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ABSTRACT.We present some hybrid fixed point theorems for nonincreasing mappings in a
partially ordered complete metric space and apply to prove the existence as well as an algo­
rithm for the solutions of initial value problems of nonlinear first order ordinary differential
equations. An example is also provided to illustrate the abstract theory developed in this
paper.
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1. INTRODUCTION

It is well­known that the hybrid fixed point theorems which are obtained using
the mixed arguments from different branches of mathematics are very rich in ap­
plications to allied areas of mathematics, particularly to the theory of nonlinear
differential and integral equations (see Heikkïla and Lakshmikantham [6], Zeidler
[9] and Dhage [2, 3, 5]). Recently, Ran and Reurings [8] initiated the study of hybrid
fixed point theorems in partially ordered sets which is further continued in Nieto
and Rodriguez­Lopez [7] and proved the hybrid fixed point theorems for the mono­
tone mappings in partially ordered metric spaces using the mixed arguments from
algebra, analysis and geometry. Monotone mappings include both nondecreasing
and nonincreasing mappings on ordered sets. The monotone nondecreasing map­
pings are frequently used in nonlinear analysis whereas nincreasing mappings are
rare. Very recently, a different approach for nondecreasing mappings in partially
ordered sets is established in Dhage [5] which is very much useful in the existence

∗Corresponding author.
Email address :bcdhage@gmail.com(Bapurao C. Dhage).
Article history : Received February 25, 2014 Accepted June 02, 2014.



72 B. C. DHAGE AND S. B. DHAGE/JNAO : VOL. 5, NO. 2, (2014), 71­79

theory for nonlinear equations. In this paper we follow the same approach and ob­
tain some hybrid fixed point theorems for noninreasing operators in metric spaces.
The following two notions of regularity and monotone mappings are fundamental
for the fixed point theory in ordered spaces.

Definition 1.1. A partially ordered metric space (X,⪯, d) is called regular if {xn}
is a nondecreasing (resp. nonincreasing) sequence in X such that xn −→ x∗ as
n −→ ∞, then xn ⪯ x∗ (resp. xn ⪰ x∗) for all n ∈ N.

Definition 1.2. A mapping T : X −→ X is called monotone nondecreasing if it
preserves the order relation ⪯, that is, if x ⪯ y implies T x ⪯ T y for all x, y ∈ X.
Similarly, T is called monotone nonincreasing if x ⪯ y implies T x ⪰ T y for all
x, y ∈ X. A monotone mapping T is one which is either monotone nondecreasing
or monotone nonincreasing on X.

Nieto and Lopez [7] introduced the following definition.

Condition (NL): A partially ordered metric space X with metric d is said to
satisfy Condition(NL) if for every convergent sequence {xn} in X to the point x∗

whose consecutive terms are comparable then there exists a subsequence {xnk
} of

{xn} such that every term is is comparable to the limit x∗.

The following hybrid fixed point theorem for nonincreasing mappings is proved
in Nieto and Lopez [7].

Theorem 1.3 (Nieto and Rodriguez­Lopez [7]). Let (X,⪯) be a partially ordered set
and suppose that there is a metric d in X such that (X, d) is a complete metric space.
Let T : X −→ X be a monotone nonincreasing mapping such that there exists a
constant k ∈ [0, 1) such that

d(T x, T y) ≤ k d(x, y) (1.1)

for all elements x, y ∈ X, x ≥ y. Assume that either T is continuous or X satisfies
Condition (NL). Further if there is an element x0 ∈ X satisfying x0 ⪯ T x0 or x0 ⪰
T x0, then T has a fixed point which is further unique if ‘‘every pair of elements in X
has a lower and an upper bound."

Note that Condition (NL) of Theorem 1.3 is very difficult to verify in actual practice
and only continuous case has been applied in Nieto and Lopez [7] to periodic BVP
of first order differential equations for proving the existence of a unique solution,
wherein the nonlinearity is a nonincrasing function in the unknown variable. In
this paper we generalize Theorem 1.3 under a condition which is more general than
Condition (NL) for the self­mappings of a partially ordered metric space satisfying
a condition of nonlinear contraction which is again more general than (1.1). Our
abstract result is applied to a nonlinear first order ordinary differential equations
for proving the existence of unique solution under partially Lipschitz condition.

2. Hybrid Fixed Point Theory

We consider the following definition in what follows.

Condition (D): A partially ordered metric space X with metric d is said to satisfy
Condition (D) if every sequence {xn} in X whose consecutive terms are comparable
has a monotone, i.e. nondecreasing or nonincreasing subsequence.
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There do exist sequences in X with Condition (D). For example, if we consider

X = R, then the sequence {xn} in R defined by xn = (−1)n+1 1

n
has two sub­

sequences, one is nondecreasing another is nonincreasing. Again, the sequence
{1,−1

2 , 3,−
1
4 , . . .} satisfies the Condition (D) but not Condition (NL).

Note that Condition (D) is more general than Condition (NL) in the sense that
Condition (D) implies Condition (NL), however converse may no be true. Indeed if
the Condition (D) holds and if {xn} is any sequence in X converging to x∗ whose
consecutive terms are comparable, then there is a monotone subsequence {xnk

}
of {xn} which also converges to x∗. By regularity of X, xnk

⪯ x∗ or xnk
⪰ x∗ for

all k ∈ N, that is, every term of {xnk
} is comparable to the limit x∗.

Let (X, d) be a metric space and let T : X −→ X be a mapping. Given an
element x ∈ X, we define an orbit O(x; T ) of T at x by

O(x; T ) =
{
x, T x, T 2x, ..., T nx, . . .

}
.

Then T is called T ­orbitally continuous on X if for any sequence
{
xn

}
⊆ O(x; T ),

we have that xn −→ x∗ implies T xn −→ T x∗ for each x ∈ X. The metric space X
is called T ­orbitally complete if every Cauchy sequence

{
xn

}
⊆ O(x; T ) converses

to a point x∗ in X. Notice that continuity implies that T ­orbitally continuity
and completeness implies T ­orbitally completeness of a metric space X, but the
converse may not be true.

Definition 2.1 (Dhage [5]). A mapping T : X −→ X is called partially continuous
at a point a ∈ E if for ϵ > 0 there exists a δ > 0 such that ∥T x−T a∥ < ϵ whenever
x is comparable to a and ∥x − a∥ < δ. T called partially continuous on X if it is
partially continuous at every point of it. It is clear that if T is partially continuous
on X, then it is continuous on every chain C contained in X.

We frequently need a fundamental result concerning Cauchy sequence in what
follows. For, we need the following definition.

Definition 2.2 (Dhage [4]). A mapping ψ : R+ −→ R+ is called a dominating
function or, in short, D­function if it is an upper semi­continuous and monotonic
nondecreasing function satisfying ψ(0) = 0.

There do exist D­functions and commonly used D­functions are

ψ(r) = k r, for some constant k > 0,

ψ(r) =
Lr

K + r
, for some constants L > 0,K > 0,

ψ(r) = tan−1 r,

ψ(r) = log(1 + r),

ψ(r) = er − 1.

The above defined D­functions have been widely used in the existence theory of
nonlinear differential and integral equations.

Remark 2.3. If ϕ, ψ R+ −→ R+ are two D­functions, then i) ϕ + ψ, ii) λϕ, λ > 0,
and iii) ϕ◦ψ are also D­functions on R+. The class of D­functions on R+ is denoted
by D.

Lemma 2.4 (Dhage [4]). Let ψ : R+ −→ R+ be a D­function satisfying ψ(r) < r for
r > 0. Then limn−→∞ ψn(t) = 0 for each t ∈ R+ and vice versa.
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Now we are ready to state a key result in terms of D­function characterizing the
Cauchy sequences in a metric space X.

Lemma 2.5. If {xn} is a sequence in a metric space (X, d) satisfying

d(xn, xn+1) ≤ ψ(d(xn−1, xn)) (2.1)

for all n ∈ N, where ψ is a D­function such that ψ(r) < r, r > 0, then {xn} is Cauchy.

Proof. The proof is well­known and may found in Dhage [5]. So we omit the details.
□

Theorem 2.6. Let (X,⪯, d) be a partially ordered metric space. Let T : X −→ X
be a monotone nonincreasing mapping such that there exists a D­function such that

d(T x, T 2x) ≤ ψ(d(x, T x)) (2.2)

for all elements x ∈ X comparable to T x, where ψ(r) < r, r > 0. Suppose that
either X is T ­orbitally complete and T is T ­orbitally continuous or T is partially
T ­orbitally continuous and X is regular and satisfies Condition (D). Further if there
is an element x0 ∈ X satisfying x0 ⪯ T x0 or x0 ⪰ T x0, then T has a fixed point x∗

and the sequence {Tnx0} of iterations converges to x∗.

Proof. Define a sequence {xn} of successive iterations of T at x0 as

xn+1 = T xn, n = 0, 1, . . . . (2.3)

By nonincreasing nature of T , {xn} is a sequence in X whose consecutive terms
are comparable. If xn = xn+1 for some ∈ N, then u = xn is a fixed point of T .
Therefore, we assume that xn ̸= xn+1 for each n ∈ N. If x = xn−1 and y = xn,
then by condition (2.2), we obtain

d(xn, xn+1) ≤ ψ(d(xn−1, xn)) (2.4)

for each n = 1, 2, . . . . Now, an application of Lemma 2.5, {xn} is Cauchy. Since
the metric space X is T ­orbitally complete, {xn} converges to a unique limit x∗.
If T is T ­orbitally continuous, x∗ is a fixed point of T and the sequence {T nx0}
of successive iterations converges to x∗. Next, suppose that X satisfies Condition
(D). By hypothesis, the sequence {T nx0} of iterates of T at x0 has a monotone
subsequence, say {xnk

}. Then {xnk
} also converges to x∗ and xnk

≤ x∗ for all
k ∈ N. By the partial T ­orbitally continuity of T , we obtain

T x∗ = T
(

lim
k−→∞

xk

)
= lim

k−→∞
T (T nkx0) = lim

k−→∞
xnk+1 = x∗.

This completes the proof.‘ □

Theorem 2.7. Let (X,⪯, d) be a partially ordered metric space. Let T : X −→ X
be a monotone nonincreasing mapping such that there exists a D­function such that

d(T x, T y) ≤ ψ(d(x, y)) (2.5)

for all comparable elements x, y ∈ X, where ψ(r) < r, r > 0. Suppose that either X
is T ­orbitally complete and T is T ­orbitally continuous or T is partially T ­orbitally
continuous andX is regular and satisfies Condition (D). Further if there is an element
x0 ∈ X satisfying x0 ⪯ T x0 or x0 ⪰ T x0, then T has a fixed point x∗ and the
sequence {T nx0} of iterations converges to x∗ which is further unique if ‘‘every pair
of elements in X has a lower and an upper bound."
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Proof. Now the inequality (2.5) implies that the mapping T is partially T ­orbitally
continuous on X. If we let y = T x in (2.5), then it reduces to (2.2). Therefore,
by Theorem 2.6, T has a fixed point x∗ and the sequence {T nx0} of successive
iterations converges to x∗. The uniqueness of fixed point is proved using arguments
given in Nieto and Lopez [7]. □

It is known that ‘every pair of elements in X has a lower and an upper bound
if it is a lattice (cf. Birkhoff [1]). As every monotone nondecreasing or monotone
nonincreasing sequence always has a monotone subsequence and the limit of the
sequence is the limit of the subsequence, we obtain the following general fixed point
theorems for both nondecreasing as well as nonincreasing mappings on partially
ordered metric spaces.

Theorem 2.8. Let (X,⪯, d) be a partially ordered metric space. Let T : X −→ X be
a monotone mapping (monotone nonincreasing or monotone nonincreasing) satisfying
(2.2). Suppose that either X is T ­orbitally complete and T is T ­orbitally continuous
or T is partially T ­orbitally continuous and X is regular and satisfies Condition (D).
If there exists an x0 ∈ X with x0 ⪯ T x0 or x0 ⪰ T x0, then T has a fixed point x∗

and the sequence {T nx0} of iterations converges to x∗.

Theorem 2.9. Let (X,⪯, d) be a partially ordered complete metric space. Let
T : X −→ X be a monotone mapping (monotone nonincreasing or monotone non­
increasing) satisfying (2.5). Suppose that either X is T ­orbitally complete and T is
T ­orbitally continuous or T is partially T ­orbitally continuous and X is regular and
satisfies Condition (D). If there exists an x0 ∈ X with x0 ⪯ T x0 or x0 ⪰ T x0, then T
has a fixed point x∗ and the sequence {T nx0} of iterations of T at x0 converges to
x∗ which is further unique if ‘‘every pair of elements in X has a lower and an upper
bound."

Finally, we mention that the claim made in Nieto and Lopez [7] that the conti­
nuity of the mapping T is not required to guarantee the existence of unique fixed
point is not true. Actually we need certain kind of continuity, namely, the partial
continuity of the mapping T which follows directly from the condition of partial
contraction on X. However, the monotonicity of T is not essential for the exis­
tence of the fixed points, so in this context we replace this monotonicity condition
by preservation of comparable elements, that is transformation of comparable el­
ements into comparable elements. A couple of fixed point results in this direction
are as follows.

Theorem 2.10. Let (X,⪯, d) be a partially ordered metric space. Let T : X −→
X be a mapping satisfying (2.2) and maps comparable elements into comparable
elements, that is,

x, y ∈ X,x ⪯ y ⇒

 T x ⪯ T y
or

T x ⪰ T y.
Suppose that X is T ­orbitally complete and T is T ­orbitally continuous or T is

partially T ­orbitally continuous and X is regular and satisfies Condition (D). If there
exists an x0 ∈ X with x0 is comparable to T x0, then T has a fixed point x∗ and the
sequence {T nx0} of iterations converges to x∗.

Theorem 2.11. Let (X,⪯, d) be a partially ordered metric space. Let T : X −→
X be a mapping satisfying (2.5) and maps comparable elements into comparable
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elements, that is,

x, y ∈ X,x ⪯ y ⇒

 T x ⪯ T y
or

T x ⪰ T y.
Suppose that either X is T ­orbitally complete and T is T ­orbitally continuous or

T is partially T ­orbitally continuous and X is regular and satisfies Condition (D). If
there exists an x0 ∈ X with x0 is comparable to T x0, then T has a unique fixed
point x∗ and the sequence {T nx0} of iterations converges to x∗.

The proofs of Theorems 2.10 and 2.11 are similar to Theorems 2.6 and 2.7 and
so we omit the details.

3. Applications to Hybrid Differential Equations

Given a closed and bounded interval J = [t0, t0 + a] of the real line R for some
t0, a ∈ R with a > 0, consider the initial value problem (in short IVP) of first order
ordinary nonlinear hybrid differential equation (in short HDE)

x′(t) = f(t, x(t)), t ∈ J,

x(t0) = x0 ∈ R,

}
(3.1)

where f : J × R −→ R is continuous function.
By a solution of the HDE (3.1) we mean a function x ∈ C1(J,R) that satis­

fies equation (1.1), where C1(J,R) is the space of continuously differentiable real­
valued functions defined on J .

The HDE (3.1) is well­known in the literature and discussed at length for ex­
istence as well as other aspects of the solutions. The HDE (3.1) is considered in
the function space C(J,R) of continuous real­valued functions defined on J . We
define a norm ∥ · ∥ and the order relation ≤ in C(J,R) by

∥x∥ = sup
t∈J

|x(t)| (3.2)

and
x ≤ y ⇐⇒ x(t) ≤ y(t) (3.3)

for all t ∈ J . Clearly, C(J,R) is a Banach space with respect to above supremum
norm and also partially ordered w.r.t. the above partially order relation ≤ in it. It
is known that the partially ordered Banach space C(J,R) is regular as well as a
lattice.

We need the following definition in what follows.

Definition 3.1. A function u ∈ C1(J,R) is said to be a lower solution of the HDE
(1.1) if it satisfies

u′(t) ≤ f(t, u(t)),

u(t0) ≤ x0,

}
(∗)

for all t ∈ J.

We consider the following set of assumptions in what follows:
(A1) There exist constants λ > 0 and µ > 0, with λ ≥ µ, such that

−µ(x− y)

1 + (x− y)
≤ [f(t, x) + λx]− [f(t, y) + λy] ≤ 0,

for all t ∈ J and x, y ∈ R, x ≥ y.
(A2) The HDE (1.1) has a lower solution u ∈ C1(J,R).
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Consider the IVP of the HDE
x′(t) + λx(t) = f̃(t, x(t)),

x(t0) = x0,

}
(3.4)

for all t ∈ J, where f̃ , g : J × R −→ R and

f̃(t, x) = f(t, x) + λx. (3.5)

Remark 3.2. Note that the function f̃ is continuous on J×R, and so the associated
superposition Nymetski operator (Fx) is integrable on J . Again, a function u ∈
C1(J,R) is a solution of the HDE (3.4) if and only if it is a solution of the HDE (1.1)
on J .

Lemma 3.3. A function u ∈ C1(J,R) is a solution of the HDE (3.4) if and only if it is
a solution of the nonlinear integral equation,

x(t) = c e−λt + e−λt

∫ t

t0

eλsf̃(s, x(s)) ds (3.6)

for all t ∈ J where c is a real number defined by c = x0 e
t0 .

Theorem 3.4. Assume that hypotheses (A1) and (A2) hold. Then the HDE (1.1) has a
unique solution x∗ defined on J and the sequence {xn} of successive approximations
defined by

xn+1(t) = c e−λt + e−λt

∫ t

t0

eλsf̃(s, xn(s)) ds (3.7)

where x0 = u, converges to x∗.

Proof. Set E = C(J,R) and define two operators A on E by

Ax(t) = c e−λt + e−λt

∫ t

t0

eλsf̃(s, x(s)) ds, t ∈ J. (3.8)

From the continuity of the integral, it follows that A defines the map A : E −→
E. Now by Lemma 3.3, the HDE (3.1) is equivalent to the operator equation

Ax(t) = x(t), t ∈ J. (3.9)

We shall show that the operator A satisfies all the conditions of Theorem 2.6.
First we show that A is monotone nonincreasing on E. Let x, y ∈ E be such

that x ≥ y. Then by hypothesis (A1), we obtain

Ax(t) = c e−λt + e−λt

∫ t

t0

eλsf̃(s, x(s)) ds

≤ c e−λt + e−λt

∫ t

t0

eλsf̃(s, y(s)) ds

= Ay(t),
for all t ∈ J . This shows that A is nonincreasing operator on E into E.

Next, let x, y ∈ E be such that x ≥ y. Then,

|Ax(t)−Ay(t)| =

∣∣∣∣e−λt

∫ t

t0

eλs[f̃(s, x(s))− f̃(s, y(s))] ds

∣∣∣∣
≤ e−λt

∫ t

t0

eλs
µ(x(s)− y(s))

1 + (x(s)− y(s))
ds

≤ e−λt

∫ t

t0

eλsλ
|x(s)− y(s)|

1 + |x(s)− y(s)|
ds
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≤ e−λt

∫ t

t0

d

ds
eλs

∥x− y∥
1 + ∥x− y∥

ds

≤
[
1− e−λ(t−t0)

] ∥x− y∥
1 + ∥x− y∥

≤ ∥x− y∥
1 + ∥x− y∥

,

for all t ∈ J . Taking supremum over t, we obtain

∥Ax−Ay∥ ≤ ψ(∥x− y∥),

for all x, y ∈ E with x ≥ y, where ψ is a D­function defined by ψ(r) =
r

1 + r
< r,

r > 0. Hence A satisfies the contraction condition (2.5) on E which further implies
that A is a partially continuous and consequently partially T ­orbitally continuous
on E.

Next, we show that u satisfies the operator inequality u ≤ Au. By hypothesis
(A2), the HDE (1.1) has a lower solution u. Then we have

u′(t) ≤ f(t, u(t)),
u(t0) ≤ x0,

}
(3.10)

for all t ∈ J. Adding λu(t) on both sides of the first inequality in (3.10), we obtain

u′(t) + λu(t) ≤ f(t, u(t)) + λu(t), t ∈ J. (3.11)

Again, multiplying the above inequality (3.11) by eλt,(
eλtu(t)

)′
≤ eλtf̃(t, u(t)). (3.12)

A direct integration of (3.12) from t0 to t yields

u(t) ≤ c e−λt + e−λt

∫ t

t0

eλsf̃(s, u(s)) ds (3.13)

for all t ∈ J . From definition of the operator A it follows that u(t) ≤ Au(t) for
all t ∈ J . Hence u ≤ Au. Thus A satisfies all the conditions of Theorem 2.7
and we apply it to conclude that the operator equation Ax = x has a solution.
Consequently the integral equation and the HDE (1.1) has a solution x∗ defined on
J . Furthermore, the sequence {xn} of successive approximations defined by (3.7)
converges to x∗. This completes the proof. □
Remark 3.5. The conclusion of Theorem 3.4 also remains true if we replace the
hypothesis (A1) with the following one:

(A′
1) There exist a continuous and nondecreasing function ϕ : R+ −→ R+ and

the constants λ > 0 and µ > 0, with λ ≥ µ, such that

−µϕ(x− y) ≤ [f(t, x) + λx]− [f(t, y) + λy] ≤ 0,

for all t ∈ J and x, y ∈ R, x ≥ y, where ϕ(r) < r, r > 0.

Finally, we give a numerical example to show the realization of the abstract
theory in this section.

Example 3.6. Given a closed and bounded interval J = [0, 1], consider the IVP of
HDE,

x′(t) = − tan−1 x(t)− x(t),

x(0) = 1 ∈ R,

}
(3.14)

for all t ∈ J.
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Here, f(t, x) = − tan−1 x − x. Clearly, the functions f is continuous on J × R.
The function f satisfies the hypothesis (A1) with λ = 1 = µ. To see this, we have

0 ≤ tan−1 x− tan−1 y ≤ 1

1 + ξ2
(x− y)

for all x, y ∈ R, x ≥ y, where x > ξ > y. Therefore, λ = 1 = µ, and ψ(r) =
r

1 + ξ2
,

0 < ξ < r, so the hypothesis (A′
1) is satisfied. Finally, the HDE (3.15) has a lower

solution u(t) = −2 defined on J and so (A2) is held. Thus all the hypotheses of
Theorem 3.4 are satisfied. Hence we apply Theorem 3.4 and conclude that the HDE
(3.15) has a solution x∗ defined on J and the sequence {xn} defined by

xn+1(t) = e−t + e−t

∫ t

0

es tan−1 xn(s) ds, t ∈ J, (3.15)

where x0 = −2, converges to x∗.
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