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ABSTRACT. The Airlift Loading Problem with Insufficient Aircraft (ALPIA) is frequently faced
by members of the United States Department of Defense when conducting airlift missions.
The ALPIA is a combination of knapsack, assignment, and packing problems; items are
selected for shipment based on a utility measure then assigned to pallets which will be
loaded into an aircraft in a specific pallet position. These pallets are then packed in a
manner to optimize both the pallet and aircraft characteristics, such as item utility, aircraft
and pallet utilization, pallet center of gravity, aircraft center of balance, etc. Since not all
items have the same destination, it is necessary to perform the packing in an intelligent
fashion to ensure ease of unpacking at a destination. This paper formulates the ALPIA as an
integer programming problem which allows items to be stably packed onto pallets with any
specified orientation (i.e. accounting for ‘‘this side up’’ constraints). Rather than addressing
the knapsack, assignment and packing problems separately in a hierarchical manner, this
formulation simultaneously accounts for each of these problems.
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1. INTRODUCTION AND LITERATURE REVIEW

The airlift loading problem (ALP) was first defined by Chocolaad [2] as a knapsack
problem and redefined by Roesener, et al. [8] as a bin-packing problem. This
airlift process involves: (1) packing cargo items onto pallets, (2) partitioning the set
of packed pallets into aircraft loads, (3) selecting a set of aircraft from a pool of
aircraft, and (4) placing the cargo in the best available positions within the aircraft.
There are very strict differences between the ALP and other packing problems. In
addition to the normal spatial packing constraints, factors such as weight, center of
balance, and temporal restrictions on cargo loading availability and cargo delivery
requirements must be considered while solving the ALP [8].
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The two common problems used to model the ALP are knapsack and bin-packing
problems. The single knapsack problem was proven to be a combinatorial NP-
Hard problem by Karp [5]. It involves the selection of items from an available
set of n items each with weight wi and utility ui, i =1,2,. . . ,n, to be packed in a
container with a total weight capacity of b (i.e. a single constraint). The overall
goal is to maximize the combined utility of the items placed into the container.
The multidimensional knapsack problem extends the single dimensional knapsack
problem by allowing more than one constraint in the problem.

The bin packing problem has also been proven to be a combinatorial NP-Hard
problem [5]. It is defined as the placement of objects into a given number of bins
of limited capacity in a way that minimizes the number of bins required. There
are different types of bin packing problems named according to descriptions of the
items to be packed. In this research effort, only two-dimensional (2D) and three-
dimensional (3D) bin packing problems of orthogonal items are considered due
to their relationship to the ALP. Numerous exact, heuristic, and meta-heuristic
solution methods for 2D bin packing problems exist [3, 6]. In 2006, Harwig et
al. [4] used tabu search to solve 2D bin packing problems using two dimensional
packing, achieving excellent results on a well-known problem set. Nance, et al. [7]
and Roesener, et al. [8] defined and solved special cases of aircraft loading problems
as 2D bin packing problems. The 3D bin packing problem is an extension of the
2D bin packing problem in which an additional dimension is added to the problem.
Pallet packing and container loading are common applications of 3D bin packing
problems for which solution methods exist.

2. PROBLEM DESCRIPTION

This research focuses on a problem called the Aircraft Loading Problem with
Insufficient Aircraft (ALPIA). In general, the ALPIA includes selecting cargo items to
be transported, packing the items onto pallets, partitioning the pallets into aircraft
sized loads, and assigning the pallets to specific positions within the available
aircraft. These sub-problems are described in more detail below.

1. Selecting Cargo Items: For regularly scheduled missions, the cargo items
to be transported could surpass the amount of available space within the
airlift aircraft. Thus, some of the items will remain at the aerial port of em-
barkation (APOE). In order to carry the maximum amount of cargo items
and ensure that the most important items are transported, a special evalu-
ation or utility for each cargo item is needed. The goal of this sub-problem
involves maximization of both the number of items and the utility associ-
ated with those items.

2. Packing Items onto Pallets: For some airlift missions (including deploy-
ments), the deploying command packs the pallets prior to the aircraft ar-
rival. In other airlift missions, members of an aerial-port squadron are
responsible for pallet packing. Unless the pallet is properly balanced (i.e.
the pallet center of gravity (CG) is approximately in the geometric center of
the pallet), the safety of the ground handlers and aircrew could be in jeop-
ardy. This sub-problem considers how to best pack selected items onto
a pallet while ensuring safety requirements (proper CG position, heavier
items on lower levels, etc.).

3. Partitioning Packed Pallets: For multi-aircraft/multi-destination missions,
pallets that have the same destinations should be partitioned and assigned
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to the same aircraft. This sub-problem does not occur in single aircraft
operations.

4. Assigning Pallets to Aircraft: This sub-problem involves assigning the pal-
lets to specific pallet stations inside the aircraft while reducing the number
of aircraft required. For this sub-problem, the aircraft’s center of balance
(CB), or the point within the aircraft where the cargo load is balanced, and
any regional constraints associated with a specific pallet position in an
aircraft (i.e. height and weight of packed pallet) must still be satisfied.

Additionally, each of the ALPIA sub-problems is restricted to the same aircraft
constraints which affect the ALP. These constraints were defined by Roesener, et
al. [9]; they are modified for this problem formulation and presented in subsequent
sections.

1. Aircraft CB
2. Operational Allowable Cabin Load (ACL)
3. Pallet Position Restrictions
4. Available Space for Loading
5. Route of Flight and Item Destination
6. Pallet CG

Although the sub-problems of the ALPIA can be viewed separately, they are not
independent. Rather, changes in one sub-problem can have a dramatic impact
on the feasibility and/or optimality of another sub-problem. With this in mind, it
is best to formulate and solve the ALPIA in its entirety, rather than sequentially
solving the sub-problems.

3. ALPIA FORMULATION

To enhance understanding, initially only constraints for a single pallet will be
presented. These constraints with an associated objective function were previously
detailed by Roesener, et al. [9]. After the single pallet constraints are detailed,
multi-pallet, multi-destination and multi-aircraft packing formulations will be pre-
sented, respectively. Lastly, the objective function will be explained.

3.1. ALPIA Set Notation and Variable Description. Before a valid formulation
can be presented, the set notation used in the formulation must be adequately
explained. Additionally, the variables associated with these sets must also be
defined.

Figure 1. ALPIA Sets and their Relationships



128 A. ROESENER AND S. HALL/JNAO : VOL. 5, NO. 1, (2014), 125-141

There are three major data sets associated with the ALPIA: Destinations, Cargo
Items, and Available Aircraft. The aircraft set has a subset, Available Pallet Po-
sitions, which varies among aircraft of different types. The overall goal of this
research is to efficiently and feasibly place the items on the available pallets. The
sets and their relationships are shown in Figure 1.

The constants and decision variables used in this formulation will be explained
in the context of these sets. Some of the input data for the ALPIA are values that
vary as a function of the decision variables. Although these values are not constant
throughout the formulation, their values are not allowed to vary arbitrarily. Thus,
they will be explained in the same section as the constants (i.e., maximum, min-
imum and optimal CB values). The constants and functions of decision variables
are:

a. Destination Set (A): This is the set of destinations for cargo items and
aircraft.
• Item (a∈ A): This index refers to a destination, where a is a positive

integer value (i.e., a∈ {1,2,. . . ,α = |A|}).
b. Item Set (Ω): This is the set of cargo items that may be loaded. The following

defines the parameters (i.e., utility, weight, and dimensions) associated
with each item. Figure 2 presents a visual illustration of an element of this
set.

Figure 2. Physical Characteristics of Item m (m∈ Ω)

• Item (m∈ Ω): This is an index which refers to the items to be trans-
ported, where m is a positive integer value (i.e., m∈ {1,2,. . . ,M= |Ω|}).

• Destination of the item (Ima, m ∈ Ω, a ∈ A): This is a binary constant;
Ima = 1 if item m∈ Ω has destination a∈ A. Otherwise, Ima = 0.

• Utility of the item (um): This is a positive, integer-valued constant. It
is the assigned utility of item m. This value accounts for the priority
of the item and the usefulness that can be currently derived from
transporting the item.

• Weight (wm): This is a real-valued constant. It is the actual weight of
item m (in pounds).

• Dimensions, (dm, lm, hm): In this context, dm is the depth, lm is the
length, and hm is the height of item m (in inches). They are positive,
real-valued constants.

The CG of item m ∈ Ω (not of a packed pallet) is assumed to be in the
geometric center of the item.

c. Aircraft Set (T ): This is the set of aircraft that are available for loading.
• Available Aircraft (t∈ T ): This designates the index for an available

aircraft; it is a positive integer value.
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• Available Aircraft Routes (Rt= {a1,. . . ,aα}, t∈ T, a∈A): This is the set
of ordered destinations that gives the route of aircraft t.

• Cargo Load (Ψt): This is the total weight of the packed items that can
be placed on aircraft t.

• CB Limits for aircraft t (CBt(max), CBt(min),CBt(ideal)): These are the
maximum, minimum, and ideal values of the CB for aircraft t, re-
spectively. These values are predetermined for each aircraft type, and
they depend upon the total cargo weight assigned to the aircraft. The
maximum and minimum CB values are constraints which cannot be
violated without the aircraft departing from safe flight. The ideal CB,
however, denotes the target CB value; it is the CB location (for a given
cargo load) at which the aircraft exhibits the best fuel consumption
rate. Each of these CB limits is a real-valued constant that is a func-
tion of the decision variables.

• Number of Pallet Positions, (nt, t ∈ T ): This is a positive, integer valued
constant. It is the total number of the pallet positions inside the tth

aircraft.
d. Pallet Positions Set (Pt, t∈ T ): This is the set of available pallet positions

within aircraft t.
• Pallet Positions (p∈ Pt, t∈ T ): This is the index for the pallet positions

for each aircraft in the aircraft set. Note that |Pt|= nt, and that this is
directly dependent upon the type and route of aircraft t.

• Assigned Arrival Point (Ipa, p∈ Pt,t∈ T ,a∈ A): This is a binary con-
stant. A value of 1 indicates that the pallet p of aircraft t is assigned
to the destination a.

• Fuselage station (bp, p∈ Pt,t∈ T ): This is a real-valued constant that
refers to the distance from the aircraft’s reference datum point to the
center of pallet position p in aircraft t.

• Pallet Position Restrictions (Wp, Hp, Dp , Lp, p ∈ Pt,t∈ T): These are
constants that represent the weight, height, depth and length (respec-
tively) restrictions for a packed pallet located in pallet position p in
aircraft t.

In addition to the parameters, several decision variables which require detailed
explanation are used in the formulation. Pixel based packing (i.e., the packing bins
and items are partitioned into uniform unit pixels) was first used in a nonlinear 3D
bin packing formulation by Ballew [1]; however, the advantages for implementing
this type of approach was not adequately addressed by Ballew. In this research,
ALPIA is formulated as a multi-constraint bipartite maximal matching problem.
The objective is matching the maximum number of item unit pixels to the pallet
pixels, which is equivalent to occupying the maximum amount of available space
on the pallet.

As seen in Figure 3, items are placed on the pallets on specific grids. A similar
idea was proposed by Ballew [1].

a. Coordinates inside the pallet: (i, j, k) denote the coordinates of a cubic grid
made up of small ‘‘pixels’’ or grid cubes of unit volume. The volume of
each grid cube depends upon the units of the cargo items to be packed.
For example, if all items are measured in inches, then a 1 in3 pixel would
logically be used as a grid cube; if the items are measured in centimeters,
then a 1 cm3 pixel would be used. A smaller grid cube volume allows for
higher fidelity in the packing procedure, but requires more computation
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Figure 3. Required variables for packing an item m (m∈ Ω) on a
pallet p (p∈ Pt) based on grids or pixels

time. For this research, all items are measured in inches; thus, a grid
cube volume of 1 in3 is used.

b. Occupation of pixels (xijkmpt): This is a binary decision variable. A value
of 1 indicates that the grid cube on the (i,j,k) coordinates of the pallet
occupying the pth pallet position in aircraft t is occupied by item m.

c. Item-Pallet Relation (Xmpt): This is a binary decision variable. A value of
1 indicates that item m is packed on the pallet occupying pallet position p
in aircraft t. When considering a given pallet p in aircraft t, the decision
variable is denoted by Xmpt.

d. Item-Pallet Orientation (ymptsz): This is a binary decision variable. A value
of 1 indicates that the zth (z = 1,2,3) dimension of item m is parallel to
the sth (s = 1,2,3) dimension of the pallet occupying the pth pallet position
in aircraft t. It will be used to determine the orientation of a packed item
with reference to the pallet. This variable allows for different orientations
of items as well as ensuring any item with a ‘‘This side up’’ constraint is
properly packed. Figure 4 provides a visual description of these decision
variables.

Now that the sets, constants and variables have been adequately explained, the
actual formulation for the ALPIA can be presented. First, the formulation of a single
pallet, which was previously detailed by Roesener, et al. [9], will be explained. The
single pallet formulation will then be expanded to encompass multiple pallets with
a single destination on a single aircraft. This formulation will be further expanded
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Figure 4. Pallet Orientation Variables

to allow for multiple destinations for items and pallets that are on a single aircraft.
Finally, the formulation of a problem with multiple aircraft which have multiple
destinations will be presented.

3.2. Formulation of the Single Aircraft, Single Destination, Single Pallet Pack-
ing Problem. For a single pallet formulation, the indices for the aircraft t and the
pallet occupying the pth pallet position will have a constant value. These sub-
scripts will therefore be omitted in the mathematical presentation. The constraints
necessary for this formulation are:

a. Overlap Constraint [1]: Multiple items cannot simultaneously occupy the
same grid cube.

M∑
m=1

xijkm ≤ 1 (∀ i, j, k) (3.1)

b. Stability Constraint [1]: Each occupied grid cube requires support; in other
words, it must be placed upon another occupied grid cube or on the surface
of the pallet.

M∑
m=1

xij(k+1)m −
M∑

m=1

xijkm ≤ 0 (∀ i, j, k) (3.2)

c. Dimensional Constraints: The total number of grid cubes occupied by
items along each depth, length and height dimension cannot exceed the
pallet’s limitation for depth (D), length (L) and height (H), respectively.
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D∑
i=1

M∑
m=1

xijkm ≤ D (∀ j, k) (3.3)

L∑
j=1

M∑
m=1

xijkm ≤ L (∀ i, k) (3.4)

H∑
k=1

M∑
m=1

xijkm ≤ H (∀ i, j) (3.5)

d. Volume Constraint: The total volume of packed items on a pallet can be at
most the allowable volume for that pallet, which is D·L·H. In other words,
the total number of grid cubes occupied by all packed items cannot exceed
the total number of available grid cubes.

D∑
i=1

L∑
j=1

H∑
k=1

M∑
m=1

xijkm ≤ D · L ·H (3.6)

e. Weight Constraint: Total weight of packed items on a pallet cannot exceed
the structural weight limitations (W ) for the actual pallet or the pallet
position within the aircraft (W represents the smallest of these weight
limitations).

M∑
m=1

wm ·Xm ≤W (3.7)

Figure 5 shows the 2-dimensional placement (i.e. the ‘‘footprint’’) of two
different items on a theoretical pallet or dimensions ten units by eight units.
Observe that for each column and each row the total occupied pixels are
different from each other. This is one of the reasons for using a grid-based
formulation.

f. CG Constraints: A set of constraints are required to ensure the Pallet CG
in the lateral (CGlength) and longitudinal (CGdepth) direction from the center
of the pallet does not exceed a given amount. The ideal center of balance
is in the center of the pallet, which is determined by L/2 and D/2 for the
lateral and longitudinal dimensions, respectively. These values along with
the CG for the vertical dimension must be calculated as a ‘‘soft’’ constraint
which will negatively impact the objective function if it is violated (but not
cause the problem to become infeasible).[

M∑
m=1

(∑D
i=1

∑L
j=1

∑H
k=1 (i · xijkm)

dm · lm · hm
− D ·Xm

2

)
· wm

−CGdepth

M∑
m=1

wm ·Xm

]
≤ 0

(3.8)

[
−

M∑
m=1

(∑D
i=1

∑L
j=1

∑H
k=1 (i · xijkm)

dm · lm · hm
− D ·Xm

2

)
· wm

+CGdepth

M∑
m=1

wm ·Xm

]
≤ 0

(3.9)
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Figure 5. Example of different items (m∈ Ω) occupying grids on
the pallet p (p∈ Pt)

[
M∑

m=1

(∑D
i=1

∑L
j=1

∑H
k=1 (i · xijkm)

dm · lm · hm
− L ·Xm

2

)
· wm

−CGlength

M∑
m=1

wm ·Xm

]
≤ 0

(3.10)

[
−

M∑
m=1

(∑D
i=1

∑L
j=1

∑H
k=1 (i · xijkm)

dm · lm · hm
− L ·Xm

2

)
· wm

+CGlength

M∑
m=1

wm ·Xm

]
≤ 0

(3.11)

g. Vertical CG Constraint: The pallet CG in the vertical dimension should
be in the lower half of the pallet to prevent tipping. This constraint en-
sures that heavier items are placed under lighter items without imposing
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unnecessary constraints on the problem. The smaller values imply the
vertical CG is below half the height (H/2) of the pallet and the majority of
the heavier items are closer to the pallet surface.

[
M∑

m=1

(∑D
i=1

∑L
j=1

∑H
k=1 (k · xijkm)

dm · lm · hm
− H ·Xm

2

)
· wm

−
M∑

m=1

wm ·Xm

]
≤ H

2

(3.12)

h. Item Integrity: A set of constraints are necessary to ensure that all oc-
cupied cube grids associated with a single item are contiguous. In other
words, cargo items cannot be divided into small pieces and placed on the
pallet. These constraints also ensure that the item’s dimensions and vol-
ume coincide with the actual values for the item while allowing the item
to be packed in different orientations. This non-linear formulation ensures
the item integrity while allowing packing in different orientations.

[
ym11

(
dm

D−dm∑
i=1

dm−1∏
s=0

x(i+s)jkm

)
+ ym12

(
lm

D−lm∑
i=1

lm−1∏
s=0

x(i+s)jkm

)

+ym13

(
hm

D−hm∑
i=1

hm−1∏
s=0

x(i+s)jkm

)]
=

(
D∑

i=1

xijkm

)
(∀ j, k,m)

(3.13)

ym21

dm

L−dm∑
j=1

dm−1∏
s=0

xi(j+s)km

+ ym22

lm L−lm∑
j=1

lm−1∏
s=0

xi(j+s)km


+ym23

hm

L−hm∑
j=1

hm−1∏
s=0

xi(j+s)km

 =

 L∑
j=1

xijkm

 (∀ i, k,m)

(3.14)

ym31

dm

H−dm∑
j=1

dm−1∏
s=0

xij(k+s)m

+ ym32

lm H−lm∑
j=1

lm−1∏
s=0

xij(k+s)m


+ym33

hm

H−hm∑
j=1

hm−1∏
s=0

xij(k+s)m

 =

 L∑
j=1

xijkm

 (∀ i, j,m)

(3.15)

i. Item Orientation Constraint: The last set of constraints only applies to
items which have a ‘‘this side up’’ constraint. These constraints force the
height dimension of the item to be used in the vertical orientation.

ym11 + ym21 + ym31 ≤ 1 (∀ m) (3.16)

ym12 + ym22 + ym32 ≤ 1 (∀ m) (3.17)

ym13 + ym23 + ym33 ≤ 1 (∀ m) (3.18)

ym11 + ym12 + ym13 ≤ 1 (∀ m) (3.19)
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ym21 + ym22 + ym23 ≤ 1 (∀ m) (3.20)

ym31 + ym32 + ym33 ≤ 1 (∀ m) (3.21)

ym33 = Xm (3.22)

3.3. Formulation of the Single Aircraft, Single Destination, Multi-Pallet Pack-
ing Problem. For a multi-pallet ALPIA formulation in a single aircraft with a single
destination, the previously defined constraints are used with an additional index
(p∈ P) to account for multiple pallet positions. The aircraft index will still remain
constant and will therefore be omitted. Additional constraints are necessary to
ensure that none of the items are placed on multiple pallets and to distinguish
between pallet positions.

n∑
p=1

Xmp ≤ 1 (∀ m) (3.23)

Another important constraint for flight safety is the aircraft CB. A constraint
that assures that the aircraft CB is within the acceptable range is given by:

CBmin ≤

∑n
p=1

(
bp ·

∑M
m=1 (wm ·Xmp)

)
∑M

m=1 wm ·Xmp

 ≤ CBmax (3.24)

The last constraint for aircraft is the total ACL. The total weight of the cargo load
cannot exceed the allowable cabin load for the aircraft.

n∑
p=1

M∑
m=1

(wm ·Xmp) ≤ ψ (3.25)

3.4. Formulation of the Single Aircraft, Multi-Destination, Multi-Pallet Pack-
ing Problem. In the multi-destination, single-aircraft instance of the ALPIA prob-
lem, an additional constraint is added to the problem. The aircraft subscript is still
not required in this formulation. The additional constraint is:

Ima · Ipa = Xmp (∀ a,m, p) (3.26)

This constraint ensures that none of the items are allowed to be packed on a
pallet that has a different destination than the item.

3.5. Formulation of Multi-Aircraft, Multi-Destination, Multi-Pallet Packing Prob-
lem with Insufficient Aircraft. When the formulations used in the previous sub-
problems are augmented with the index accounting for multiple aircraft (t∈ T ) and
combined, the following formulation is derived. The first constraints are for packing
the pallet:

M∑
m=1

xijkmpt ≤ 1 (∀ i, j, k, p, t) → Avoid Item Overlap (3.27)

Dpt∑
i=1

Lpt∑
j=1

Hpt∑
k=1

M∑
m=1

xijkmpt ≤ Dpt · Lpt ·Hpt (∀ p, t) → Pallet V olume (3.28)
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Dpt∑
i=1

M∑
m=1

xijkmpt ≤ Dpt (∀ j, k, p, t) → Pallet Depth (3.29)

Lpt∑
j=1

M∑
m=1

xijkmpt ≤ Lpt (∀ i, k, p, t) → Pallet Length (3.30)

Hpt∑
k=1

M∑
m=1

xijkmpt ≤ Hpt (∀ i, j, p, t) → Pallet Height (3.31)

M∑
m=1

Xmpt · wm ≤Wpt (∀ p, t) → Pallet Weight (3.32)

M∑
m=1

xij(k+1)mpt −
M∑

m=1

xijkmpt ≤ 0 (∀ i, j, k, p, t) → Packing Stability (3.33)

Dpt∑
i=1

Lpt∑
j=1

Hpt∑
k=1

xijkmpt ≤ dm · lm ·hm ·Xmpt (∀ m, p, t) → Linking Constraint (3.34)

Ima · Ipa = Xmpt (∀ a,m, p, t) → Destination Constraint (3.35)

The Pallet CG constraints are given by (depth, length, and height, respectively):

∣∣∣∣∣
m∑

m=1

[(∑Dpt

i=1

∑Lpt

j=1

∑Hpt

k=1 (i · xijkmpt)
dm · lm · hm

− Dpt ·Xmpt

2

)
· wm

]

−
M∑

m=1

Xmpt · wm

∣∣∣∣∣ ≤ CGdepth,pt

(3.36)

∣∣∣∣∣
m∑

m=1

[(∑Dpt

i=1

∑Lpt

j=1

∑Hpt

k=1 (j · xijkmpt)
dm · lm · hm

− Lpt ·Xmpt

2

)
· wm

]

−
M∑

m=1

Xmpt · wm

∣∣∣∣∣ ≤ CGlength,pt

(3.37)

(
m∑

m=1

[(∑Dpt

i=1

∑Lpt

j=1

∑Hpt

k=1 (k · xijkmpt)
dm · lm · hm

− Hpt ·Xmpt

2

)
· wm

]

−
M∑

m=1

Xmpt · wm

)
≤ Hpt

2

(3.38)

As previously mentioned in the single pallet packing process, pixels must be kept
contiguous by using another constraint set. This formulation requires the same
type of constraints with the additional indices for multiple pallets and aircraft.



A NONLINEAR IP FORMULATION FOR THE ALPIA 137

[
ym11pt

(
dm

D−dm∑
i=1

dm−1∏
s=0

x(i+s)jkmpt

)
+ ym12pt

(
lm

D−lm∑
i=1

lm−1∏
s=0

x(i+s)jkmpt

)

+ym13pt

(
hm

D−hm∑
i=1

hm−1∏
s=0

x(i+s)jkmpt

)]
=

(
D∑

i=1

xijkmpt

)
(∀ j, k,m, p, t)

(3.39)

ym21pt

dm

L−dm∑
j=1

dm−1∏
s=0

xi(j+s)kmpt

+ ym22pt

lm L−lm∑
j=1

lm−1∏
s=0

xi(j+s)kmpt


+ym23pt

hm

L−hm∑
j=1

hm−1∏
s=0

xi(j+s)kmpt

 =

 L∑
j=1

xijkmpt

 (∀ i, k,m, p, t)

(3.40)ym31pt

dm

H−dm∑
j=1

dm−1∏
s=0

xij(k+s)mpt

+ ym32pt

lm H−lm∑
j=1

lm−1∏
s=0

xij(k+s)mpt


+ym33pt

hm

H−hm∑
j=1

hm−1∏
s=0

xij(k+s)mpt

 =

 L∑
j=1

xijkmpt

 (∀ i, j,m, p, t)

(3.41)

These constraints make the problem distinctly non-linear. Furthermore, they
are very detailed and (possibly) difficult to understand. The following constraints
could replace the pixel contiguity constraints; however, both sets of constraints
will result in a non-linear formulation of the problem.

max

(
i+dm∑
s=i

x(s)jkmpt

)
− dmym11pt = 0 (∀ j, k,m, p, t) (3.42)

max

j+dm∑
s=j

xi(s)kmpt

− dmym21pt = 0 (∀ i, k,m, p, t) (3.43)

max

(
k+dm∑
s=k

xij(s)mpt

)
− dmym31pt = 0 (∀ i, j,m, p, t) (3.44)

max

(
i+lm∑
s=i

x(s)jkmpt

)
− lmym11pt = 0 (∀ j, k,m, p, t) (3.45)

max

j+lm∑
s=j

xi(s)kmpt

− lmym21pt = 0 (∀ i, k,m, p, t) (3.46)

max

(
k+lm∑
s=k

xij(s)mpt

)
− lmym31pt = 0 (∀ i, j,m, p, t) (3.47)

max

(
i+hm∑
s=i

x(s)jkmpt

)
− hmym11pt = 0 (∀ j, k,m, p, t) (3.48)
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max

j+hm∑
s=j

xi(s)kmpt

− hmym21pt = 0 (∀ i, k,m, p, t) (3.49)

max

(
k+hm∑
s=k

xij(s)mpt

)
− hmym31pt = 0 (∀ i, j,m, p, t) (3.50)

To account for different orientations and still ensure feasible solutions, the fol-
lowing set of constraints is required.

τ∑
t=1

nt∑
p=1

(ym11pt + ym21pt + ym31pt) ≤ 1 (∀ m) (3.51)

τ∑
t=1

nt∑
p=1

(ym12pt + ym22pt + ym32pt) ≤ 1 (∀ m) (3.52)

τ∑
t=1

nt∑
p=1

(ym13pt + ym23pt + ym33pt) ≤ 1 (∀ m) (3.53)

τ∑
t=1

nt∑
p=1

(ym11pt + ym12pt + ym13pt) ≤ 1 (∀ m) (3.54)

τ∑
t=1

nt∑
p=1

(ym21pt + ym22pt + ym23pt) ≤ 1 (∀ m) (3.55)

τ∑
t=1

nt∑
p=1

(ym31pt + ym32pt + ym33pt) ≤ 1 (∀ m) (3.56)

ym33pt = Xmpt (3.57)

Finally, the constraints related to the available aircraft are given by:

n∑
p=1

Xmpt ≤ 1 (∀ m, t) (3.58)

CBmin,t ≤

∑n
p=1

(
bpt ·

∑M
m=1 (wm ·Xmpt)

)
∑M

m=1 wm ·Xmpt

 ≤ CBmax,t (∀ t) (3.59)

n∑
p=1

M∑
m=1

(wm ·Xmpt) ≤ ψt (∀ t) (3.60)
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3.6. Objective Function. Unlike bin, pallet or container packing problems which
have an objective of minimizing the number of bins required to pack all items, the
ALPIA primary objective is to maximize the total utility of the packed items while
also maximizing the total volume and weight of the transported items. Of course,
leaving any available space on the pallet empty may cause the overall problem to
require an additional bin (possibly more). Thus, without exceeding the weight or
volume limitations of pallets, a goal of the ALPIA is to pack them efficiently; this
aids the primary objective by ensuring pallet space is available for as many items
as possible.

The ALPIA objective function is also similar to that of a knapsack problem. In
both types of problems, the number of ‘‘bins’’ or ‘‘knapsacks’’ is limited. In knap-
sack problems, the objective involves maximizing the total utility of the selected
items; however, for the ALPIA, simply maximizing the number of the packed, high
priority items while only focusing on utility may lead to inefficient use of available
capacity (weight and space).

In the following section, two different objective functions are introduced. The
first function is a weighted sum of sub-objectives. The sub-objectives of the ALPIA
are:

a. Maximizing the utility of the packed items and reducing the number of un-
packed high utility items: Both packed and unpacked items are relevant
in the ALPIA. Failing to pack items of high priority is as undesirable as
neglecting to utilize the available aircraft capacity. Thus, the first objective
function, f1, is given by:

f1 =


(∑M

m=1 um

)
−
(∑M

m=1 um ·Xm

)
(∑M

m=1 um

)
 · 100 (3.61)

This objective function is a percentage of the utility of the packed items.
Unfortunately, minimizing this value may lead to packing the highest pri-
ority items whenever there is sufficient space (regardless of whether some
other item is better suited for the space).

b. Maximum Aircraft Capacity Usage: ALPIA involves packing the aircraft
efficiently by placing properly packed pallets within the aircraft. Placing
packed pallets with the available volume maximized may not result in the
best possible solution; weight and volume maximization should also be
included. Additional portions of the objective function which account for
these considerations are labeled f2 and f3 and are given by:

f2 =

min
[(∑τ

t=1

∑nt

p=1Wp

)
, (
∑τ

t=1 ψt)
]
−
(∑M

m=1 wm ·Xm

)
min

[(∑τ
t=1

∑pt

p=1Wp

)
, (
∑τ

t=1 ψt)
]

 · 100 (3.62)

f3 =


(∑τ

t=1

∑nt

p=1 Lpt ·Dpt ·Hpt

)
−
(∑M

m=1 wm ·Xm

)
(∑τ

t=1

∑nt

p=1 Lpt ·Dpt ·Hpt

)
 · 100 (3.63)

The overall goal of these two portions of the objective function is to min-
imize the unused capacity by minimizing the unused weight and volume
pallet capacity, respectively. These functions make the objective function
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non-linear. The weight limitation of the aircraft depends on the relation-
ship between the ACL and the total weight capacity of the pallet positions
on the same aircraft.

c. Balanced Aircraft: An unbalanced aircraft with pallets whose volume is
maximized will be an infeasible solution to the ALPIA; packing the pallets
with respect to each other is important. CB feasibility is assured with the
constraints; thus this does not require inclusion in the objective function.

d. Efficiently Packed Pallets: Packing balanced and stable pallets is more
important than completely maximizing their volume. CG feasibility and
stable packing of the items are assured by the constraints. As a result,
this does not require inclusion in the objective function.

After defining the sub-objectives, the overall objective is a weighted summation
of the sub-objective functions and is given by:

min [(λ1 · f1) + (λ2 · f2) + (λ3 · f3)] = min

3∑
i=1

(λi · fi) (3.64)

where f1, f2, and f3 are as previously defined, and λ1, λ2, and λ3 are penalty
weights.

Despite the similarities with knapsack and bin packing problems, the ALPIA has
additional aspects which require consideration. These considerations may result
in a non-convex solution space of ALPIA. In addition to the drawbacks of a non-
linear function, possible non-convex portions of the solution set of ALPIA may not
be obtained by minimizing convex combinations of the objectives.

Thus, another objective function for the ALPIA may be given as:

max

[
M∑

m=1

uλ
m · lm · dm · hm · wm ·Xm

]
(3.65)

This objective function attempts to simultaneously maximize the total utility,
total volume and total height without using penalty multipliers. The use of the
superscript ensures the importance of the priority aspect of the items. Lower values
may be used in routine missions for higher aircraft utilization; higher values may
be used in deployment (less frequent) missions for value based aircraft utilization.

4. COMPLEXITY OF ALPIA

Clearly, ALPIA is an NP-Hard optimization problem since the 0-1 Knapsack prob-
lem is a special case of sub-problem 1 (i.e., Selecting Cargo Items). Although the
polynomial transformation is not presented in this research, the 0-1 Knapsack
problem can be reduced to the ALPIA in polynomial time. Karp [5] previously
proved the 0-1 Knapsack problems to be NP-Hard.

5. SUMMARY

In this research effort, the Airlift Loading Problem with Insufficient Aircraft
(ALPIA) was introduced and explained in detail. Similarities and differences be-
tween the ALPIA and knapsack, bin-packing and multi-constraint bipartite max-
imal matching problems were also presented. For the first time, a formulation
considering all the constraints of ‘‘packing an aircraft’’ and an objective function
that achieves the ALPIA objective is presented. Except for the contiguity constraint
and the objective function, this is an integer-linear formulation.



A NONLINEAR IP FORMULATION FOR THE ALPIA 141

The number of variables associated with the constraints presented in the ALPIA
formulation is very large; there are(

τ∑
t=1

nt∑
p=1

(Lpt ·Dpt ·Hpt)

)
+ 7 (t ∈ T, p ∈ PT ) (5.1)

variables required for each item. Couple this with the fact that the ALPIA is
an NP-Hard problem, and classical optimization methods are insufficient to solve
the ALPIA in a reasonable amount of computational time and effort. Therefore,
heuristics or other algorithmic techniques can be applied to this problem to provide
a high quality solution in a reasonable amount of time.
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