),

xn+1 = γn(xk − s▽ω(xk)) + (1− γn)yk.

• Chosen parameters of each algorithm :

• Regularization parameter : λ = 0.0333
• Hidden nodes : m = 30
• n = 300, ρn = 1

Lf
and s = 1

5

Algorithm 2 : θn =

min{0.9, 108

n3∥xn − xn−1
∥}, xn ̸= xn−1,

0.9, otherwise.

αn =
1

3n
, βn =

n

3n+ 1
, γn =

1

n
+ 0.5.

BiG-SAM : α =
1

Lf
, γn =

1

n
.
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Table 2. The performance of each algorithm at 300th iteration with
10-fold cv. on Iris data set

Algorithm 2 Algorithm 7
acc.train acc.test acc.train acc.test

Fold 1 88.89 86.67 80.74 80
Fold 2 89.63 93.33 80.74 80
Fold 3 88.15 100 81.48 86.67
Fold 4 88.15 100 80.74 86.67
Fold 5 87.41 86.67 80.74 80
Fold 6 88.89 73.33 80.74 73.33
Fold 7 90.37 86.67 75.56 86.67
Fold 8 90.37 86.67 77.78 80
Fold 9 89.63 80.00 80.74 73.33
Fold 10 88.89 80.00 81.48 73.33

Average acc. 89.04 88.67 80.07 80
Time 0.0079 0.0032

Table 3. The performance of each algorithm at 300th iteration with
10-fold cv. on Heart disease data set

Algorithm 2 Algorithm 7
acc.train acc.test acc.train acc.test

Fold 1 81.68 90.00 79.49 86.67
Fold 2 81.62 83.87 80.15 77.42
Fold 3 81.99 80.65 80.51 77.42
Fold 4 83.09 83.87 81.25 80.65
Fold 5 81.32 90.00 79.85 83.33
Fold 6 82.05 83.33 79.85 76.67
Fold 7 81.68 86.67 79.49 86.67
Fold 8 83.15 66.67 80.95 66.67
Fold 9 82.78 70.00 81.32 70.00
Fold 10 82.42 83.33 80.22 83.33

Average acc. 82.18 81.84 80.31 78.88
Time 0.0070 0.0033

In Table 2 and Table 3, we compare accuracy of Algorithm 2 with Algorithm 7
for different data sets. For Iris data set we achieve a testing accuracy of 89.04 and
for Heart disease data set we achieve a testing accuracy of 82.18. In both cases,
our proposed algorithm (Algorithm 2) has a better accuracy than Algorithm 7.

4. Conclusion

We introduced a new accelerated fixed point algorithm to find a common fixed
point of a family of nonexpansive mappings in a real Hilbert space. First, we
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prove a strong convergence in Algorithm 1. Next, we prove strong convergence
theorems in Algorithm 2. We applied our algorithm to solve the regression and
classification problems. From our study, we obtained highest performance than
the other methods shown in Section 4.
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