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ABSTRACT. In the present paper we prove a unique common fixed point theorem for a
family of R-weakly commuting maps in non-Archimedean Menger PM-spaces without using
the notion of continuity. Our result generalizes and extends the result of Khan and Sumitra
[5] and few others, also suggest a path to a new inequality containing rational, product and
minimum of some terms under implicit relation.
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1. INTRODUCTION

Non-Archimedean probabilistic metric space and some topological preliminar-
ies on them were first studied by Istratescu and Babescu [9] and Istratescu and
Crivat [10]. Some fixed point theorems for mappings on non-Archimedean Menger
spaces have been proved by Istratescu ([11],[12]) as a result of the generalizations of
some of the results of Sehgal and Bharucha-Reid [13] and Sherwood [2]. Achari [3]
studied the fixed points of quasi-contraction type mappings in non-Archimedean
PM-spaces and generalized the results of Istratescu [11]. In 1994, Pant [6] in-
troduced the concept of R-weakly commuting maps in metric spaces. Later on
Cho et al. [14] generalised this this idea and gave the concept of R-weakly com-
muting maps of type Ag. Vasuki [7] proved some common fixed point theorem
for R-weakly commuting maps in fuzzy metric spaces. Recently Khan and Sumi-
tra [5] introduced the concept of R-weakly commuting maps in non-Archimedean
menger PM-spaces and proved a common fixed point theorem for three point wise
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R-weakly commuting mappings in complete non-Archimedean Menger PM-spaces.
In the present paper we prove a unique common fixed point theorem for a family of
R-weakly commuting maps in non-Archimedean Menger PM-spaces without using
the notion of continuity. our result generalizes and extends the result of Khan and
Sumitra [5] and other, also suggest a path to a new inequality containing rational,
product and minimum of some terms under implicit relation.

2. PRELIMINARIES

Definition 2.1. [10],[11] Let X be any non-empty set and D be the set of all
left continuous distribution functions. An ordered pair (X, F ) is said to be non-
Archimedean probabilistic metric space (N.A. PM-space) if F is a mapping from
X × Xinto D satisfying the following conditions, where the value of Fat (x, y) ∈
X ×X is represented by Fx,y or F (x, y) for all x, y ∈ X such that

(i) F (x, y; t) = 1 for all t > 0 if and only if x = y;
(ii) F (x, y; t) = F (y, x; t);
(iii) F (x, y; 0) = 0;
(iv) if F (x, y; t1) = F (y, z; t2) = 1 then F (x, z;max{t1, t2}) = 1 for all x, y, z ∈ X.

Definition 2.2. [4] A t-norm is a function ∆ : [0, 1] × [0, 1] −→ [0, 1] which is
associative, commutative, non-decreasing in each coordinate and ∆ (a, 1) = a for
all a ∈ [0, 1].

Definition 2.3. [1],[9] A non-Archimedean Menger PM-space is an ordered triplet
(X, F,∆) where ∆ is a t-norm and (X, F ) is a N.A. PM-space satisfying the fol-
lowing condition: F (x, z;max{t1, t2}) ≥ ∆(F (x, y; t1), F (y, z; t2)) for all x, y, z ∈
X, t1, t2 ≥ 0. For details of topological preliminaries on non-Archimedean Menger
PM-spaces, we refer to Cho et al.[15].

Definition 2.4. [8],[15] An N.A. Menger PM-space (X, F,∆) is said to be of type
(C)g if there exists a g ∈ Ω such that
g(F (x, z; t)) ≤ g(F (x, y; t)) + g(F (y, z; t)) for all x, y, z ∈ X, t ≥ 0, where Ω = {g|g :
[0, 1] −→ [0,∞) is continuous, strictly decreasing with g(1) = 0 and g(0) < ∞.

Definition 2.5. [8],[15] A N.A. Menger PM-space (X, F,∆) is said to be of type (D)g

if there exists a, g ∈ Ω such that g(∆(t1, t2)) ≤ g(t1) + g(t2) for all t1, t2 ∈ [0, 1].

Remark 2.6. [8],[15] (i) If N.A. Menger PM-space is of type (D)gthen (X, F,∆)is
of type (C)g.

(ii) If (X, F,∆) is N.A. Menger PM-space and ∆ ≥ ∆(r, s) = max(r + s − 1, 1)
then (X, F,∆) is of type (D)g for g ∈ Ω and g(t) = 1− t.

Throughout this paper (X, F,∆) is a complete N.A. Menger PM-space with a
continuous strictly increasing t-norm ∆. Let ∅ : [0,∞) −→ [0,∞) be a function
satisfying the condition (Φ); (Φ) (φ) is upper semi-continuous from the right and
φ(t) < t for t > 0.

Definition 2.7. [8],[15] A sequence {xn} in the N.A. Menger PM-space (X, F,∆)
converges to x if and only if for each ε > 0, λ > 0 there exists M(ε, λ) such that
g(F (xn, x; ε)) < g(1− λ) for all n > M.

Definition 2.8. [15] A sequence xn in the N.A. Menger PM-space is a Cauchy
sequence if and only if for eachε > 0, λ > 0 there exists M(ε, λ) such that
g(F (xn, xn+p; ε)) < g(1− λ) for all n > M and p ≥ 1.
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Example 2.9. [15] Let X be any set with at least two elements. If we define
F (x, x; t) = 1 for all x ∈ X, t > 0 and

F (x, y; t) =
{

0 if t ≤ 1
1 if t > 1

where x, y ∈ X, x = y, then (X, F,∆) is the N.A. Menger PM-space with ∆(a, b) =
min(a, b)or(a.b).

Proof: condition (i),(ii) and (iii) are trivial. Let us go for condition (iv) Suppose that
F (x, y; t1) = 1 = F (y, z; t2), x 6= y, y 6= z then t1, t2 > 1 implies max(t1, t2) >
1 ⇒ F (x, z;max(t1, t2) = 1, x 6= z. Also, Menger inequality F (x, z;max(t1, t2)) ≥
4(F (x, y; t1),4F (x, y; t1)) is obvious.Thus (X, F ;4) is an N.A. Menger space.

Example 2.10. [15] Let X = R be the set of real numbers equipped with metric
defined as d(x, y) = |x− y| Set

F (x, y; t) =
t

t + d (x, y)

Then (X, F,∆) is a N.A. Menger PM-space with ∆ as continuous t-norm Satisfying
∆(r, s) = min(r, s)or(r, s).

Lemma 2.11. [15] If a function φ : [0,∞) −→ [0,∞) satisfies the condition (Φ)then
we
(i) For all t ≥ 0, limn−→∞φn(t) = 0, where φn (t) is the nth iteration of φ(t).
(ii) If {tn} is a non decreasing sequence of real numbers and tn+1 ≤ φ(tn) n = 1, 2, . . .
then limn−→∞tn = 0. In particular, if t ≤ φ(t), for each t ≥ 0, than t = 0.

Lemma 2.12. [15] Let {yn} be a sequence in X such that limn−→∞F (yn, yn+1; t) =
1 for each t > 0. If the sequence {yn} is not a Cauchy sequence in X, then there exists
∈0 > 0, t0 > 0, and two sequences {mi} and {ni} of positive inte-gers such that
(i) mi ≥ ni+ 1 and ni −→∞ as i −→ ∞
(ii) F (ymi, yni; t0 ) < 1− ∈0 and F (ymi−1, yni; t0 ) ≥ 1− ∈0, i = 1, 2, . . .

Definition 2.13. [5] Two maps A and S of a Non-Archimedean Menger PM space
(X, F,∆) into itself are said to be R-weakly commuting if there exists some R > 0
such that g(F (ASx, SAx; t) ≤ g(F (ASx, SAx; t/R) for every x ∈ X, t > 0.

Theorem 2.14. Let (X, F, ∗) be a complete fuzzy metric space and let f and g be
R-weakly commuting self mappings of X satisfying the condition: M (fx, fy, t) ≥
r.M(gx, gy, t) where r : [0, 1] −→ [0, 1] is a continuous function such that r (t) > t
for each 0 ≤ t < 1 and r (1) = 1 and the sequences {xn} and {yn} in X such
that {xn} −→ x, {yn} −→ y implies M(xn, yn, t) −→ M(x, y, t). If the range of g
contains the range of f and either f or g is continuous, then f and g have a unique
common fixed point.

3. MAIN RESULTS

Theorem 3.1. Let S and T be a complete N. A. Menger PM-space (X, F,4). Let
{Rn}∞n=1 be a family of self mappings satisfying:

(i) Ri(X) ⊆ T (X), Rj(X) ⊆ S(X) and the pair {Ri, S} and {Rj , T} are point
wise R-weakly commuting;
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(ii)

g(F (Rix,Rjy; t)) ≤ φ[max{g(F (Sx, Ty; t)), g(F (Sx, Rix; t)), g(F (Ty, Rjy; t)),
1
2
(g(F (Sx, Rjy; t)) + g(F (Ty, Rix; t))),

min{g(F (Rjy, Ty; t)), g(F (Rix, Sx; t))},√
g(F (Ty, Rjy; t)).g(F (Ty, Rix; t)),

g(F (Sx, Rjy; t)).g(F (Ty, Rjy; t))
g(F (Sx, Ty; t))

}]

for every x, y ∈ X, i = 2n − 1, j = 2n, (n ∈ N) and i 6= j, where φ satisfies the
condition (Φ). Then {Rn},S and T have a unique common fixed point in X.

Proof:- Since Ri(X) ⊆ T (X), for any x0 ∈ X, there exists a point x1 ∈ X such
that R1(x0) = Tx1.
Since Rj(X) ⊆ S(X), for this x1 we can choose a point x2 ∈ X such that R2(x1) =
Sx2 and so on. Inductively, We can define a sequence {yn}in X,

y2n = R2n+1(x2n) = Tx2n+1 , y2n−1 = R2n(x2n−1) = Sx2n n = 1, 2, 3... (3.1)

Let Mn = g(F (R2n+1(xn), R2n(xn−1); t)) = g(f(yn, yn−1; t)) n = 1, 2, 3, ... then

M2n =g(F (R2n+1(x2n), R2n(x2n−1); t))

≤φ[max{g(F (Sx2n, Tx2n−1; t)), g(F (Sx2n, R2n+1(x2n); t)),

g(F (Tx2n−1, R2n(x2n−1); t)),
1
2
(g(F (Sx2n, R2n(x2n−1); t)) + g(F (Tx2n−1, R2n+1(x2n); t))),

min{g(F (R2n(x2n−1), Tx2n−1; t)), g(F (R2n+1(x2n), Sx2n; t))},√
g(F (Tx2n−1, R2n(x2n−1); t)).g(F (Tx2n−1, R2n+1(x2n); t)),

g(F (R2n(x2n−1), Sx2n; t)).g(F (Tx2n−1, R2n(x2n−1); t))
g(F (Sx2n, Tx2n−1; t)))

}]

M2n =φ[max{g(F (y2n−1, y2n−2; t)), g(F (y2n−1, y2n; t)), g(F (y2n−2, y2n−1; t)),
1
2
(g(F (y2n−1, y2n−1; t)) + g(F (y2n−2, y2n; t))),

min{g(F (y2n−1, y2n−2; t)), g(F (y2n, y2n−1; t))},√
g(F (y2n−1, y2n−2; t)).g(F (y2n−1, y2n−2; t)),

g(F (y2n−1, y2n−1; t)).g(F (y2n−1, y2n−2; t))
g(F (y2n−1, y2n−2; t))

}]

i.e.

M2n ≤φ[Max{M2n−1,M2n,M2n−1,
1
2
(M2n−1 + M2n),min{M2n−1,M2n},√

(M2n−1)2, g(1)}]
(3.2)

Case I : If M2n > M2n−1then by (3.2) M2n ≤ φ(M2n)Which is contradiction.
Case II : If M2n−1 > M2n then by (3.2) gives M2n ≤ φM2n−1

Then by lemma (2.12) we get limn−→∞M2n = 0 i.e.
limn−→∞g(F (Rx2n+1(x2n), R2n(x2n−1); t)) = 0 or
limn−→∞g(F (y2n, y2n−1; t)) = 0 Similarly, we can show that
limn−→∞g(F (R2n(x2n+1), R2n+1(x2n+2); t)) = 0 or
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limn−→∞g(F (y2n+1, y2n+2; t)) = 0 Thus we have
limn−→∞g(F (R2n+1(xn), R2n(x2n+1); t)) = 0 For all t > 0 or

limn−→∞g(F (yn, yn+1; t)) = 0 (3.3)

Before preceding the proof of the theorem, we first prove the following claim
Claim: Let {Rn}∞n=1 ,S and T : X −→ X be maps satisfying equations(3.1), (3.2),
(3.3) and {yn} defined by (3.1) such that

limn−→∞g(F (yn, yn+1; t)) = 0 (3.4)

for all n, is a Cauchy sequence.
Proof of the Claim :- Since g ∈ Ω, it follows that limn−→∞F (yn, yn+1) = 1 for each
t > 0 iff limn−→∞g(f(yn, yn+1; t)) = 1 for each t > 0. By Lemma (2.12) If {yn} is
not a Cauchy sequence In X, there exists ∈0> 0, t0 > 0 and two sequences {mi}
and {ni} of positive integers such that:

(a) mi > ni + 1 and ni −→∞ as i −→∞
(b) g(F (ymi , yni

; t0) > g(1− ∈0) and

g(F (ymi−1, yni ; t0) ≤ (1− ∈0), i = 1, 2, ....

Since g(t) = 1− t, we have

g(1− ∈0) < g(f(ymi , yni ; t0))

g(1− ∈0) ≤ g(F (ymi
, ymi−1; t0)) + g(F (ymi−1, yni

; t0))

g(1− ∈0) ≤ g(F (ymi , ymi−1; to)) + g(1− ∈0)
(3.5)

As i −→∞, we have

lim
n−→∞

g(F (ymi
, yni

; t0)) = g(1− ∈0) (3.6)

on the other hand , we have
g(1− ∈0) < g(f(ymi

, yni
; t0))

g(1− ∈0) ≤ g(F (yni , yni+1; t0)) + g(F (ymi , yni+1; t0))
(3.7)

Now consider g(F (ymi
, yni+1; t0) in (3.7) and assume that both mi and ni are even.

Then by (ii) of Theorem 3.1, we have

g(F (ymi , yni+1; t0)) = g(F (R2n+1(xmi), R2n(xni+1); t0))
≤ φ[max{g(F (Sxmi , Txni+1; t0)), g(F (Sxmi , R2n+1(xmi); t0)),
g(F (Txni+1, R2n(xni+1); t0)),
1
2
(g(F (Sxmi

, R2n(xni+1); t0)) + g(F (Txni+1, R2n+1(xmi
); t0))),

min{g(F (R2n(xni+1), Txni+1; t0)), g(F (R2n+1(xmi
), Sxmi

; t0))},√
g(FR2n(xni+1), Txni+1; t0)).g(F (R2n(xni+1), Txni+1; t0)),

g(F (R2n(xni+1), Sxmi ; t0)).g(F (R2n(xni+1), Txni+1; t0))
g(F (Sxmi

, Txni+1; t0))
}]

≤ φ[max{g(F (ymi−1, yni
; t0)), g(F (ymi−1, ymi

; to)),
g(f(yni

, yni+1; t0)),
1
2
(g(F (ymi−1, yni+1; t0)) + g(F (yni , ymi ; t0)))},

min{g(F (yni+1, yni ; t0)), g(F (ymi−1, ymi ; to))),√
g(F (yni+1, yni

; t0)), g(F (yni
, yni+1; to)),
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g(F (yni+1, ymi−1; t0)), g(F (yni+1, yni ; to))
g(f(yni

, ymi−1; to))
}]

Which on letting n −→∞, reduces to

g(1− ∈0) ≤ φ[max{g(1− ∈0), 0, 0, g(1− ∈0),min{0, 0}, 0, 0}]
g(1− ∈0) ≤ φg(1− ∈0)

which is contradiction. Hence the sequence {yn} defined by (3.1) is a cauchy
sequence, which concludes the proof of the claim.

Since X is complete, then the sequence {yn} converges to a point z in X
and so the Sub-sequences lim

n−→∞
R2n+1(x2n), lim

n−→∞
R2n(x2n+1), lim

n−→∞
Sx2n and

lim
x−→∞

Tx2n+1 of seq. {yn} also Converge to the limit z.

Since the pair (Ri, S) are R-weakly commuting, So by definition (2.13)

g(F (RiSx2n+1, SRix2n+1; t)) ≤ g(F (Rix2n+1, Sx2n+1; t/R))

which gives

lim
n−→∞

RiSx2n+1 = lim
n−→∞

SRix2n+1 = Sz as S is continuous

Implies lim
n−→∞

RiSx2n+1 = Sz and lim
n−→∞

SRix2n+1 = Sz.

Now we claim that Sz = z. Contrary suppose contrary that Sz 6= z then by (ii) of
Theorem (3.1)

g(F (RiSx2n+1, Rjx2n; t)) ≤φ[max{g(F (SSx2n+1, Tx2n; t)),

g(F (SSx2n+1, Rix2n+1; t)), g(F (Tx2n, Rjx2n; t)),
1
2
(g(F (SSx2n+1;Rjx2n; t)) + g(F (Tx2n, RiSx2n+1; t))),

min{g(F (Rjx2n, Tx2n; t)), g(F (RiSx2n+1, SSx2n+1; t))},√
g(F (Rjx2n, Tx2n; t)).g(F (Tx2n, Rjx2n+1; t)),

g(F (Rjx2n, SSx2n+1; t)).g(F (Tx2n, Rjx2n; t))
g(F (SSx2n+1, Tx2n; t))

}]

Which on letting limit n −→∞
g(F (Sz, z; t)) ≤φ[max{g(F (Sz, z; t)), g(F (Sz, z; t))g(F (z, z; t)),

1
2
(g(F (Sz, z; t)) + g(F (z, Sz; t))),

min{g(F (z, z; t)), g(F (Sz, Sz; t))},√
g(F (z, z; t)).g(F (z, z; t)),

g(F (z, Sz; t))g(F (z, z; t))
g(F (Sz, z; t))

}]

=φ[max{g(F (Sz, z; t)), g(F (Sz, z; t)), g(1), g(F (Sz, z, t)),

g(1), g(1), g(1)}]
g(F (Sz, z; t)) ≤φ(g(F (Sz, z; t))) < g(F (Sz, z; t))

Thus z is a fixed point of S Similarly we can show that z is a fixed point of Ri

Again pair (Rj , T ) is R-weakly commuting so by definition of (2.13)

g(F (RjTx2n+1, TRjx2n+1; t)) ≤ g(F (Rjx2n+1, Tx2n+1; t/R))
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which gives

lim
n−→∞

RjTx2n+1 = lim
n−→∞

TRjx2n+1 = Tz as T is continuous

Implies lim
n−→∞

RjTx2n+1 = Tz and lim
n−→∞

TRjx2n+1 = Tz.
We have to show that Tz = z, to do this contrary suppose that Tz 6= z then by (ii)
of Theorem (3.1)

g(Riz,RjTx2n; t) ≤ φ[max{g(F (Sz, TTx2n; t)), g(F (Sz,Riz; t)),

g(F (TTx2n, Rj(Tx2n); t)),
1
2
(g(F (Sz,RjTx2n; t)) + g(F (TTx2n, Riz; t)))

min{g(F (Rj(Tx2n, TTx2n; t))), g(F (Riz, Sz; t))}√
g(F (Rj(Tx2n), TTx2n; t)).g(F (Rj(Tx2n), TTx2n; t)),

g(F (Rj(Tx2n, Sz; t))).g(F (Rj(Tx2n), TTx2n; t))
g(F (Sz, , TTx2n; t))

}]

which on letting limit n −→∞

g(F (Rz, Tz; t)) ≤φ[max{g(F (z, Tz; t)), g(F (z, z; t)), g(F (Tz, Tz; t)),
1
2
g(F (z, Tz; t)) + g(F (Tz, z; t)),

min{g(F (Tz, Tz; t)), g(F (z, z; t))},√
(g(F (Tz, Tz; t)))2,

g(F (Tz, z; t)).g(F (Tz, Tz; t))
g(F (z, Tz; t))

}]

i.e. g(F (z, Tz; t) ≤ φ(g(F (z, Tz; t)) < g(F (z, Tz; t)).
Which is a contradiction, Thus z is a fixed point of T . Similarly we can show that
z is a fixed point of Rj . Hence Riz = Rjz = Sz = Tz = z. Thus z is a common
fixed point of Ri,Rj ,S & T . The uniqueness of the common fixed point follows from
inequality (ii) of Theorem (3.1).

In the paper Khan & Sumitra [5], obtained a common fixed point theorem in
2 non Archimedean Menger spaces for R-weakly commuting maps inspired by
this result we motivate to prove more generalized version in the setting of non-
Archimedean Menger PM spaces.

Corollary 3.2. Let R1, R2, S and T be four continuous self maps of a complete N.A
Menger PM spaces (X, F,∆) ,satisfying
(i) R1(X) ⊆ T (X), R2(X) ⊆ S(X), and {R1, S} and {R2, S} are R-weakly Commut-
ing
(ii)

g(F (R1(x), R2(y); t)) ≤φ[max{g(F (Sx, Ty; t)), g(F (Sx, R1x; t)), g(F (Ty, R2y; t))
1
2
(g(F (Sx, R2y; t)) + g(F (Ty, R1x; t))),

min{g(F (R2y, Ty, t)), g(F (R1x, Sx, t))},√
g(F (R2y, Sy; t)).g(F (R2y, Ty; t)),

g(F (R2y, Sx; t)).g(F (R2y, Ty; t))
g(F (Sx, Ty; t))

}]
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for every x, y ∈ X, where φ satisfies the condition (Φ) . Then R1, R2, S and T have
a unique common fixed point in X.

Corollary 3.3. Let R,S, T be three continuous self maps of a complete N.A Menger
PM- spaces (X, F,∆) satisfies;
(i) R(x) ⊆ S(x) ∩ T (x), and pair {R,S} and {R, T} are R-weakly commuting
(ii)

g(F (Rx,Ry; t)) ≤φ[max{g(F (Sx, Ty; t)), g(F (Sx, Rx; t)), g(F (Ty, Ry; t)),
1
2
(g(F (Sx, Ry; t)) + g(F (Ty, Rx; t))),

min{g(F (Ry, Ty, t)), g(F (Rx, Sx, t))},√
g(F (Ry, Sy; t)).g(F (Ry, Ty; t)),

g(F (Ry, Sx; t)).g(F (Ry, Ty; t))
g(F (Sx, Ty; t))

}]

for every x, y ∈ X, where φ satisfies the condition (Φ). Then R,S and T have a
unique common fixed point in X.

Corollary 3.4. Let R,S be two continuous self maps of a complete N.A Menger PM
space (X, F,∆) satisfying;
(i) R(X) ⊆ S(X) and the pair {R,S} is R-weakly commuting
(ii)

g(F (Rx, Ry; t)) ≤φ[man{g(F (Sx, Sy; t)), g(F (Sx, Rx; t)), g(F (Sy,Ry;T )),
1
2
(g(F (Sx, Ry; t)) + g(F (Sy,Rx; t))),

min{g(F (Ry, Sy, t)), g(F (Rx, Sx, t))},√
g(F (Ry, Sy; t)).g(F (Ry, Sy; t)),

g(F (Ry, Sx; t)).g(F (Ry, Sy; t))
g(F (Sx, Sy; t))

}]

for every x, y ∈ X, Where φ satisfies the condition (Φ). Then Rand S have a unique
common fixed point in X.
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