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ABSTRACT. In the present paper we study the class of convex optimization problems in
uncertain environment. The objective and constraint functions are assumed to be interval
valued. Solution concepts are proposed under two order relations on the set of all closed
intervals. Weakly continuously differentiability is employed in order to derive necessary
and sufficient conditions for KKT optimality conditions. These theoretical developments are
illustrated through a numerical example.
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1. INTRODUCTION

For solutions of the optimization problems the main components are theory and
methods of mathematical modelling. In practice, it is usually difficult to determine
the real valued coefficients of objective and/or constraint functions involved. There
are two deterministic optimization models to deal with uncertain data viz. robust
optimization Ben­tal et al. [2], and another is interval valued optimization Ben­
Israel and Robers [1]. Many approaches have been developed to deal with these
problems. Birge and Louveaux [14], Vajda [24], Stanchu­Minasian [12], Prekopa
[4] provide various techniques for solving stochastic optimization problems. On
the other hand the collection of papers on fuzzy optimization edited by Slowinski
[21] and Delgado et al. [16] gives the main stream to the topic. Lai and Hwang
[25, 26] also give useful survey. Inuiguchi and Ramik [17] give a review of fuzzy
optimization and a comparison with stochastic optimization in portfolio selection
problems. Slowinski and Teghem [22] provide comparison between two types of the

∗Corresponding author.
Email address : dk.singh1002@gmail.com(Deepak Singh) and sahilbilal99in@gmail.com(Bilal Ahmad Dar).
Article history : Received January 05, 2014, Accepted May 15, 2014.



92 D. SINGH, B.A. DAR, A. GOYAL/JNAO : VOL. 5, NO. 2, (2014), 91­103

optimization problems for multiobjective programming problems.

Charnes et al. [3] considered the linear programming problems in which the
right­hand sides of linear inequality constraints were taken as closed intervals.
In a paper Stancu­Minasian and Tigan [13] obtained solutions for interval valued
optimization problems. Steuer [20] proposed three algorithms, called the F­cone
algorithm, E­cone algorithm and all emanating algorithm to solve the linear pro­
gramming problems with interval objective functions. Ishibuchi and Tanaka [7]
proposed the ordering relation between two closed intervals by considering the
maximization and minimization problems separately. Mraz [6] proved algorithms
to compute the exact upper bound and lower bound for linear programming prob­
lems with interval coefficients. Chanas and Kuchta [23] presented an approach
to unify the solution methods proposed in Ishibuchi and Tanaka [7] and in Rom­
melfanger and Hanuscheck [8]. Oliveria and Antunes [5] provided an overview of
multiobjective linear programming problems with interval coefficients by illustrat­
ing many numerical examples. Lai and Huang et al. [25] proposed an interval
parameter fuzzy nonlinear optimization model for stream water quality manage­
ment under uncertainty.

The Karush­Kuhn­Tucker optimality conditions play an important role in the
area of optimization theory and have been studied for over a century. For inter­
val valued optimization problems, the KKT optimality conditions are also studied
in many recent publications. Recently Wu [10, 11] have studied KKT optimality
conditions for interval valued optimization problems. Also Chalco­Cano et al. [27]
studied the KKT optimality conditions of interval valued optimization problem via
generalised derivative. Moreover Zhang et al. [15] derived the KKT optimality con­
ditions for non­convex programming problems with interval valued objective func­
tions. This paper focuses on nonlinear programming problems in which objective
and constraint functions are interval valued. The main motivation for consider­
ing interval valued constraints is that the uncertainty that is imposed on objective
functions is likely also to be imposed on constraints. The remaining paper is organ­
ised as: In section 2, we introduce some preliminaries of interval arithmetic and the
concept of weak differentiability for intervals valued functions. Moreover by using
the concept of order relations ” ⪯LU ” and ” ⪯UC ” the solution concepts for inter­
val valued optimization problems are given. Also the concept of LU ­convexity and
UC­convexity are provided. In section 3, KKT optimality conditions are derived for
optimization problems with interval valued objective and interval valued constraint
functions. Also by invoking pseudoconvexity the same is derived. An example is
also given in order to illustrate our main result. Finally section 4 is devoted to the
conclusion.

2. PRELIMINARIES AND NOTATIONS

The values of objective and constraint functions in our model are closed inter­
vals, we need to compare the closed intervals. Let us denote by I, the class of all
closed and bounded intervals in R. Throughout this paper, when A is a closed
interval, then it is also bounded. We also adopt the notation A = [aL, aU ], where
aL and aU are the lower and upper end points of A, respectively.

Let A,B ∈ I. Then A + B is defined by A + B = {a + b : a ∈ A and
b ∈ B} = [aL + bL, aU + bU ]. And −A is defined by −A = −a : a ∈ A. And
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A−B = A+ (−B) = [aL − bU , aU − bL].

Further for any real number k,

kA =

{
[kaL, kaU ] if k ≥ 0,

[kaU , kaL] if k < 0;

and for h > 0,

A

h
=

[
aL

h
,
aU

h

]
.

The function f : Rn −→ I, is called an interval valued function, i.e., f(x) =
f(x1, x2, · · · , xn) is a closed interval in R for each x ∈ Rn. Clearly f(x) =
[fL(x), fU (x)], where fL and fU are real valued functions defined on Rn and
satisfy fL(x) ≤ fU (x) for every x ∈ Rn.

Definition 2.1. [10] Let X be open in Rn and let x0 = (x
(0)
1 , x

(0)
2 , · · · , x(0)

n ) ∈ X be
fixed. An interval valued function f : Rn −→ I with f(x) = [fL(x), fU (x)] is said
to be

(i) weakly differentiable at x0 ∈ X if the real valued functions fL and fU are
differentiable at x0 (in the usual sense i.e., all of the partial derivatives(

∂fL

∂xi

)
and

(
∂fU

∂xi

)
exist at x0 for i = 1, 2, · · · , n).

(ii) weakly continuously differentiable at x0 if the real valued functions fL and
fU are continuously differentiable at x0 (i.e., all of the partial derivatives of
fL and fU exist on some neighborhoods of x0 and are continuous at x0).

Wu [10] has formulated two solution concepts for interval valued optimization
problem. We may follow similar solution concepts as that used in [10]. Consider
the following interval valued optimization problem.
(IV P1)

Min f(x) = [fL(x1, x2, · · · , xn), f
U (x1, x2, · · · , xn)] = [fL(x), fU (x)]

Subject to x = (x1, x2, · · · , xn) ∈ X ⊆ Rn.

Since the objective function f(x) is a closed interval, we need to make clear the
meaning of minimization problem (IV P1). Let A = [aL, aU ] and B = [bL, bU ] be
two closed intervals in R. We write A ⪯LU B if and only if aL ≤ bL and aU ≤ bU ,
and A ≺LU B if and only if A ⪯LU B and A ̸= B. Equivalently, A ≺LU B if and
only if {

aL ≤ bL

aU < bU ;
or

{
aL < bL

aU < bU ;
or

{
aL < bL

aU ≤ bU .
(2.1)

Definition 2.2. [10] Let x∗ be a feasible solution of (IV P1). We say that x∗ is
type­I solution of (IV P1) if there exists no x̄ ∈ X, such that f(x̄) ≺LU f(x∗).
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Another solution concept follows from Ishibuchi and Tanaka [7]. Let A =
[aL, aU ] be the closed interval in R. Then we can calculate the centre aC =
1
2 [a

L + aU ] and half width aW = 1
2 [a

U − aL] of A. In this case we can use the
notation

⟨
aC , aW

⟩
for A. i.e., A =

⟨
aC , aW

⟩
. Ishibuchi and Tanaka [7] have pro­

posed the ordering relation between closed intervals A and B by using minimization
and maximization problem separately.

(i) For maximization we write, A ⪯CW B iff aC ≤ bC and aW ≥ bW . i.e., the
interval with higher centre and lower half width (i.e., less uncertainty) is
preferred for maximization problem.

(ii) For minimization we write, A ⪯CW B iff aC ≤ bC and aW ≤ bW . i.e., the
interval with lower centre and lower half width (i.e., less uncertainty) is
preferred for minimization problem.

Also we write A ≺CW B iff A ⪯CW B and A ̸= B.

Ishibuchi and Tanaka [7] proved that

(i) A ⪯UC B Iff A ⪯LU B or A ⪯CW B.
(ii) A ≺UC B Iff A ≺LU B or A ≺CW B.

Definition 2.3. Let x∗ be a feasible solution of (IV P1). We say that x∗ is type­II
solution of (IV P1) if there exists no x̄ ∈ X. s.t., f(x̄) ≺UC f(x∗).

Remark 2.4. [10] Let x∗ be a feasible solution of (IV P1). If x∗ is a type­I solution
of (IV P1) then x∗ is also a type­II solution of (IV P1).

For our on­going discussion we consider the following definition of convexity for
interval valued functions.

Definition 2.5. [10] Let f(x) = [fL(x), fU (x)] be an interval valued function de­
fined on convex set X ⊆ Rn. We say that F is LU ­convex or simply convex at x∗ if

f(λx∗ + (1− λ)x) ⪯LU λf(x∗) + (1− λ)f(x) (2.2)

for each λ ∈ (0, 1) and for each x ∈ X. f is said to be LU ­convex on X if it is
LU ­convex on each point of X. Similarly we can define UC­convexity by using
relation ‘⪯UC ’.

Proposition 2.6. [10] Let X be a convex subset of R and f be an interval valued
function defined on X. Then we have the following properties.

(i) f is LU ­convex at x∗ iff fL and fU are convex at x∗.
(ii) f is UC­convex at x∗ iff fU and fC are convex at x∗.
(iii) If f is LU ­convex at x∗, then f is UC­convex at x∗.
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3. THE KARUSH­KUHN­TUCKER OPTIMALITY CONDITIONS

Consider the optimization problem.
(IV P2)

Min f(x) = [fL(x), fU (x)]
Subject to gj(x) ≤ 0, j = 1, 2, · · · ,m.

Where X = {x ∈ Rn : gj(x) ≤ 0, j = 1, 2, · · · ,m} be feasible set of problem
(IV P2) and let J(x∗) = {j : gj(x

∗) = 0, j = 1, 2, · · · ,m} be the index set of active
constraints. We say that the real valued constraint functions gj , j = 1, 2, · · · ,m
satisfy the Kuhn­Tucker constraint qualification at x∗ when, if, ∇gj(x

∗)
T
d ≤ 0 for

all j ∈ J(x∗), where d ∈ Rn, then there exists an n­dimensional vector function
a : [0, 1] −→ Rn such that a is right­differentiable at 0, a(0) = x∗, a(t) ∈ X for all
t ∈ [0, 1], and there exists a real number α > 0 with a′+(0) = αd Wu [9]. Also
let x∗ ∈ X, We say that gj , j = 1, 2, · · · ,m satisfy KKT­assumptions at x∗ if gj is
convex on Rn and continuously differentiable at x∗ for j = 1, 2, · · · ,m Wu [10].
The KKT optimality conditions for (IV P2) obtained in Wu [10] are as follows.

Theorem 3.1. [10] Suppose that the real valued constraint functions gj : Rn −→
R, j = 1, 2, · · · ,m satisfies KKT­assumptions at x∗ and the interval valued objective
functions f : Rn −→ I is LU ­convex and weakly continuously differentiable at x∗.
If there exist (lagrange) multipliers λ = (λL, λU ) > 0 and µj ≥ 0, j = 1, 2, · · · ,m in
R, such that

(i) λL∇fL(x∗) + λU∇fU (x∗) +
m∑
j=1

µj∇gj(x
∗) = 0

(ii) µjgj(x
∗) = 0,for j = 1, 2, · · · ,m.

Then x∗ is type­I and type­II solution of (IV P2).

Next in this section we are going to obtain KKT optimality conditions for opti­
mization problem (IV P1). For this we consider the optimization problem (IV P1)
with feasible set X = {x ∈ Rn : gj(x) ⪯LU [0, 0], j = 1, 2, ...,m}, where gj(x) =
[gLj (x), g

U
j (x)] are interval valued functions for j = 1, 2, ...,m, defined on Rn. That

is
(IV P3)

Min f(x) = [fL(x), fU (x)]
Subject to gj(x) ⪯LU [0, 0], j = 1, 2, ...,m.

Where f and gj , j = 1, 2, ...,m are interval valued functions.

Next we define the following.

Definition 3.2. Let x∗ be the feasible solution of (IV P3). We say that the interval
valued constraint functions gj , j = 1, 2, ...,m satisfy the Kuhn­Tucker constraint
qualification at x∗ if gLj and gUj , j = 1, 2, ...,m satisfy the Kuhn­Tucker constraint
qualification at x∗.
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In the proof of the following theorem, the Motzkins theorem of alternative is re­
quired. It states that, given matrices A ̸= 0 and C, exactly one of the following
system has a solution:

System 1: Ax < 0, Cx ≤ 0 for some x ∈ Rn.
System 2: ATλ+ CTµ = 0 for some µ ≥ 0 and λ ≥ 0 with λ ̸= 0.

In the following theorem we obtain necessary conditions for type­I solution.

Theorem 3.3. (KKT optimality conditions) Suppose that x∗ is type­I solution of
problem (IV P3) and the interval valued functions f and gj , j = 1, 2, · · · ,m are
weakly differentiable at x∗. Also assume that the interval valued constraint function
gj , j = 1, 2, · · · ,m satisfy Kuhn­Tucker constraint qualification at x∗. Then there
exist (Lagrange) multipliers µL

j , µ
U
j ≥ 0, j = 1, 2, · · · ,m and ξL, ξU > 0 in R , such

that

ξL∇fL(x∗) + ξU∇fU (x∗) +
m∑
j=1

µL
j ∇gLj (x

∗) +
m∑
j=1

µU
j ∇gUj (x

∗) = 0;

µL
j g

L
j (x

∗) = 0 = µU
j g

U
j (x

∗), j = 1, 2, · · · ,m.

Proof. Since f is weakly differentiable at x∗, by Definition 2.1 fL and fU are dif­
ferentiable at x∗. Let there exists d ∈ Rn, such that

∇fL(x∗)T d < 0,
∇fU (x∗)T d < 0,

∇gLj (x
∗)T d ≤ 0, j ∈ J(x∗),

∇gUj (x
∗)T d ≤ 0, j ∈ J(x∗).

(3.1)

Since gj , j = 1, 2, · · · ,m satisfy Kuhn­Tucker constraint qualification at x∗ and fL

is differentiable at x∗, we have

fL(a(t)) = fL(x∗) +∇fL(x∗)T (a(t)− x∗)+ ∥ a(t)− x∗ ∥ ϵ(a(t), x∗)

= fL(x∗) +∇fL(x∗)T (a(t)− a(0))+ ∥ a(t)− a(0) ∥ ϵ(a(t), a(0))

= fL(x∗) + t∇fL(x∗)T
(a(0 + t)− a(0))

t
+ ∥ a(t)− a(0) ∥ ϵ(a(t), a(0))

Where ϵ(a(t), a(0)) −→ 0 as ∥ a(t) − a(0) ∥−→ 0. Therefore, when t −→ 0+, we
have a(0+t)−a(0)

t −→ a′+(0) = αd, where α > 0.

Since ∇fL(x∗)d < 0, we have fL(a(t1)) < fL(x∗) for a sufficiently small t1 > 0.
Similarly we have fU (a(t2)) < fU (x∗) for a sufficiently small t2 > 0. There­
fore we have fL(a(t)) < fL(x∗) and fU (a(t)) < fU (x∗) for a sufficiently small
t < min{t1, t2}; consequently f(a(t)) ≺LU f(x∗) for a sufficiently small t, which
contradicts the fact that x∗ is type­I solution of (IV P3). Therefore system (3.1) has
no solution.
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Now let A be the matrix whose rows are ∇fL(x∗)T and ∇fU (x∗)T and C be the ma­
trix whose rows are ∇gLj (x

∗)T and ∇gUj (x
∗)T for j ∈ J(x∗). According to Motzkins

theorem of alternative, since the system (3.1) has no solution, there exist multipli­
ers ξL, ξU > 0 and µL

j , µ
U
j ≥ 0 in R for j ∈ J(x∗), such that

ξL∇fL(x∗) + ξU∇fU (x∗) +
∑

j∈J(x∗)

{µL
j ∇gLj (x

∗) + µU
j ∇gUj (x

∗)} = 0

Set µL
j = 0 = µU

j for j ∈ {1, 2, · · · ,m} \ J(x∗). Then we have

ξL∇fL(x∗) + ξU∇fU (x∗) +
m∑
j=1

µL
j ∇gLj (x

∗) +
m∑
j=1

µU
j ∇gUj (x

∗) = 0.

µL
j g

L
j (x

∗) = 0 = µU
j g

U
j (x

∗), for j = 1, 2, · · · ,m.

and the proof is completed.
□

The following theorem states some sufficient conditions for type­I optimality.

Theorem 3.4. Suppose that the interval valued functions f and gj , j = 1, 2, · · · ,m
are LU ­convex and weakly continuously differentiable at x∗ ∈ X. If there exist
ξL, ξU > 0 and µL

j , µ
U
j ≥ 0, j = 1, 2, · · · ,m in R, such that

(i) ξL∇fL(x∗) + ξU∇fU (x∗) +
m∑
j=1

µL
j ∇gLj (x

∗) +
m∑
j=1

µU
j ∇gUj (x

∗) = 0

(ii) µL
j g

L
j (x

∗) = 0 = µU
j g

U
j (x

∗), for j = 1, 2, · · · ,m.

Then x∗ is type­I and type­II solution of (IV P3).

Proof. Since gj , j = 1, 2, ...,m are weakly continuously differentiable at x∗, by Def­
inition 2.1 we see that the real valued functions gLj and gUj , j = 1, 2, · · · ,m are
continuously differentiable at x∗. Define the real valued function

ḡj(x) = µ̄L
j g

L
j (x) + µ̄U

j g
U
j (x), j = 1, 2, · · · ,m. (3.2)

Where µ̄L
j , µ̄

U
j ≥ 0, j = 1, 2, · · · ,m. Since gj , j = 1, 2, · · · ,m are LU ­convex at x∗,

according to proposition 2.6, gLj and gUj , j = 1, 2, · · · ,m are convex at x∗. Therefore
ḡj , j = 1, 2, · · · ,m are also convex and continuously differentiable at x∗.

Utilising (3.2), we see that

µL
j ∇gLj (x

∗) + µU
j ∇gUj (x

∗) = µj{µ̄L
j g

L
j (x) + µ̄U

j g
U
j (x)}

= µj ḡj(x), j = 1, 2, · · · ,m (3.3)

Where µj µ̄
L
j = µL

j and µj µ̄
U
j = µU

j for j = 1, 2, · · · ,m. Invoking (3.2) and (3.3) in
(i) and (ii) of theorem we obtain.

(i) ξL∇fL(x∗) + ξU∇fU (x∗) +
m∑
j=1

µj∇ḡj(x
∗) = 0
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(ii) µj ḡj(x
∗) = 0,for j = 1, 2, · · · ,m.

Therefore using Theorem 3.1, x∗ is a type­I solution of the problem heaving in­
terval valued objective function f(x) subject to real valued constraints ḡj(x

∗), j =
1, 2, · · · ,m, i.e.,

f(x∗) ≺LU f(x̄), for each x̄( ̸= x∗) ∈ X. (3.4)

Now suppose that x∗ is not a type­I solution of problem (IV P3). Then, based on
Definition 2.2, there exists x̄ ∈ X, such that{

fL(x̄) ≤ fU (x∗)
fL(x̄) < fU (x∗);

or

{
fL(x̄) < fU (x∗)
fL(x̄) < fU (x∗);

or

{
fL(x̄) < fU (x∗)
fL(x̄) ≤ fU (x∗).

Therefore we see that, f(x̄) ≺LU f(x∗). Which contradicts (3.4). This shows that
x∗ is type­I solution of problem (IV P3) and hence by Remark 2.4, x∗ is also type­II
solution of problem (IV P3). This proves the theorem.

□
Example 3.5. Consider the following programming problem with interval valued
objective and constraint functions:

Min f(x) = [fL(x), fU (x)] = [2x2
1 + 2x2

2 + 3, 2x2
1 + 2x2

2 + 4]
Subject to g1 = [gL1 , g

U
1 ] = [1− x1 − x2, 6− 3x1 − x2] ⪯ [0, 0]
x1 ≥ 0, x2 ≥ 0

Then we have

fL(x1, x2) = 2x2
1 + 2x2

2 + 3, fU (x1, x2) = 2x2
1 + 2x2

2 + 4

gL1 (x1, x2) = 1− x1 − x2, g
U
1 (x1, x2) = 6− 3x1 − x2

It is easy to see that the above functions satisfy the assumptions of Theorem 3.4.
We have to find x1, x2 and ξL, ξU and µL

1 , µ
U
1 , such that:

ξL
[

4x1

4x2

]
+ ξU

[
4x1

4x2

]
+ µL

1

[
−1
−1

]
+ µU

1

[
−3
−1

]
=

[
0
0

]
and


1− x1 − x2 ≤ 0,
6− 3x1 − x2 ≤ 0,

µL
1 (1− x1 − x2) = 0,

µU
1 (6− 3x1 − x2) = 0,

ξL, ξU > 0, µL
1 , µ

U
1 ≥ 0, xi ≥ 0, i = 1, 2.

(3.5)

That is, we have to find a solution for the following simultaneous equations which
satisfy the conditions (3.5).

4ξLx1 + 4ξUx1 − µL
1 − 3µU

1 = 0;
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4ξLx2 + 4ξUx2 − µL
1 − µU

1 = 0.

After some algebraic calculations, we obtain

(x∗
1, x

∗
2) = ( 95 ,

3
5 ), ξ

L = 1
4 , ξ

U = 1
4 , µ

L
1 = 0 and µU

1 = 6
5 .

Since gU1 (
9
5 ,

3
5 ) = 0, condition (ii) in Theorem 3.4 is satisfied. Therefore (x∗

1, x
∗
2) =

( 95 ,
3
5 ) is type­I solution. In view of the Remark 2.4, type­II solution is obvious.

Further let k is non zero integer such that 1 < k < m, the sufficient conditions
can be resorted as:

Theorem 3.6. Under the same assumption of Theorem 3.4, let k be any integer with
1 < k < m. If there exist (Lagrange) multipliers µL

j , µ
U
j ≥ 0, j = 1, 2, · · · ,m s.t,

(i) ∇fL(x∗) +
k∑

j=1

µL
j ∇gLj (x

∗) +
k∑

j=1

µU
j ∇gUj (x

∗) = 0

(ii) ∇fU (x∗) +
m∑

j=k

µL
j ∇gLj (x

∗) +
m∑

j=k

µU
j ∇gUj (x

∗) = 0

(iii) µL
j g

L
j (x

∗) = 0 = µU
j g

U
j (x

∗), forj = 1, 2, · · · ,m.

Then x∗ is type­I and type­II solution of (IV P3).

Proof. Multiplying (i) by ξL > 0 and (ii) by ξU > 0, and adding then we get.

(i) ξL∇fL(x∗) + ξU∇fU (x∗) +
k∑

j=1

µ̂L
j ∇gLj (x

∗) +
k∑

j=1

µ̂U
j ∇gUj (x

∗) = 0

(ii) µ̂L
j g

L
j (x

∗) = 0 = µ̂U
j g

U
j (x

∗), forj = 1, 2, · · · ,m.

Where µ̂L
j = ξLµL

j , µ̂
U
j = ξLµU

j , for j = 1, 2, · · · , k and µ̂L
j = ξUµL

j , µ̂
U
j = ξUµU

j ,
for j = k + 1, · · · ,m Therefore by Theorem 3.4, we see that x∗ is type­I and type­II
solution of (IV P3).

□
Next we introduce centre function f c = 1

2 [f
L + fU ] and then resort the condi­

tions as:

Theorem 3.7. Under the same assumption of Theorem 3.4, Let fC = 1
2 [f

L + fU ]. If
there exist ξC , ξU > 0 and µL

j , µ
U
j ≥ 0, j = 1, 2, · · · ,m. s.t,

(i) ξU∇fU (x∗) + ξC∇fC(x∗) +
m∑
j=1

µL
j ∇gLj (x

∗) +
m∑
j=1

µU
j ∇gUj (x

∗) = 0

(ii) µL
j g

L
j (x

∗) = 0 = µU
j g

U
j (x

∗), forj = 1, 2, · · · ,m.

Then x∗ is type­I and type­II solution of (IV P3).

Proof. Using (3.2) and (3.3) in (i) and (ii) of this theorem we obtain.

(i) ξU∇fU (x∗) + ξC∇fC(x∗) +
m∑
j=1

µj∇ḡj(x
∗) = 0
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(ii) µL
j ḡ

L
j (x

∗) = 0, forj = 1, 2, · · · ,m.

Also since f is LU ­convex and weakly continuously differentiable at x∗, therefore
fC = 1

2 [f
L + fU ] is convex and continuously differentiable at x∗ (by Proposition

2.6 and Definition 2.1). Now suppose x∗ is not type­II solution, using similar ar­
guments as in Theorem 3.4, we conclude that x∗ is a type­II solution of problem
(IV P3). Since

ξU∇fU (x∗) + ξC∇fC(x∗) = ξU∇fU (x∗) +
1

2
ξC [∇fL(x∗) +∇fU (x∗)]

=
1

2
ξC∇fL(x∗) +

(
1

2
ξC + ξU

)
∇fU (x∗),

We conclude that x∗ is also a type­I solution by using Theorem 3.4.
□

Next we present KKT conditions for type­II solution.

Theorem 3.8. Suppose that the interval valued functions gj , j = 1, 2, ...,m are LU ­
convex and weakly continuously differentiable at x∗ ∈ X. Also suppose that the
interval valued function f is UC­convex and weakly continuously differentiable at
x∗. If there exist (Lagrange) multipliers ξL, ξC > 0 and µL

j , µ
U
j ≥ 0, j = 1, 2, ...,m in

R, such that

(i) ξU∇fU (x∗) + ξC∇fC(x∗) +
m∑
j=1

µL
j ∇gLj (x

∗) +
m∑
j=1

µU
j ∇gUj (x

∗) = 0

(ii) µL
j g

L
j (x

∗) = 0 = µU
j g

U
j (x

∗), forj = 1, 2, · · · ,m

Then x∗ is type­II solution of (IV P3).

Proof. Using (3.2) and (3.3) in (i) and (ii) of this theorem we obtain.

(i) ξU∇fU (x∗) + ξC∇fC(x∗) +
m∑
j=1

µj∇ḡj(x
∗) = 0

(ii) µj ḡj(x
∗) = 0, for j = 1, 2, · · · ,m

Since f is UC­convex and weakly continuously differentiable at x∗, we see that fU

and fC are convex and continuously differentiable at x∗ (by Proposition 2.6 and
Definition 2.1). Using similar arguments as in Theorem 3.4, we conclude that x∗

is a type­II solution of (IV P3). Despite of the fact that

ξU∇fU (x∗) + ξC∇fC(x∗) =
1

2
ξC∇fL(x∗) +

(
1

2
ξC + ξU

)
∇fU (x∗).

We cannot conclude that x∗ is also a type­I solution in view of Theorem 3.4, since
the assumptions in this theorem is different from that of Theorem 3.4 and the UC­
convexity does not imply LU ­convexity in general.

□
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Next let us consider pseudoconvexity in order to relax the convexity assumptions
of interval valued objective function.

Definition 3.9. [10] Let f be differentiable real valued function defined on non
empty convex set X of R, then f is said to be pseudoconvex at x∗ if f(x) < f(x∗)
then ∇f(x∗)T (x − x∗) < 0 for x ∈ X and f is strictly pseudoconvex at x∗ if
f(x) ≤ f(x∗) then ∇f(x∗)T (x− x∗) < 0 for x ∈ X.

Definition 3.10. [10] Let f(x) = [fL(x), fU (x)] be an interval valued function de­
fined on convex set X ⊆ Rn. We say that f is pseudoconvex at x∗ if the real valued
functions fL and fU are pseudoconvex at x∗.

Let X be a nonempty feasible set and x∗ ∈ cl(X) (the closure of X). The cone of
feasible directions of X at x∗, denoted by D, is defined by

D = {d ∈ Rn : d ̸= 0, there exists a δ > 0 such that x∗+τd ∈ X for all τ ∈ (0, δ)}.

Each d of D is called a feasible direction of X.

Proposition 3.11. [19] Let X = {x ∈ Rn : gj(x) ≤ 0, j = 1, 2, ...,m} be a feasible
set and a point x∗ ∈ X. Assume that gj are differentiable at x∗ for all j = 1, 2, ...,m.
Let J = {j : gj(x∗) = 0} be the index set for the active constraints. Then

D ⊆ {d ∈ Rn : ∇gj(x
∗)T d ≤ 0 for each j ∈ J}.

(Note that this proposition still hold true if we just assume that gj are continuous
at x∗ instead of differentiable at x∗ for j /∈ J ).

In the proof of the following theorem the Tuckers theorem of the alternative is
needed. It states that, given matrices A and C, exactly one of the following system
has a solution:

System 1: Ax ≤ 0, Ax ̸= 0, Cx ≤ 0 for some x ∈ Rn;
System 2: ATλ+ CTµ = 0, for some λ > 0 and µ ≥ 0.

Theorem 3.12. Suppose that the interval valued functions gj , j = 1, 2, ...,m are LU ­
convex and weakly continuously differentiable at x∗ ∈ X. and the interval valued
objective function f is weakly differentiable and pseudoconvex at x∗. If there exist
(Lagrange) multipliers µL

j , µ
U
j ≥ 0, j = 1, 2, ...,m in R, such that,

(i) ∇fL(x∗) +
m∑
j=1

µL
j ∇gLj (x

∗) = 0

(ii) ∇fU (x∗) +
m∑
j=1

µU
j ∇gUj (x

∗) = 0

(iii) µL
j g

L
j (x

∗) = 0 = µU
j g

U
j (x

∗), for j = 1, 2, · · · ,m

Then x∗ is type­I and type­II solution of (IV P3).
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Proof. We shell prove this result by contradiction. Suppose that x∗ is not a type­I
solution. Then by definition there exists an x̄ ̸= x∗ such that f(x̄) ≺LU f(x∗),
which implies that either fL(x̄) < fL(x∗) or fU (x̄) < fU (x∗). Since f is weakly
differentiable and pseudoconvex at x∗, by Definition 2.1 and 3.10, fL and fU are
differentiable and pseudoconvex at x∗, we have either ∇fL(x∗)T (x̄ − x∗) < 0 or
∇fU (x∗)T (x̄− x∗) < 0. Let us consider the case

∇fL(x∗)T (x̄− x∗) < 0. (3.6)

Let d = x̄ − x∗. Then x = x∗ + τd = τ x̄ + (1 − τ)x∗ ∈ X for τ ∈ (0, 1). Since X
is a convex set and x̄, x∗ ∈ X. This shows that d ∈ D. From Proposition 3.11, we
conclude that

∇gLj (x
∗)d ≤ 0 for each j ∈ J(x∗). (3.7)

Let A be the matrix whose rows are ∇fL(x∗)T and C be the matrix whose rows are
∇gLj (x

∗)T for j ∈ J . Therefore by using Tuckers theorem of the alternative, since
System 1 has a solution d = x̄− x∗ (see (3.6) and (3.7)), there exist no multipliers
0 < λ ∈ R and 0 ≤ µj ∈ R, j ∈ J(x∗), such that λ∇fL(x∗)+

∑
j∈J(x∗)

µj∇gLj (x
∗) = 0,

or equivalently, there exist no multipliers 0 ≤ µL
j ∈ R , j ∈ J(x∗), such that

∇fL(x∗) +
∑

j∈J(x∗)

µL
j ∇gLj (x

∗) = 0, where µL
j =

µj

λ . Setting µL
j = 0, j /∈ J , we get

a contradiction to (i) and (iii). Similarly, If ∇fU (x∗)T (x̄− x∗) < 0, then conditions
(ii) and (iii) will be violated. This shows that x∗ is a type­I solution. From Remark
2.4, the proof is complete. □

4. CONCLUSIONS

Interval programming is one of the approaches to handle the uncertain optimiza­
tion, in which an interval is used to model the uncertainty of variables. Most of the
recent work has been done by considering interval coefficients of objective function.
Although the same uncertainty is also likely to be imposed on constraints. In this
paper we have successfully derived the KKT optimality conditions for programming
problems with interval valued objective and interval valued constraint functions.
Although the interval valued equality constraints are not considered in this paper,
the similar methodology proposed in this paper can also be used to handle the
interval valued equality constraints. Future research is oriented to consider the
uncertain environment in order to study the optimality conditions involving Fuzzy
parameters.
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