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ABSTRACT. In this thesis, we propose and analyze a new accelerated algorithm for solving
bi-level convex optimization problems in Hilbert spaces in the form of the minimization
of smooth and strongly convex function over the optimal solutions set which is the set
of all minimizers of the sum of smooth and nonsmooth functions. In addition, we apply
our algorithms to solve regression and classification problems by using machine learning
models. Our experiments show that our proposed machine learning algorithm has a better
convergence behaviour than the others.
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1. INTRODUCTION

Let H be a real Hilbert space equipped with an inner product (-, -). For a nonempty
closed convex subset C' of H and let T : C' — C. A point z € C is a fixed point of
Tif Te = x. Welet F(T) := {z € C : Tx = z}, the fixed point set of T. A mapping
T : C — C is said to be nonexpansive if |Tx —Ty| < ||z —vy|, Vz,y € C. A
mapping S : C' — C is said to be a contraction if there exists § € [0,1) such that
1S(2) = SW)I < 5l — yll, Var,y € C.

There are many iteration methods for finding a fixed point of nonexpansive map-
pings. In 1953, Mann[13] showed an iteration process, which is defined as

Tnat1 = QpZp + (1 — ap)Tx,, n €N (1.1)
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where the initial value of z; is taken in C' and {«a,} C [0,1]. He proved a weak
convergence theorem of (1.1) in certain conditions on {an}. Later, Halpern|8]
presented the algorithm defined as follows
rg, 21 € C
Tnt1 = Qpzo + (1 — ap)Tx,, n €N (1.2)
where {c, } C [0, 1]. He obtained a strong convergence theorem of (1.2) under some
conditions on {ay,}. In 2000, Moudafi[14] introduced a viscosity approximation
method for a nonexpansive mapping as follows:
xg=x € C,
Tnt1 = anf(zn) + (1 —ap)Txn, n>0 (1.3)
where f : C'— C'is a contraction. He proved a strong convergence theorem of (1.3)
under some conditions on {w,, }.
In 1974, Ishikawa [10] introduced two-steps algorithm given by
1 €C
Yn = ﬂnxn + (1 - Bn)TfEna
Tpt1 = QpZp + (1 — ap)Tyn, n € N. (1.4)
In [1], Agarwal et al, introduced a new algorithm, called S-iteration, given by
xr1 € C7
Tpt1 = (1 —ap)Txn + anTyn, n €N (1.5)
where {ay,}, {8,} C [0,1]. They showed that the convergence behavior of the (1.5)

is better than the iterations of Mann and Ishikawa.
Now, let {7} be a sequence of nonexpansive mappings 7,, : C — C and let
o)

F = ﬂ F(T,) be the set of all common fixed points of T;,,n € N. Over the

n=1
last two decades, many mathematicians have turned their attention to finding a

common fixed points of {7}, }.
Aoyama et al.[3] introduced a Halpern-type iterative scheme for finding a com-
mon fixed point of a countable family of nonexpansive mappings {7,,} as follows

9 € C,
Tpt1 = @nZ + (1 — ap)Tp@n, n >0 (1.6)
where x € C is arbitrary and {«a,,} C [0, 1].
Later, Takahashi [20] studied the following iteration scheme:
xg € C,
Tpt1 = anS(xn) + (1 — an)Thzy,, n >0, (1.7)

where S is a contraction on C. He obtained strong convergence theorem of (1.7)
under some conditions.
In 2010, Klin-eam and Suantai [11] introduced and studied the following algo-
rithm:
rg € C s

Yn = anS(xn) + (1 - an)Tnxna
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Tn+l = (1 - Bn)yn + 5nTnyna n >0, (1.8)

where S : C — C is a contraction and {«,},{f,} C [0,1]. They proved strong
convergence theorem of the sequence {x,} generated by (1.8) to a common fixed
point of {T},} under some suitable conditions.

To speed up the convergence behavior of the iteration methods, Polyak [17] in-
troduced an inertial technique to improve the convergence behavior of the method.
Since then, this technique was used widely to accelerate the convergence behavior
of the studied methods.

Beck and Teboulle[5] introduced a fast iterative shrinkase-thresholding algo-
rithm (FISTA) as follows:

x1=yo €C, t1 =1,

yn:Txna

Lo leVIhaE ot

n+1 — 2 y Un — tn+17

Tn+1 = Yn + en(yn - ynfl)- (1.9)

They proved that rate of convergence of FISTA is better than the others.
In 2017, Verma and Shukla [23] introduced a new accelerated proximal gradient
algorithm (NAGA) as follows:

o, T1 € C

Yn = Tn + en(xn - wnfl)a
Tn+1 = Trb[(l - an)yn + O‘nTnynL (1-10)

where {0,},{«a,} are sequences in (0,1) and wﬂ — 0. They proved a
convergence theorem of NAGA and applied this method to solve a non-smooth
convex minimization problem with sparsity-inducing regularizers for the multitask
learning framework.

Now, consider the the following bi-level optimization problem. Here is an inner
level problem,

(P) min {p(z) = f () +g(z)}

xERn

where f is convex and continuously differentiable function and ¢ is an extended
valued (possibly nonsmooth) function. The following outer level problem

(MNP) minw (x)

where w is a strongly convex and differentiable function while X * is the, assumed
nonempty, set of minimizers of the inner level problem.

In 2017, Sabach and Shtern in [18] introduced a new method based on existing
algorithm, that they call it Sequential Averaging Method (SAM), which was devel-
oped in [24] for solving a certain class of fixed-point problems. For solving the

bi-level optimization problems (P) and (MNP), the Bi-Level Gradient Sequential Av-
eraging Method (BiG-SAM) was defined in [18].

Motivated by the above works, we are interested to introducing new acceler-
ated fixed point algorithm to solve bi-level convex optimization problems in Hilbert
space and analyze the convergence behavior of the proposed algorithm for data
regression, and data classification.
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This paper is divided into three sections. The motivation of this work and some
literature reviews is given in the introduction section. In Section 2, we give some
preliminary materials containing useful definitions and lemmas which will be used
for proving our main results. Finally, the main results and conclusion are in
Section 3.

2. PRELIMINARIES

In this section, we introduce lemmas, definitions and theorems on a real Hilbert
space that will be used in this work. R stands for the set of real numbers and N
denotes the set of natural numbers. Throughout this section, we assume that H is
a real Hilbert space equipped with an inner product (-, -). We denote that x,, — =*
and z,, — x*, the strong convergence and weak convergence of a sequence {z,} to
a point z*, respectively.

Definition 2.1. Let C be a nonempty sebset of H and z € H. If there exists a point
x* € C such that

o =zl <lly —=ll, VyeC,
then x* is called a metric projection of x onto C and is denoted by Pox. The operator
P¢ is called the metric projection.

Theorem 2.1 ([22]). Let C' be a nonempty closed convex subset of H. Then, for any
x € H there exists a metric projection Pcx of x onto C' and it is unique.

Proposition 2.2 ([21]). Let C' be a nonempty convex subset of H and letx € H,z* €
C. Then,
¥ =Pex s (x —a*,y—a*) <0, VyeC.

Definition 2.3. A function f : R® — R is strongly convex with constant o > 0 if
for any z,y € R™ and X € [0, 1],

O + (1= N)y) < M (@) + (1= NF () = ZM1 =) |l —y]*.

In the case that f is differentiable, then f is strongly convex if and only if for any
x,y € R™,

) = f@) 2 (9f(@)y =)+ 5y — 2l

Definition 2.4. A mapping 7" : C — (' is said to be
(i) Lipschitzian if there exists 7 > 0 such that

1Tz =Tyl < 7lle—yll, Yo,y eC,

(ii) a contraction if T is Lipschitzian with the coefficient 7 € [0, 1),
(iii) nonexpansive if T is Lipschitzian with the coefficient 7 = 1.

Let T : C — C be a mapping. We say that an element x € C is a fixed point
of T if x = Tx. The set of all fixed points of T is denoted by Fix(T) = F(T) :=
{z € C : Tz = z} and is called the fixed point set of T. Let {1, } and () be families
of nonexpansive operators of C' into C such that @ # F(Q) C I := (2, F(T,).
where F'(Q2) is the set of all common fixed points of {2, and let w,(z,) denote the
set of all weak-cluster point of a bounded sequence {x,} in C. A sequence {1} is
said to satisfy the NST-condition(l) with 2 [16, 20], if for every bounded sequence

{zn}in C,

lim ||z, — Thz,|| =0 implies lzp, — Txy| forall T € Q.

lim
n— o0 n— o0



ACCELERATED FIXED POINT ALGORITHM 47

If Q) is singleton, i.e., = {T'}, then {7,,} is siad to satisfy the NST-condition(I) with
T. After that, Nakajo et al. [8] presented the NST*-condition which is more general
than that of NST-condition. A sequence {7} is siad to satisfy the NST*-condition
if for every bounded sequence {z,} in C,

lim ||z, — Thay|| = lim ||z, — 2p41]| =0 implies wy(z,) CT.
n—oo n— oo

Theorem 2.2 (Banach Fixed Point Theorem). Let C' be a nonempty closed subset
of H. If T : C' — C is a contraction, thenT' has a unique fixed point u € C.

Proposition 2.5 ([2]). Let C' be a nonempty closed convex subset of H and P the
metric projection from H onto C. Then the following hold:

(@) Pc € C forallx € H,

(b) P¢ is firmly nonexpansive: (x —y, Pcx — Poy) > ||Pox — PCyH2 Jor all

x,y € H,

(¢) Pc is nonexpansive: ||Pcx — Poyl|| < ||z — y|| forallz,y € H,

(d) Pc is monotone: (Pox — Poy,x —y) > 0 forallz,y € H,

(e) Pc is demiclosed: x,, — xo and Pox,, — y = Pcxo = yo.

Lemma 2.6 ([6]). For a real Hilbert space H, let g : H — R U {oco} be a proper
convex and lower semi-continuous function, and f : H — R be convex differentiable
with gradient V f being L-Lipschitz constant for some L > 0. If {T,} is the forward-
backward operator of f and h with respect to ¢,, € (0,2/L) such that ¢,, converges
to ¢, then {T,,} satisfies NST-condition(l) with T, where T is the forward-backward
operator of f and h with respect to ¢ € (0,2/L).

Proposition 2.7 ([18]). Letw : R™ — R is strongly convex with parameter ¢ > 0 and
let w is a continuously differentiable function such that Vw is Lipschitz continuous
with constant L,,. Then, the mapping defined by Ss = I —sVw, where I is the identity
operator, is a contraction for all s < 2/(L, + o), that is

2s0L
— sV —(y — sV <4 /11— “lz — . R™.
o = svu(@) = (= 59w | < /1= 7% e =l Ve e

Lemma 2.8 ([21],[22]). Let H be a real Hilbert space. Then the following results
hold:

(i) forallt € [0,1] and z,y € H,
2 2 2 2
[tz + (1 = t)y[I” = ¢{l]” + (L =) lylI” = ¢(1 = 1) l= — y[I";

(i0) ||:ciy||§ = ||:ij £2(z,y) + |yl?, Yo,y € H.:
@) [z +y))? < 2] +2(y,z +y).

The identity in Lemma 2.8 () implies that the following equality holds:
2 2 2 2 2 2 2
lox + By +v2|" = allzl|” + Bllyll” + 721" —aBlle —ylI” = By lly — 2" —av [le — =7,
forall z,y,z € Hand o, 8,7y € [0,1] witha+ 8+ v = 1. 2.1

Lemma 2.9 ([19]). Let{a,}, {b,} and {v,} be sequences of nonnegative real num-
bers such that

apg1 < (1 + 'Yn)an +b,, neN.
IFY o v <ooandy 02 b, < oo, thenlim,,_, o a, exists.
Lemma 2.10 ([15]). Let H be a Hilbert space and {gcn} be sequences in H such that
there exists a nonempty set I' C H satisfying

(i) foreveryp € I',lim,,__, ||z, — p|| exists;
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(i) each wealc-cluster point of the sequence {x,} isinT.
Then there exists x* € I" such that {z,,} weakly converges to x*.

Proposition 2.11 ([6]). Let H be a Hilbert space. Let A : H — 28 pe a maximally
monotone operator and B : H — H an L-Lipschitz operator, where L > 0. Let
T, = J/{‘n (I —\,B), where 0 < A\, < %for alln > 1 and letT = J;\q (I —AB),
where 0 < A < % with A\, — A. Then {T,,} satisfies the NST-condition(I) with T.

Lemma 2.12 ([7]). Let H be a Hilbert space and T' : H — H a nonexpansive
mapping with F(T) # &. Then the mapping I — T is demiclosed at zero, i.e., for any
sequences {x,} in H such that z,, = ¢ € H and ||z,, — Txz,| — 0 imply x € F(T).

Lemma 2.13 ([4],[25]). Let {s,},{&.} be sequences of nonnegative real numbers,
{6n} a sequence in [0,1] and {t,} a sequence of real numbers such that

Sn+1 S (1 - 571) Sn + 6ntn + gny
Sor alln € N. If the following conditions hold:
(i) ZZOZI 6n =0o0;
(i) Y07 &n < 00;
(i) limsup,,_ .ty < 0.
Thenlim s,, = 0.

Lemma 2.14 ([12]). Let {fbn} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {<I>n_7. } of {®,,} which satisfies
®,,, < &y, 41 foralli € N. Define the sequence {1)(n)},,,, of integers as follows:

Y(n) :=max{k <n: Py < Pyi1},
where ng € N such that {k < ng : D, < P11} # . Then the following hold:

(@) ¥(ng) < (ng+1) < ---and 1h(n) — oo;
(i) Pyeny < Pyny+1 and @, < Dy(py4q Sorall n > ng.

3. MaIN RESULTS

In this section, we first introduces a new algorithm for finding a common fixed
point of a family of nonexpansive mappings in a real Hilbert space and then prove
its strong convergence under some suitable conditions.

Here we propose a new accelerated algorithm for approximating the solution of
a common fixed point problem:

Let H be a real Hilbert space. Let {7},} be a family of nonexpansive mappings
on H into itself. Let f be a k-contraction mapping on H with k& € (0,1) and let

{na} C (0,00) and {an}, {Bn}, {7} C (0,1).

Next, we prove the convergence of the sequence generated by Algorithm 1.

Theorem 3.1. LetT : H — H be a nonexpansive mapping with Fix(T) # & and
f : H — H be contraction mapping with the constant k € (0,1). Assume that
@ # F(T) C (,—, F(T,) where {T,} satisfies NST condition-(I) with T'. Let {z,,} be
a sequence generated by Algorithm 1 such that the following additional conditions
hold:

(1) lim,, oo np =0,

(2) lim,,— oo 0, =0 and Y07 | ay = 00,

8) 0 <a <y, forsomea € R,

4 0<b< B, <an+pPp<c<lforsomebd,ceR,
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Algorithm 1 :
Initialize: Take xg, 2 € H. Let {u,} C (0,00).
For n # 1:
Set
9 _ min {an Hwn’qj;/: 1” } if iy 7é Tn—1;
" Ln otherwise.
Compute

Yn = Tn + 9n (xn - xn—l)
Zn = Y f (Yn) + (1 = 0)Tnin
Tn+l1 = (]- — 0y — Bn)yn + anzny + ﬁnTnyn

then the sequence {x,,} converges strongly tou € F(T) C (., F(T,) where u =
Ppr) f(u)

Proqf. Let u = Ppr) f(u).
First we prove that the sequence {z, } is bounded.
By the definition of y,, and of z,,, we have

[yn — ull = [[2n + On (Tn — Tn—1) — ull

and

12 = ull = [l f (yn) + (1 = ) Tnyn — ull
<A 1 (yn) = ull + (1 =) [ Thyn — ull
<A [f n) = F@)l + (@) = ull + (T =) [Toyn —ul  (3.2)
Sk llyn = wll +m 1f () = ull + (1 =) lyn — ull
== QA =F)m) llyn — ull + 0 [If (@) —ull, Vn = 1.
From (3.1) and (3.2), we have

|Zns1 —ull = [lanzn + BnToyn + (1 — an — Br)yn — ul|
< lan(zn = u) + Bp(Tayn — u) + (1 — ay — Bn)(yn — )|
< an |20 — ull + Bn | Toyn — ull + (1 — an = Bn) lyn — ull
< an (1= (1= K)yn) lyn = ull + v [|.f (w) — ul]) (3.3)
+ B llyn —ull + (L = an — Bn) [lyn — ul
< an(l = (1 =F)v) llyn — ull + anyn [[f (w) —ull + (1 = an) lyn — ul|
= (1= (1 =k)anyn) lyn — vl + anyn [ f(u) — ull
< (1= (1 =K)anm) (lzn — ull + 0n |20 — nall) + anyn [1f(u) = uf
= (1 =1 =k)anyn) [len —ul + (1 = 1 = k)anyn)0n |20 — 20
+ anyn || f () — ul
= (1= (1 =k)anyn) [zn — ul

(1 — (1 _ k)an’Yn) i 9n ||f( ) u”

1-k n/n - n - 4n— )
A B T e e

forall n >1
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As specified by the definition of #,, and the assumption (1), we have
on

— ||xn — n-1]] = 0 as n — oo.
n

Then there exists a positive constant M; > 0 such that

0
07" |zn — Tn_1| < My, ¥n > 1.

From (3.3), we obtain
[Zn41 —ull < (1= (1= k)anyn) lzn — uf|
pMy o |f(w) - ull}

+(1—k)an7n{(l_k)+ &

pMy + |[f(u) — uf
1—k

= (1 - (1= K)awya) 2 — ull + (1 = F)anmn [

pMiy + || f (u) UII}
1-k

< mazx {||mn —ul|,

M _
< max {||x1 —ull, P +1||{(:) ul } , VYn>1,

A-(A—-k)anyn) .
Tn

bounded, so are {y,}, {#n}, {f(yn)} and {T,y,}.
On the other hand, we have

where p = sup{ 'n € N} This implies that the sequence {z,} is

lyn = ul® = llzn + 00 (@0 = 20-1) = ul|”
= (@0 = u) + O (w0 — 20| (3.4)
< Nan = ul® + 260, |20 — ull llzn = p-1l + 03 20 — @0l
By Lemma 2.8 (i), (3.1) and (3.2) we have
#n i1 = ull® = llanzn + BaToyn + (1 = an = Bo)yn — ul|?
= llam [y f (yn) + (1 = ) Tnyn — ul + Br(Toyn — u)
+ (1= an = Ba)(yn — w)|”
= llam [y (F(yn) = () + v (f (w) = w) + (1 = 70) (Tnyn — u)]
1—a, —
)

+ ﬂn( nyn_u)+ )(yn_u)||2
+ (1 - ’Yn)(Tnyn - u)] + an’Yn(f(u) - u)
+ BT —u) + (1 = an = Ba) (g — )|’ (3.5)

)
(
= [lan [yn(f (yn) — f(u)
(
)

< lom [y (F(yn) = f(u)) + (1 = ) (Tnyn — )] + Bn(Tnyn — u)
+ (1= an = Bn) (yn — W)II* + 2007 (f (u) = w41 — w)

< an [ (f (yn) = F(@) + (1 = %) Ty = W + B [ Tugn — ull”
+ (1= an = Ba) llyn — ul® + 2007 (f(u) = 4, 2ns1 — u)

< @ 1 (yn) = F)I* + @n(l = 70) 1 Tagn — ull® + Ba llyn — ul®
+ (1= an = Ba) llyn — ul® + 2007 (f (1) = 4, @ni1 — )

< vk [gn = ull® + an(l = 10) lyn — ull® + (1 = an) [lyn — u]”
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+ 2007 (f(0) = u, Zng1 —u)
= (1= (1= B)anyn) lyn — ull” + 20070 (f (1) =, p 41 — u)
< (1= (1= Kanya) (llen = ull® + 200 20 = ull 20 = 201l 463 e = 201
+ 20 (f () = U, Tng1 — u)
< (1= (1= F)anya) ln — wll® + (1 = (1 = K)awy) [Ba |0 — 2011 2120 — ul
O 1 — ] + 2009 (F) — 4y T — 1)
Since
On | — Tn—1]| = anZ—n |xn — zp—1]] — 0 as n — oo,
there exists positive constant My >n0 such that
On|ln — Tp—1]] < My, ¥n > 1.
From the inequality (3.5), we get that for n € N,

[@n41 = u|| <=1 =kapym) zn - “”2 +3Ms(1 — (1 = k)anyn)bn |0 — 2n-1]|
+ 20‘7&’}% <f(u) — U, Tp41 — U> (3.6)
=1 =1 =kayym) |zn — “”2
M3(1—(1— nin 0n
+ (1 - k)OC?LFYn |:3 3( ( k)Oé i ) L

(1 — k)"/n tr ||$n - xn—IH
b g 0 =t = ]
< (1= (= Bag) o — ul?

3Msp 0, 2
+ =B [ L 8 o ) 2 )~ w0 )

where M3 = max {sup,, ||z, — u||, M2} . From above inequality, we set

Sn = Hxn - u”2 , O i= Ofn’)/n(l - k)
and

3M3p Hn 2
ty 1= a—k .OTn |20 — Tn_1l| +f<f(u) — U, Tpt1 —u), Yn>1

k
then, we obtain

Snt1 < (1= 6,)8n + Ontpn, Yn>1. (3.7)

Now, we consider the following two cases.

Case 1. Suppose that there exists a natural number ny such that the se-
quence {||z, —ul|}, >, is nonincreasing. Hence, {|[x,, —ul|} converges due to
it is bounded from below by 0. Using the assumption (2) and (3), we get that
3°°° | 6, = co. We next claim that

n—1

limsup (f(u) — u, Tp41 —u) < 0.

n—oo
Coming back to the definition of z,, 1, by Lemma 2.8 (i) and (3.4), one has that

||xn+1 - U||2 = ||Oénzn + /BnTnyn + (1 — Qp — ﬂn)yn - UH2

2 2 2
< anllzn = ull” + Bn | Tnyn — ull” + (1 = an = Ba) [lyn — u|
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— Ba(1 = an — B2) [yn — Tuynl®
< ap [lzn = ull® + Ba llyn — ull® + (1 = 0 = Bn) llyn — ul®
— Ba(1 = an — B2) 1yn — Tuynl® (3.8)
< ap 120 —ull® + (1 = o) lyn — ul®
— Bn(1 = an — B) [yn — Tuynl®
< an [z = ull® = 1y = wl*] + llon - ul?
+ 20, ||$n - u|| Hxn - $n71||
+02 |2 — 2nal* = Bl = n = Ba) [Yn — Tovanl®
It implies that for all, n € N,
Bull = o = B) llym = Tovall” < {12 = ul* =y —
+llzn = ull® = onss —ull? (3.9)
+ 0, ”xn - xnflu (2 ”xn - “H +0n ”xn - xnflu) .

It follows from the assumption (4) and the convergence of the sequences {||x,, — u||}
and 0, ||z, — zp—1|| — O that

lyn — Tnyn| — 0 as n — oo. (3.10)
According to {T,,} satisfies NST-condition(l) with T, we obtain that
lyn — Tyn|| — 0 as n — occ. (3.11)
By the definition of z,, and x4, we have
Zrnt1 = Ynll = llan(zn — yn) + Bu(Tuyn — yn)ll
< o [z = Ynll + B | Toyn — ynl (3.12)
= an [ (f(yn) = yn) + (1 =) (Toyn = yn)ll + Bn [ Tnyn — ynll
< anVu [l (yn) = ynll + (1= m)an [ Toyn = yn)ll + Bu 1 Tnyn — ynll -
This implies by (3.11) and 7,, — 0 that
|n+1 — yn|| — 0 as n — oo.

By the definition of y,,, we obtain

lyn — xn|| = O |2 — Tn—1|| > 0 as n — . (3.13)
Hence
[#ns1 = znll < l2ntr = ynll + llyn — 2all — 0 as n — oc. (3.14)
Let
v =limsup (f(u) — v, Tpi1 —u). (3.15)
n—>oo

So, there exists a subsequence {z;} of {z,} such that
v =limsup (f(u) — v, 2411 — u) . (3.16)
t—sr o0
Since {z;} is bounded, there exists a subsequence {z}} of {z;} such that z; — w €
H. Without loss of generality, we may assume that x; — w.
v =limsup (f(u) — v, 2411 — u) .
¢

—> 00

From (3.11) and (3.13), we derive
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[0 = Txn|| < 20 = ynll + 1yn = Tynll + [[Tyn — Tzn|| (3.17)
< 2lzn = ynll + lyn — Tynll = 0,28 1 — occ.

It implies by Lemma (2.12) that w € F(T). Since ||Z,+1 — Zn|| — 0, we get 441 —
w. Moreover, using u = Pp(7) f(u) and Proposition 2.2 , we obtain

v =limsup (f(u) — u, 2441 — u) = {f(u) — u,w —u) <0. (3.18)
t—>o0
Hence
v = limsup (f(u) — v, xp41 —u) <O0. (3.19)

This implies by (3.19) and using the fact of z—z |xrn — n—1]] = Othatlimsup,,_,. t, <
0. So, from (3.6) and using Lemma 2.13, we obtain that z,, — u.

Case 2. Suppose the sequence {|z, — ull},,,  is not a monotonically decreasing
sequence for a a sufficiently large ny. We set

D=z, —ul?.

So, there exists a subsequence {tl)n]} of {®,} such that ®,,, < ®,, ,; forall j € N.
In this case, defineitas ¢ : {n:n >ng} — N, by

Y(n) :=max{k e N: k <n, & < Dyiq}.
By Lemma 2.14, we have that @) < @y ()41 for all n > np. That is
[2p(ny —ul| < |[2pemyr1 = ¥ > no.
As we know from Case 1, we obtain that for all n > ng,
2 2 2
Buom (1 = wmy = Buem) [Wwm = Toempem |I” < avemy |20 = ull” = 1w — ull’]
2 2
F 2y —uf” = |2y — ull
+ Oy [|Tp(n) = Ty 1|
X (2 |2y — ul]
+ Oy [|Tpm) = Tpmy-1])
2 2
< agim 20 = ul* = [l — ul’]
+ Oy [|Tp(n) — Ty 1|
X (2 |2y — ul]

+ Oy [[T0(n) = Ty 1))
which implies

Hyw(m - Tw(n)yw(n)H — 0 as n — . (3.20)
Similar to the proof in Case 1, we have
||35w<n>+1 - yqp(n)H — 0 as n — 00 (8.21)
and
|Y(n) = Tpmy)|| — 0 as n — . (3.22)

Hence

Hffw(n)ﬂ - x¢(n)|| — 0 as n — 0. (3.23)
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Next, we show limsup,,__, . (f(u) — u, Zp(n)+1 — u) < 0. Put
v = lim sup <f(u) — Uy Top(n) 41 — u>
n—oQ

Without loss of generality, there exists a subsequence {x¢(t)} of {xw(n)} such that
{xdj(t)} converges weakly to some point w € H and
v=lim (f(w) = wwpm —w).

By Lemma 2.12, one has {Tw(t)} satisfies NST-condition(I) with T, so according
to the equality (3.20), ||yy ) — Ty () Yu (1) H — 0 as n — 00, we obtain that

vty = Tyypw|| — 0 as n — oo (3.24)

which implies, by (3.22) and Lemma 2.12 again, thatw € F(T). Since ||zy¢)+1 — Ty )| —
0, we get ()11 — w. Further, using u = Pp(r) f(u) and Proposition 2.2, we get

v= tgnoo (flu) —u,xpmy41 —u) = (f(u) —u,w—u) <0 (3.25)
Then
v = lim sup <f(u) — Uy Typ(1)41 — u> <0 (3.26)
t— o0

Since @y ;) < Pyy1)41 and a4 (1 — k) > 0, as in the proof in Case 1, we have for
all n > ng,

2 3M30‘ 9n 2
lzow —wll” < G775 - 5 lleww = vl + 777 (F@) — w2y —w)
(8.27)
In fact we have that 2 Zp —xn — 1| — 0 and (3.26)
lim sup wa(n) — uH2 <0
n—o0
so we get wa(n) — u|| — 0 as n — o0.
This implies by (3.23) that ||x¢(n)+1 - u|| — 0 as n — oo.
By Lemma 2.14, we get
[y — ull < ||@ymy41 — ul| — 0 as n — oco.
Hence z,, — u. The proof is completed. O
We now consider the following bi-level convex minimization problem:
min w(zx), (3.28)

reX*

where X* is the optimal solution set of problem (3.29). We let €2 be the set of all
solutions of (3.28). For the objective function w of problem (3.28) we make the
following assumption.
Assumption 1.

Cl. w:R™ — R is strongly convex with parameter ¢ > 0,

C2. w is a continuously differentiable function such that Vw is Lipschitz con-

tinuous with constant L,,.

For the problem
X* = arcmin (f(x) + g(x)) (3.29)

zeR"
we assume the following assumption:
Assumption 2.
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Al. f:R"™ — R is convex and continuously differentiable,
A2. Vf is Lipschitz continuous with constant L.
A3. g:R™ — (—o00, 0] is proper, lower semicontinuous, and convex.

Now, we are ready to introduce an algorithm for solving problem (3.28)

Algorithm 2 :

Input: c € (0,2/Ly), s € (0,2/(L., + 0))
Initialize: Take xo, 27 € R™. Let {p,} C (0, 00).

Forn > 1:
Set
0. — min {Mm %} if Xy, # Tp—1;
=
Ln otherwise.
Compute

Yn = Tp + 0n (xn - xn—l)
Zn =Y (I = 8Vw)(Yn) + (1 = n)proxe,o(I — cnV f)yn
Tn+l = (1 — 0y — ﬂn)yn + apzy + ﬁnproxcng(l - cnvf)yn

We obtain the following result as a consequence of Theorem 3.1

Theorem 3.2. Let w : R® — R be a function satisfying the assumption 1. Let
f:R" 5> Randg: R" = (—o0, 00| be function satisfying the assumption 2. Let
{cn} be a sequence of positive real numbers in (0,2/Ly) and let ¢ € (0,2/Ly) such
that ¢, — ¢ as n — oo. Then the sequence {z,,} generated by Algorithm 2 with
the same conditions as in Theorem 3.1 converges strongly to u € €

Proof. PutT,, = proz.,,(I—c,Vf),n € N,and T = proz.,(I—cV f). By Proposition
2.11 we know that {7} satisfies the NST condition-(I) with T. We also know that
T, and T are nonexpansive mappings. It follows directly from Theorem 3.1 that
{z,} converges tou € F(T) = CLTC;Iel]iR% (f(x) + g(x)) such that u = Pp(p)f(u). By

s L . . . B 250 L,
Proposition 2.7 f := I — sVw(z) is a contraction with parameter k = /1 — iyl
It remains to show that n € Q. By using u = Pp(r)f(u) and Proposition 2.2, we
obtain

u= Ppryf(u) & (f(u) —u,z —u) <0, Vze F(T)
(u—sVw(u) —u,z—uy <0, Vze F(T)
(—sVw(u),z —u) <0, Vze F(T)
& (sVw(u),z —u) >0, Vze F(T)
& (Vw(u),z—u)y >0, Vze F(T)=X"
Hence, u is the optimal solution for the problem (3.28). Therefore, x,, — u €
Q. O

3.1. Numerical Results. In this section, we apply our algorithms, Forward-backward
Algorithm, FISTA and NAGA to solve some classification problems based on the
method proposed by Huang et al [9], which is called extreme learning machine
(ELM). It is formulated as follows:
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Let {(xp,tr) : z1 € R™ t, € R™ k =1,2,..., N} be as set of N samples where z;,
is an input and tj, is a target. A simple mathematical model for the output of ELM
for SLFNs with M hidden nodes and activation function G is defined by

M
0j = ZmG(<wi,$j> +bi),
i=1

where w; is the weight that connects the ¢-th hidden node and the input node, 7;
is the weight connecting the i-th hidden node and the output node, and b; is the
bias. The hidden layer output matrix H is defined by

G ((w1,z1)+b1) -+ G{wi,z1) +bun)
H = : :
G ((w1,zn) +b1) -+ G{wm,zN) +bur)
The main objective of ELM is to calculate an optimal weight n = [p{,--- ;71,7
such that Hy = T, where T = [t7 ... |t1]7 is the training target.

In machine learning, fitness of model is very important for accuracy on training
sets. Overfitting model cannot be used to predict unknown data. In order to
avoid overfitting, we use most popular technique which is called the least absolute
shrinkage and selection operator (LASSO). It can be formulated as follows:

Minimize:||Hy — T3 + \||n]|1, (3.30)

where ) is a regularization parameter.
If we set f(z) := |[Hp — T||3 and g(z) := M||n]|;, then we know that Vf(z) =
2H” (Hz — T) and Lipschitz constant of V fis L = 2||H||%.

Hence, we can use our algorithm as a learning method to find the optimal weight
1 and solve classification problems.
Following we consider two data sets:

(i) Iris data set : Each sample in this data set has 4 attributes, and the set
contains 3 classes with 50 samples for each type.

(ii) Heart disease data set : This data set contains 303 samples each of which
has 13 attributes and 2 classes of data.

Data preparation technique : k-fold Cross-validation (k = 10)

Algorithms :
(i) Our Algorithm (Algorithm 3)
(ii) Forward-backward Algorithm (Algorithm 4)
(iii) FISTA (Algorithm 5)
(iv) NAGA (Algorithm 6)

Algorithm 3 :

1: Input zo,z1 € R”,Nmﬂm% € (0,00),pn € (07%) and anaﬁnv'}/n € (Oa 1)’ for
n €N,

0, =

IIliIl{/J,n7 Hl:’i#”}, Tn 7é Tn—1,
Lns otherwise.

Yn = Ty + an(xn - xnfl)v
Zn = ’Ynh(yn) + (1 - Vn)PTOCCp"g(yn - anf(yn)),
Tnt1 = (L= an = Bn)yn + anzn + Buproze,o(I — eV f)yn,
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Algorithm 4 Forward-backward Algorithm

1: Input 2 € R", p, € (0, %), for n € N,

Tnt+1 = pTOIpng(J?n - pnvf(xn))a

Algorithm 5 FISTA

1: Input y; =29 € R",and t; =1, forn € N,

1
Yn = provyo(zn — £V f(zn)),

14 /1 + 42 9 oty —1
2 ) n —

tht1 =

Tp4+1 = Yn + en(yn - yn71)>

Algorithm 6 NAGA

1: Input z9,z; € R",0,, > 0,0, € (0,1), p,, € (0, %) forn € N,
Yn = Tn + O (T — Tp_1),
zn = (1 = an)yn + anprozp,o(Yn — pnV f(yn)),
Tng1 = DProx,, g(2n — puV f(2n)),
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e Chosen parameters of each algorithm :
Contraction mapping : h(z) = 0.9z
Regularization parameter : A = 0.0333
Hidden nodes : m = 30

n = 5000 and p, = %

108
in{0.9, —————||}, z, 1,
Algorithm 3: 6, = ming n3||zn — Tn_1 1} @n # @n
0.9, otherwise.
1 n 1
n=7— Bn=7—"—, Tn=05+—.
In

NAGA: 0, = 0.9, ap = — .
T 10+ 1)

TaBLE 1. The performance of each algorithm at 5000th iteration
with 10-fold cv. on Iris data set

Algorithm 3 Algorithm 4 Algorithm 5 Algorithm 6
acc.trainacc.test| acc.trainacc.test| acc.trainacc.test| acc.trainacc.test
Fold 1 99.26 100 96.30 100 97.78 100 98.52 100

Fold 2 98.52 100 97.04 93.33 | 97.78 100 97.78 100
Fold 3 99.26 100 96.30 100 97.78 93.33 | 97.78 93.33
Fold 4 99.26 100 95.56 100 97.78 100 97.78 100
Fold 5 99.26 100 96.30 100 98.52 93.33 | 99.26 93.33
Fold 6 100 93.33 | 97.78 86.67 | 99.26 93.33 100 93.33
Fold 7 99.26 100 97.04 100 97.78 100 97.78 100
Fold 8 97.78 93.33 | 95.56 86.67 | 97.78 100 97.78 100
Fold 9 99.26 100 96.30 86.67 | 98.52 93.33 | 98.52 93.33
Fold 10 99.26 100 96.30 100 97.78 100 98.52 100
Average acc. 99.11 98.67 | 96.44 95.33 | 98.07 97.33 | 98.37 97.33
Time 0.1750 0.0986 0.1055 0.1702

We observe from Table 1 that Algorithm 3 has the highest accuracy. It performs
better than the other three algorithms.
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Next we focus on bi-level minimization problem

min w (8)

weX*

where X* = aremin (f(z) +g(x)) with f(5) = min [H5 — T3 and g(8) = |8l

1
In case of A =1I,xn, we can reduce the outer level to w(x) = §HXH§ with
L,=1 k=1

In our problem, we are interested to use w(3) = 1||3||3 and we aim to compare

performance of our algorithm (Algorithm 2) and BiG-SAM (Algorithm 7)

Algorithm 7 BiG-SAM

1: Input zp € R", 7, € (0,1),a € (0, L%] and s € (0, %ﬂ) forn € N,

Yn = prozag(xn - Osz(QSn)),
Int+1 = 'Yn(fk - st(:Ck)) + (1 - 'Yn)ylv

e Chosen parameters of each algorithm :

e Regularization parameter : A = 0.0333
e Hidden nodes : m = 30

b n:3007 pn:%fal’ld s:%
108
min{0.9, ———||}, = Tr1s
Algorithm 2 : 0, = { n3||2n — Tn_1 I}, @0 # an
0.9, otherwise.
1 n 1
~ 3. = =—+40.5.
on 3n’ﬂn It ™ nJr
1 1
BiG-SAM: o= —, 7, = —
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TaBLE 2. The performance of each algorithm at 300th iteration with
10-fold cv. on Iris data set

Algorithm 2 Algorithm 7
acc.train acc.test acc.train acc.test

Fold 1 88.89 86.67 80.74 80
Fold 2 89.63 93.33 80.74 80
Fold 3 88.15 100 81.48 86.67
Fold 4 88.15 100 80.74 86.67
Fold 5 87.41 86.67 80.74 80
Fold 6 88.89 73.33 80.74 73.33
Fold 7 90.37 86.67 75.56 86.67
Fold 8 90.37 86.67 77.78 80
Fold 9 89.63 80.00 80.74 73.33
Fold 10 88.89 80.00 81.48 73.33

Average acc. 89.04 88.67 80.07 80

Time 0.0079 0.0032

TaBLE 3. The performance of each algorithm at 300th iteration with
10-fold cv. on Heart disease data set

Algorithm 2 Algorithm 7
acc.train acc.test acc.train acc.test
Fold 1 81.68 90.00 79.49 86.67
Fold 2 81.62 83.87 80.15 77.42
Fold 3 81.99 80.65 80.51 77.42
Fold 4 83.09 83.87 81.25 80.65
Fold 5 81.32 90.00 79.85 83.33
Fold 6 82.05 83.33 79.85 76.67
Fold 7 81.68 86.67 79.49 86.67
Fold 8 83.15 66.67 80.95 66.67
Fold 9 82.78 70.00 81.32 70.00
Fold 10 82.42 83.33 80.22 83.33
Average acc. 82.18 81.84 80.31 78.88
Time 0.0070 0.0033

In Table 2 and Table 3, we compare accuracy of Algorithm 2 with Algorithm 7
for different data sets. For Iris data set we achieve a testing accuracy of 89.04 and
for Heart disease data set we achieve a testing accuracy of 82.18. In both cases,
our proposed algorithm (Algorithm 2) has a better accuracy than Algorithm 7.

4. CONCLUSION

We introduced a new accelerated fixed point algorithm to find a common fixed
point of a family of nonexpansive mappings in a real Hilbert space. First, we
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prove a strong convergence in Algorithm 1. Next, we prove strong convergence
theorems in Algorithm 2. We applied our algorithm to solve the regression and
classification problems. From our study, we obtained highest performance than
the other methods shown in Section 4.
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