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ABSTRACT. In this paper, by using nonsmooth version of very recently theorem of Ricceri
relating to continuously functionals, we get a new class of nonlinearities for which the
Dirichlet problem has a solution, with a precise estimate on the gradient.
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1. INTRODUCTION

Ricceri in [9] established a new result for sequentially weakly lower semicon­
tinuous functionals and in [10, Theorem 1.1], applied this result for a class of
continuous functions with a certain assumption and proved that problem{

−div(|∇u|p−2∇u) = h(x)f(u) in Ω
u = 0 on ∂Ω

where Ω ⊂ RN is a bounded domain, h ∈ L∞(Ω) and f is continuous function,
has a weak solution and gradient of solution is lower than an estimate depends on
value of a positive constant r.

In the present paper, we apply this result of Ricceri [9, Theorem 1], for a class
of discontinuous functions, which obtains a new existence theorem for Dirichlet
problems involving this type of functions. It is essential, in view of this study, that
our nonlinearity is an upper­semicontinuous multifunction with compact convex
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values. Our main theorem (Theorem 3.2) has a few assumptions on nonlinearity
for which the existence of a solution is obtained with a precise estimate on the
gradient of solution.

The existence of solution is proved by using variational method, following the
ideas of Chang [1] relating to partial differential inclusions. we will prove that our
problem admits a nonzero solution under some technical assumptions on nonlin­
earity.

Partial differential inclusions involving a multifunction have been studied by
some authors using nonsmooth critical point theory introduced by Clark [2]. Among
others, we refer the reader to [3], [4], [7] and [13].

2. PRELIMINARIES AND NOTATIONS

Now, let Ω ⊂ Rn be a bounded domain with smooth boundary and also p > 1.
On the Soboleve space W 1,p

0 (Ω), consider the norm

||u|| = (

∫
Ω

|∇u(x)|pdx)
1
p .

Our assumptions on the multifunction F defined on R are the following:
(F1) F : R → 2R is upper semicontinuous with compact convex values;
(F2) |ξ| ⩽ e(1 + |s|q) for all s ∈ R, ξ ∈ F (s) (e > 0) such that 0 < q ≤ pn

n− p
for

n > p and 0 < q < +∞ for n ≤ p.
Suppose that γ ∈ L∞(Ω)+\{0} and F satisfies (F1),(F2), consider the following
Dirichlet problem {

−div(|∇u|p−2∇u) ∈ γ(x)F (u) in Ω
u = 0 on ∂Ω

(2.1)

Our aim is to prove the existence of a non­zero solution for problem (2.1). In
follow­up, this section is devoted to the statement some lemmas and results of
nonsmooth analysis.

Let X be a Banach space whose dual is denoted by X∗. We recall that the
generalized directional derivative Φ◦(u; v) of a locally Lipschitz function Φ : X → R
at a point u ∈ X and in the direction v ∈ X is defined by

Φ◦(u; v) = lim sup
w→u
τ→0+

Φ(w + τv)− Φ(w)

τ
.

The set ∂Φ(u) := {u∗ ∈ X∗ :< u∗, v >≤ Φ◦(u; v) for all v ∈ X} denotes the
generalized gradient of the function Φ.

Lemma 2.1. ([6, Proposition 1.1]). Let Φ ∈ C1(X) be a functional. Then Φ is locally
Lipschitz and

(1) Φ◦(u; v) =< Φ′(u), v > for all u, v ∈ X;
(2) ∂Φ(u) = {Φ′(u)} for all u ∈ X.

Lemma 2.2. ([2, Proposition 2.2.9]). Let Φ be Lipschitz near each point of an open
convex subset U of X. Then Φ is convex on U if and only if the multifunction ∂Φ(u) is
monotone on U, that is, if and only if

< u∗1 − u∗2, u1 − u2 >⩾ 0 ∀ui ∈ U, ∀u∗i ∈ ∂Φ(ui) (i = 1, 2).

Lemma 2.3. ([6, Proposition 1.6]). Let Φ,Ψ : X → R be a locally Lipschitz function­
als. Then

(1) ∂(λΦ)(u) = λ∂Φ(u) for all u ∈ X,λ ∈ R;
(2) ∂(Φ + Ψ)(u) ⊆ ∂Φ(u) + ∂Ψ(u) for all u ∈ X.
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The following lemma helps us to relate locally Lipschitz functions to lower semi­
continuous functions.

Lemma 2.4. ([5, Lemma 6]). Let f : X → R be a locally Lipschitz functional with
compact gradient. Then f is sequentially weakly continuous.

Proposition 2.5. ([6, Corollary 1.1]). If u ∈ U is a local minimum or maximum of
the locally Lipschitz function f : U → R on an open set a Banach space X, then
0 ∈ ∂f(u).
If, in addition, f is convex, then the above condition is also sufficient for u to be a
global minimum.

The next theorem has proved by Ricceri[11], recall a consequence of the varia­
tional principle, and is a technical tool which obtains the estimate on solution.

Theorem 2.1. Let X be a reflexive real Banach space and let Φ,Ψ : X → R be
two sequentially weakly lower semicontinuous functionals, with Ψ also coercive and
Φ(0) = Ψ(0) = 0.

Then, for each σ > inf
X

Ψ and each λ satisfying

λ > −
inf

Ψ−1(]−∞,σ])
Φ

σ
,

the restriction of λΨ+Φ to Ψ−1(]−∞, σ[) has a global minimum.

3. MAIN RESULTS

In the first of this section, we collect some basic notations that used in our main
result and some especially results about our nonlinearity in form of some lemmas.

For each λ ∈ [0,+∞], we denote by Mλ the set of all global minima of λψ−φ or
the empty set according to whether λ < +∞ or λ = +∞. We adopt the conventions
inf ∅ = +∞ and sup ∅ = −∞.

Moreover, for a, b that are two fixed number in [0,+∞], with a < b, we put

α := max{inf
X
ψ, sup

Mb

ψ}

and
β := min{sup

X
ψ, inf

Ma

ψ}.

From [7], by standard results of setvalued analysis, for a F satisfies (F1) and (F2),
the mapping minF : R → R is lower semicontinuous and maxF : R → R is upper
semicontinuous.
Put

f(s) =

{
maxF (s) if s < 0
minF (s) if s ⩾ 0

then f : R → R is a measurable selection of F . Moreover, f is lower semicontinuous
on [0,+∞[ and upper semicontinuous on ]−∞, 0[, so it is measurable in R.

Now, we set

H(s) =

∫ s

0

f(t)dt for all s ∈ R,

that the convexity of F (s) (see (F1)) implies the convexity of H(s) for every x ∈ R.
Finally, set

J(u) :=

∫
Ω

γ(x)H(u)dx for all u ∈ Lp(Ω).
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The growth condition (F2) implies that J is well defined on Lp(Ω), because for all
u ∈ Lp(Ω) we have∫

Ω

γ(x)
∣∣∣ ∫ u

0

f(s)ds
∣∣∣dx ≤ ||γ||∞

∫
Ω

e(|u|+ |u|p

p
)dx ≤ c||u||pp (c > 0).

Lemma 3.1. ([4, Lemma 3.2]). The functional J : Lp(Ω) → R is Lipschitz on
any bounded subset of Lp. Moreover, for all u ∈ Lp and u∗ ∈ ∂J(u), we have
u∗(x) ∈ γ(x)F (u(x)) for a.a. x ∈ Ω.

Now, for the Banach space X defined before, we have the following lemma.

Lemma 3.2. ([4, Lemma 3.3]). The functional J : X → R is locally Lipschitz and its
gradient ∂J : X → 2X

∗
is compact.

Proof. Since the space X = W 1,p
0 (Ω) is compactly embedded into Lp(Ω), so proof

is similar to the proof of [4, Lemma 3.3] and we do not repeat it. □

Ricceri in [9, Theorem 1], proved the next theorem in a measurable space where
φ and ψ were sequentially weakly lower semicontinuous. Here, by applying Lemma
2.4, we denote this theorem for locally Lipschitz functions.

Theorem 3.1. Let X be a reflexive real Banach space, and ψ : X → R be a
sequentially weakly lower semicontinuous functional and φ : X → R be a locally
Lipschitz functional with compact gradient such that sup

X
ψ > 0 and

inf
x∈X

ψ(x)

1 + ||x||p
> −∞,

for some p > 0. Moreover, assume that the functional λψ − φ is coercive and has a
unique global minimum for each λ ∈]a, b[. Suppose also that α < β.

Then, for each γ ∈ L∞(Ω)+\{0}, and for each r ∈]α, β[ if we put

Vγ,r := {u ∈ Lp(Ω) :

∫
Ω

γ(x)ψ(u(x))dx ⩽ r

∫
Ω

γ(x)dx},

we have

sup
u∈Vγ,r

∫
Ω

γ(x)φ(u(x))dx ⩽ sup
ψ−1(r)

φ

∫
Ω

γ(x)dx. (3.1)

Proof. First of all by Lemma 2.4, functional φ is sequentially weakly continuous,
and the rest of proof is noting else than a very particular case of [9, Theorem 1]. □

The following lemma is a particular case of [12, Theorem 1 ].

Lemma 3.3. Let φ,ψ : R → R be two functions such that, for each λ ∈]a, b[, the
function λψ−φ is lower semicontinuous, coercive and has a unique global minimum
in R. Assume that α < β, then, for each r ∈]α, β[, there exists λr ∈]a, b[, such that
the unique global minimum of the function λrψ − φ lies in ψ−1(r).

Definition 3.4. A function u ∈ X is a weak solution of problem (2.1) if there exists

u∗ ∈ Lq(Ω) (
1

p
+

1

q
= 1) such that∫

Ω

|∇u(x)|p−2∇u(x)∇v(x)− u∗vdx = 0 for all v ∈ X,

such that u∗(x) ∈ γ(x)F (u(x)) for a.a. x ∈ Ω.
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Moreover, if λ1,p denotes the principal eigenvalue of the problem{
−div(|∇u|p−2∇u) = λ|u|p−2u in Ω
u = 0 on ∂Ω

we obtain

λ1,p = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω

|∇u(x)|pdx∫
Ω

|u(x)|pdx
.

We now are ready to state our main theorem.

Theorem 3.2. Let γ ∈ L∞(Ω)+\{0} and (F1), (F2) hold. Furthermore, we assume

(i) H(s) ⩽ m(1 + |s|l) for s ∈ R, 1 < l < p, m > 0;

(ii) lim inf
s→0+

H(s)

sp
>

λ1,p
p ess inf γ

, where ess inf γ(x) > 0;

(iii) for all λ > 0, function s→ λ|s|p −H(s) has a unique global minimum in R;
(iv) there is r > 0 satisfying α < r < β such that

sup
|s|p<r

H(s) < r (
λ1,p

p ess sup γ
), (3.2)

then, the problem {
−div(|∇u|p−2∇u) ∈ γ(x)F (u) in Ω
u = 0 on ∂Ω

(3.3)

has a non­zero weak solution satisfying

∫
Ω

|∇u(x)|pdx < r (

λ1,p

∫
Ω

γ(x)dx

ess sup γ
).

Proof. We are going to apply Lemma 3.3 by taking φ(s) = H(s), ψ(s) = |s|p.
According to definition of H(s), φ is lower semicontinuous and therefore, λψ − φ
is lower semicontinuous. Also, by hypothesis (F2), f is bounded on any bounded
subset of R, henceH is Lipshitz on any such set with constant L > 0, in particular,
H is a locally Lipschitz. Set a := 0, b := +∞. So, let λ ∈]a, b[ and from (i) one can
conclude that

λ|s|p −H(s) ⩾ λ|s|p −m(1 + |s|l),
since 1 < l < p, it follows that

lim
|s|→+∞

(λ|s|p −H(s)) = +∞,

this means that λψ − φ is coercive.
Also by (iii) for all λ > 0 the function λψ − φ has a unique global minimum.

Now, we are allowed to apply Lemma 3.3, note that α = 0 and β = inf
s∈A

|s|p, where

A = {s ∈ R : 0 ∈ −∂H(s)}. Set r :=
1

p
β, thus, if we put

Vγ,r := {u ∈ Lp(Ω) :

∫
Ω

γ(x)ψ(u(x))dx ⩽ β

p

∫
Ω

γ(x)dx},

Theorem 3.1, ensures that

sup
u∈Vγ,r

∫
Ω

γ(x)H(u(x))dx ⩽ sup
|s|p<r

H

∫
Ω

γ(x)dx. (3.4)
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Also, by definition of function ψ, it follows that∫
Ω

γ(x)ψ(u(x))dx ⩽ ess sup γ

∫
Ω

|u(x)|pdx, (3.5)

and, according to the sobolev embedding theorem, one can conclude that

{u ∈W 1,p
0 (Ω) :

∫
Ω

|∇u(x)|pdx ⩽ β

p

(λ1,p ∫
Ω

γ(x)dx

ess sup γ

)
}

⊆ {u ∈ Lp(Ω) :

∫
Ω

|u(x)|pdx ⩽ β

p

(∫
Ω

γ(x)dx

ess sup γ

)
}. (3.6)

By setting B := {u ∈W 1,p
0 (Ω) :

∫
Ω

|∇u(x)|pdx ⩽ β

p

(λ1,p ∫
Ω

γ(x)dx

ess sup γ

)
}, and due to

(3.5), (3.6) and definition of ψ, one can get for u ∈ B,∫
Ω

γ(x)ψ(u(x))dx

⩽ ess sup γ

∫
Ω

|u(x)|pdx

⩽ ess sup γ

β

∫
Ω

γ(x)dx

p ess sup γ

=
β

p

∫
Ω

γ(x)dx,

hence B ⊆ Vγ,r. Consequently

sup
u∈B

∫
Ω

γ(x)H(u(x))dx ⩽ sup
u∈Vγ,r

∫
Ω

γ(x)H(u(x))dx. (3.7)

Accordingly, if put σ =
β

p

(λ1,p ∫
Ω

γ(x)dx

ess sup γ

)
in view of (3.2), (3.4) and (3.7) admits

sup
u∈B

∫
Ω

γ(x)H(u(x))dx

⩽ sup
|s|p<r

H

∫
Ω

γ(x)dx

⩽ βλ1,p
p2 ess sup γ

∫
Ω

γ(x)dx

=
1

p
σ.

At this point, by applying Theorem 2.1 and takingX =W 1,p
0 (Ω), Ψ(u) =

∫
Ω

|∇u(x)|pdx

and Φ(u) = −J(u), problem has a local minimum u which is weak solution for

problem (3.3) such that
∫
Ω

|∇u(x)|pdx < β

p

(λ1,p ∫
Ω

γ(x)dx

ess sup γ

)
.
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We finally remark that 0 is not a local minimum of the energy functional. Indeed,
by a classical result, there is a bounded and positive v ∈W 1,p

0 (Ω) such that∫
Ω

|∇v(x)|pdx = λ1,p

∫
Ω

|v(x)|pdx. (3.8)

On the other hand, the assumption (ii) implies that there exists an element k > 0
such that for every s ∈]0, k[, it follows that

H(s) >
λ1,p s

p

p ess inf γ
. (3.9)

We deduce that for each η ∈]0, k

supΩ v
[ and (3.8) and (3.9),

I(ηv(x)) =
1

p

∫
Ω

(
|∇ηv(x)|pdx−

∫
Ω

γ(x)H(ηv(x))
)
dx

<
1

p

∫
Ω

(
|∇ηv(x)|p − ess inf γ(x)

λ1,p (ηv(x))
p

p ess inf γ

)
dx

=
1

p

∫
Ω

(
λ1,p|ηv(x)|p − ess inf γ(x)

λ1,p (ηv(x))
p

p ess inf γ

)
dx.

We then get I(ηv(x)) < 0. This implies that the energy functional takes negative
values in each ball of W 1,p

0 centered at 0, and so 0 is not a local minimum for it,
and the proof is complete. □

Corollary 3.5. Let Ω =]0, 1[, γ =
1

4
, by applying Theorem 3.2, the only positive

solution of the problem {
−u′′ ∈ γ(x)F (u) in ]0, 1[
u(0) = u(1) = 0

(3.10)

that for each s ∈ R when u(x) = s, function

F (s) =


{1} s < 2

[1,
3

2
] s = 2

{2s− 3} s > 2

satisfies the inequality ∫
Ω

|u′(x)|2dx ⩽ r
(λ1,2 ∫Ω γ(x)dx

ess sup γ

)
. (3.11)

In fact, for p = 2 clearly the assumptions (F1), (F2) and (i) and (iii) in Theorem 3.2

are verified. On the other hand, lim inf
s→0+

H(s)

s2
⩾ λ1,2

2 ess inf γ
.

Also, for β = inf
s= 3

2

|s|2 =
9

4
, suppose that there is 0 < r <

9

4
such that

sup
|s|2<r

H(s) < r
( λ1,2
2 ess sup γ

)
,

this implies that the only weak solution of problem (3.10) satisfies (3.11).
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