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ABSTRACT. In the present paper we prove a unique common fixed point theorem for a
family of R-weakly commuting maps in non-Archimedean Menger PM-spaces without using
the notion of continuity. Our result generalizes and extends the result of Khan and Sumitra
[5] and few others, also suggest a path to a new inequality containing rational, product and
minimum of some terms under implicit relation.
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1. INTRODUCTION

Non-Archimedean probabilistic metric space and some topological preliminar-
ies on them were first studied by Istratescu and Babescu [9] and Istratescu and
Crivat [10]. Some fixed point theorems for mappings on non-Archimedean Menger
spaces have been proved by Istratescu ([11],[12]) as a result of the generalizations of
some of the results of Sehgal and Bharucha-Reid [13] and Sherwood [2]. Achari [3]
studied the fixed points of quasi-contraction type mappings in non-Archimedean
PM-spaces and generalized the results of Istratescu [11]. In 1994, Pant [6] in-
troduced the concept of R-weakly commuting maps in metric spaces. Later on
Cho et al. [14] generalised this this idea and gave the concept of R-weakly com-
muting maps of type A,. Vasuki [7] proved some common fixed point theorem
for R-weakly commuting maps in fuzzy metric spaces. Recently Khan and Sumi-
tra [5] introduced the concept of R-weakly commuting maps in non-Archimedean
menger PM-spaces and proved a common fixed point theorem for three point wise
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R-weakly commuting mappings in complete non-Archimedean Menger PM-spaces.
In the present paper we prove a unique common fixed point theorem for a family of
R-weakly commuting maps in non-Archimedean Menger PM-spaces without using
the notion of continuity. our result generalizes and extends the result of Khan and
Sumitra [5] and other, also suggest a path to a new inequality containing rational,
product and minimum of some terms under implicit relation.

2. PRELIMINARIES

Definition 2.1. [10],[11] Let X be any non-empty set and D be the set of all
left continuous distribution functions. An ordered pair (X, F') is said to be non-
Archimedean probabilistic metric space (N.A. PM-space) if F' is a mapping from
X x Xinto D satisfying the following conditions, where the value of Fat (z,y) €
X x X is represented by F, , or F' (z,y) for all z,y € X such that

(1) F(x,y;t) = 1 for all t > 0 if and only if = y;

(1) F(z,y;t) = F(y, z;t);

(iii) F(x,y;0) = 0;

() if F(z,y;t1) = F(y,z;t2) = 1 then F(z, z;max{t1,t2}) = 1 forallx,y, z € X.

Definition 2.2. [4] A t-norm is a function A : [0,1] x [0,1] — [0, 1] which is
associative, commutative, non-decreasing in each coordinate and A (a,1) = a for
alla € [0,1].

Definition 2.3. [1],[9] A non-Archimedean Menger PM-space is an ordered triplet
(X,F,A) where A is a t-norm and (X, F') is a N.A. PM-space satisfying the fol-
lowing condition: F(x, z;max{t1,t2}) > A(F(z,y;t1), F(y,z;t2)) forall z,y,z €
X, t1,t9 > 0. For details of topological preliminaries on non-Archimedean Menger
PM-spaces, we refer to Cho et al.[15].

Definition 2.4. [3],[15] An N.A. Menger PM-space (X, F,A) is said to be of type
(O), if there exists a g € (2 such that

g(F(x,2;t)) < g(F(z,y;t)) + g(F(y, 2;t)) for all 7, y, 2 € X, t > 0, where Q = {g|g :
[0,1] — [0, 00) is continuous, strictly decreasing with g(1) = 0 and ¢(0) < oo.

Definition 2.5. [8],[15] AN.A. Menger PM-space (X, F, A) is said to be of type (D),
if there exists a, g € Q such that g(A(t1,t2)) < g(t1) + g(t2) for all ty,¢5 € [0,1].

Remark 2.6. [8],[15] (i) IfN.A. Menger PM-space is of type (D), then (X, F, A)is
of type (C),.
(i) If (X, F,A) is N.A. Menger PM-space and A > A(r,s) = max(r + s —1,1)
then (X, F, A) is of type (D), for g € Qand g(t) =1 —¢.

Throughout this paper (X, F,A) is a complete N.A. Menger PM-space with a
continuous strictly increasing t-norm A. Let {) : [0,00) — [0, c0) be a function
satisfying the condition (®); (®) (¢) is upper semi-continuous from the right and
@(t) < tfort > 0.

Definition 2.7. [3],[15] A sequence {x,} in the N.A. Menger PM-space (X, F, A)
converges to x if and only if for each € > 0, A\ > 0 there exists M (¢, \) such that
g(F(xn,z5€)) < g(1 —A) forall n > M.

Definition 2.8. [15] A sequence z, in the N.A. Menger PM-space is a Cauchy
sequence if and only if for eache > 0,A > 0 there exists M(e,A) such that
9(F (T, Tnipi€)) < g(l—A)foralln > M and p > 1.
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Example 2.9. [15] Let X be any set with at least two elements. If we define
F(z,z;t)=1forallz € X,t >0 and

0ift<1
F(I,y;t)={ “-J}t;l

where z,y € X,x = y, then (X, F, A) is the N.A. Menger PM-space with A(a,b) =
min(a, b)or(a.b).

Proof: condition (i),(ii) and (iii) are trivial. Let us go for condition (iv) Suppose that
F(z,y;t1) = 1 = F(y,z;t2),x # y,y # z then t1,ty > 1 implies max(t1,t2) >
1 = F(z,z;max(t1,t2) = 1,2 # z. Also, Menger inequality F'(z, z; max(t1,t2)) >
A(F(x,y;t1), AF(z,y;t1)) is obvious.Thus (X, F'; A) is an N.A. Menger space.

Example 2.10. [15] Let X = R be the set of real numbers equipped with metric
defined as d(z,y) = |z — y| Set
F (o oy t) =
T, Y; t) =
Y t+d(z,y)

Then (X, F, A) is a N.A. Menger PM-space with A as continuous t-norm Satisfying
A(r,s) = min(r, s)or(r, s).

Lemma 2.11. [15] If a function ¢ : [0,00) — [0, 00) satisfies the condition (®)then
we

() For allt > 0,lim,_,,¢"(t) = 0, where ¢" (t) is the nth iteration of ¢(t).

(i) If {t,,} is anon decreasing sequence of real numbers and t,+1 < ¢(t,)n=1,2,...
thenlim,__,t, = 0. In particular, ift < ¢(t), for eacht > 0, thant = 0.

Lemma 2.12. [15] Let {y,,} be a sequence in X such that lim,,— o F (yn, Ynt+1;t) =
1 foreacht > 0. If the sequence {yy } is not a Cauchy sequence in X, then there exists
€p > 0,tg > 0, and two sequences {m;} and {n;} of positive inte-gers such that
@dm; >n;+1 andn; — ocoas ¢ — 00

(i)) F(YmisYni; to ) <1 —€g and F (Ym;—1,Yni; to ) > 1 —€p,0=1,2,...

Definition 2.13. [5] Two maps A and S of a Non-Archimedean Menger PM space
(X, F, A) into itself are said to be R-weakly commuting if there exists some R > 0
such that g(F(ASz, SAx;t) < g(F(ASz,SAx;t/R) for every z € X,t > 0.

Theorem 2.14. Let (X, F,*) be a complete fuzzy metric space and let f and g be
R-weakly commuting self mappings of X satisfying the condition: M (fz, fy,t) >
r.M(gz, gy,t) wherer : [0,1] — [0,1] is a continuous function such that r (t) > t
foreach 0 < ¢t < 1 and r (1) = 1 and the sequences {z,} and {y,} in X such
that {z,} — =z, {y,} — y implies M (z,,, yn,t) — M (z, y,t). If the range of g
contains the range of f and either f or g is continuous, then f and g have a unique
common fixed point.

3. MAIN RESULTS
Theorem 3.1. Let S and T be a complete N. A. Menger PM-space (X, F,\). Let
{R,},>_, be a family of self mappings satisfying:

() Ri(X) CT(X),R;(X) C S(X) and the pair {R;,S} and {R;,T} are point
wise R-weakly commuting;
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(ii)
9(F(Rix, Rjy; 1)) < ¢plmax{g(F(Sz,Ty;t)), g(F(Sx, Riz;t)), g(F(Ty, R;y; t)),
1
2 (9(F(Sz, Rjy; 1)) + g(F(Ty, Riw; 1)),
min{g(F(R;y, Ty;t)), g(F(Rix, Sz;t))},
VI (Ty, Ryy: 1) g(F(Ty, Rz ),
g(F(Sz, Ty;t))

Joreveryz, y € X, i=2n—1, j =2n, (n € N) andi # j, where ¢ satisfies the
condition (®). Then {R,,},S and T' have a unique common fixed point in X.

Proof:- Since R;(X) C T(X), for any z¢ € X, there exists a point z; € X such
that R1 (1‘0) = TIl.

Since R;(X) C S(X), for this x; we can choose a point x5 € X such that Ra(x1) =
Sz9 and so on. Inductively, We can define a sequence {y, }in X,

Yon = Rony1(@2n) = Togpir s Yon—1 = Ron(@2n—1) = Sx2, n=1,2,3... (3.1
Let M,, = g(F(Ran+1(xn), Ron(xn—1);t)) = 9(f (Yn,Yn—1;t)) n = 1,2,3, ... then
Mz =g(F(Rant1(22n), Ran(22n-1);1))
<g[maz{g(F(Szan, Tron-1;1)), 9(F(S2n, Ront1(z2n);t)),
9(F(Tw2n-1, Ron(2n-1)3 1)),
5 O (Szan, Ban (20 1):1)) + g(F(Tzn 1, Bans (220):1)),
min{g(F(Ran(22n—1), Tr2n-1;t)), g(F (Rany1(w2n), ST2n;t))},
VI(F(T2n 1, Ran(w2n-1);1)-9(F(Tx2n—1, Ront1(w2n); 1)),

g(F(RQn ($2n—1)7 Swop; t))'g(F(TxZN—h Rgn(ann—l); t)) }]
g(F(Sxan, Tran—1;t)))

My, =¢[max{g(F(y2n—1,Y2n—2;t)), 9(F (Y2n—1,y2n;t)), 9(F (Y2n—2, Yoan—1;1)),

SO W20 1,301:0) + 9(F(on,y205))
min{g<F(y2n717 Yoan—2; t))a g(F(QQna Yoan—1; t))}7

VI (y2n—1,Y2n—2:1))-9(F (Y2n—1, y2n—2: 1)),

9(F'(y2n—1,Y2n-1;1))-9(F(Yan—1,Y2n—2;t)) N
9(F(Yan—1,Y2n—2;1))

i.e.
1 .
My, <¢p[Max{Msp_1, My, Mop_1, E(Manl + May,), min{ Moy, 1, Moy, },

(Man-1)%, 9(1)}]

Case I: If My, > My, _qthen by (3.2) Ms,, < ¢(Ma,)Which is contradiction.
Case II : If M,,, 1 > Ms, then by (3.2) gives M, < ¢M2n71

Then by lemma (2.12) we get lim, oo Mo, = 0 i.e.
limn—>oog(F(R$2n+l(x2n)a R2n(l'2n—1); t)) =0or

1My — 00 9 (F (Y2, Y2n—1;t)) = 0 Similarly, we can show that

lim, o g(F(Ran(T2n+1); Ront1(22n42)5t)) = 0 or

(3.2)



A COMMON FIXED POINT THEOREM 119

limy, 00 g(F (Y2n+1, Y2n+2;t)) = 0 Thus we have
limy, 0o g(F(Rant1(2n), Ron(T2nt1);t)) =0 For all t > 0 or

Before preceding the proof of the theorem, we first prove the following claim
Claim: Let {R,}5°; ,Sand T : X — X be maps satisfying equations(3.1), (3.2),
(3.3) and {y, } defined by (3.1) such that

hmn—wog(F(yna Yn+1;3 t)) =0 (3.4)

for all n, is a Cauchy sequence.
Proof of the Claim :- Since g € (), it follows that lim,, o F(yn, yn+1) = 1 for each
t > 0iff limy,— 00 g(f(Yn,Ynt1;t)) = 1 for each ¢ > 0. By Lemma (2.12) If {y,,} is
not a Cauchy sequence In X, there exists €¢> 0,¢y > 0 and two sequences {m;}
and {n;} of positive integers such that:

(a) m; >n; +1and n; — oo as i — 00

(0) 9(F(Ym.»y.,,3t0) > g(1— €o) and

g(F(yml—17ynl7t0) S (17 Eo)vi = 1727
Since g(t) = 1 — t, we have
g(l_ 60) < g(f(ymwyni;to))
F(Ym,s Ymi—15t0)) + 9(F (Ym,;—1,Yn:3 to))

g(
(3.5)
I(F(Ymi» Ym,—15t0)) + g(1— €o)

g(1—€o) <
g(1—€o) <
As 1 — 00, we have
Mim  g(F(Ym, s yni5 to)) = 9(1= o) (3.6)
on the other hand , we have
9(1= €0) < g(f(Ymss Yn;3to))
9(1= €0) < g(F(Ynss Yni+1:t0)) + 9(F (Ymi» Yni+15t0))

Now consider g(F (Ym,, Yn;+1; to) in (3.7) and assume that both m; and n; are even.
Then by (ii) of Theorem 3.1, we have

g(F(ymmyni-&-l;tO)) = g(F(R2n+1(Imi)aR27L(xn7¢+1);t0))
< ¢[ma${g(F(Sxmwam+1;tO))vg(F(SmmiaR2n+1(xm1);t0)),
g(F<Txni+17R2n($ni+1);t0)>7

1

§(Q(F(5$mu Ron(%n,41)5t0)) + 9(F (T2, 11, Ront1(Tm, ); o)),
min{g<F(R2n(mni+1)7Txni+1§tO))7g(F(R2n+1(xmi)7Sxmi;tO))}a
\/g(FR%(an-l)vTxni+13tO))'Q(F(R%(xm-&-l)yTxnr&-l;to)),
g(F(RQ’rL(xn1+1)7S‘rmmto))g(F(RQW,(x’n1+1)aTxn1+1at0))}]

g(F(S'rmwanH-l;tO))
< ¢[max{g(F(ymi*17yni;tU))7g(F(ymi717ymi§to))a
g(f(yniyyni—l-l;tO));
(g(F(ymz‘*l’yniJrl;t())) +Q(F(yn”yml,t0)))}7

min{g(F(yni-Flayni;tO))vg(F(ymi—laymi;to)))a
\/g(F(yniJrl»yni;to))vg(F(ynmyniJrl;to))y

(3.7)

N =
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9(E (Yni+1,Ym,-1310)), 9(F (Ynit1, Ynii o)) N
9 Wni» Ymi—15 o))
Which on letting n — o0, reduces to
g(l_ 60) < (b[max{g(l— e0)7 0; 07 g(l_ 60)? min{07 0}7 07 0}]
g(1— €o) < ¢g(1- €o)
which is contradiction. Hence the sequence {y,} defined by (3.1) is a cauchy
sequence, which concludes the proof of the claim.

Since X is complete, then the sequence {y,} converges to a point z in X
and so the Sub-sequences lim Ropny1(zan), lim Ron(2p41), lim Sz, and
n——aoo

hm Txop+1 of seq. {yn} also Converge to the lumt z.

Slnce the pair (R;, S) are R-weakly commuting, So by definition (2.13)
9(F(RiSToni1, SRiwani151)) < g(F (Rivant1, STant1:t/R))
which gives

lim R;Sxony1 = lim SR;xon+1 = Sz as S is continuous
n—

Implies lim RS$2n+1 Szand lim SR;xo,4+1 = Sz.

n——:o0 n—-maoo

Now we claim that Sz = z. Contrary suppose contrary that Sz # z then by (ii) of
Theorem (3.1)

9(F(R;Sxani1, Rjwon;t)) <plmazx{g(F(SSxoni1,Txan;t)),
( (SS@on+1, Riwant1;t)), g(F(Tw2n, Rjwon;t)),
( (F(SSzant1; Rjwan;t)) + g(F(Tx2n, RiSTanyi1;t))),
mln{g(F(le’zmchzn, t)), 9(F(RiSx2nt1, SSTont151))},
VIF (Ryan, T 1).9(F (Tran, Ritans131)),

g(F(le'an SSZEQnJrl; t))g(F(TIQna ijQn; t)) }]
9(F(SSxan11,Txon;t))

Which on letting limit n — oo

9(F(Sz, z:t)) <plmax{g(F(Sz,21)), g(F(Sz, 2:))g(F (2, 2 1),

%(g(F(Sz,Z;t)) 9(F(z,521))),

min{g(F(z, z;t)), g(F(Sz, Sz )},
Va(F(z,21)).9(F(z, 1)),
g(F (z,SZ;t))g(F(z,Z;t))H
g(F(Sz,zt))
=¢[maz{g(F(Sz,21)),9(F(Sz zt)),9(1), 9(F(Sz,2,1)),
9(1),9(1),9(1)}]
9(F(Sz,z;1)) <¢(g(F(Sz, 1)) < g(F(Sz, 2t))

Thus z is a fixed point of .S Similarly we can show that z is a fixed point of R;

Again pair (R;,T') is R-weakly commuting so by definition of (2.13)
9(F(RjTxont1, TRjx2n11;5t)) < g(F(RjT2n+1,TT2n115t/R))
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which gives

lim R;jTxony1 = lim TRjxe,41 =T% as T is continuous
n——-ao0o

n——-maoo
Implies lim R;jT%o,41 =Tzand lim TR;wo,y1 =Tz,
n——-mao0 n——-mao0

We have to show that Tz = z, to do this contrary suppose that 7'z # z then by (ii)
of Theorem (3.1)

9(Riz, RjTxo,;t) < dlmaz{g(F(Sz, TTw2n;1)), g(F(S2, Riz;t)),
(F(TT@m R;j(Tzan);t)),
S G(F(S2, RyTran; ) + g(F(T T, iz 1)
win{g(F(R (T2, TTa2051))), g (F(Riz, 521))}
VJIE (R} (Tr2,), TTa2,:1)).g(F (R; (T2, T35 1)),

9(F(R;(Txapn, Sz;t))).9(F(Rj(Txon), TTx2,;t)) N
g(F(Sz,, TTxon;t))

which on letting limit n — 0o

9(P (R, T=:1)) <glmaz{g(F(z,T2t)), g(F (2, 1)), g(F(T= Tz:1)),
SO(F (2. T2:1)) + g(F (T2, 21)),
min{g(F (T Tz 1)), g(F(z, % D)},

V(g(F(Tz,Tzt)))?,
g(F(Tz,2t).9(F(Tz,Tz;t)) N
9(F(2,Tzt))

ie. g(F(z,Tzt) < ¢p(g(F(z,Tzt)) < g(F(z,Tzt)).
Which is a contradiction, Thus z is a fixed point of T'. Similarly we can show that
z is a fixed point of R;. Hence R;z = Rjz = Sz = Tz = z. Thus z is a common
fixed point of R;,R;,5 & T'. The uniqueness of the common fixed point follows from
inequality (ii) of Theorem (3.1).

In the paper Khan & Sumitra [5], obtained a common fixed point theorem in
2 non Archimedean Menger spaces for R-weakly commuting maps inspired by
this result we motivate to prove more generalized version in the setting of non-
Archimedean Menger PM spaces.

Corollary 3.2. Let R1, Rs, S and T be four continuous self maps of a complete N.A
Menger PM spaces (X, F, A) ,satisfying
() R1(X) CT(X),Re(X) CS(X),and {R1,S} and { Rz, S} are R-weakly Commut-
ing
(i)
9(F(Ri(x), Ra(y); 1)) <¢lmax{g(F(Sz,Ty;t)), g(F(Sz, Rix;t)), g(F(Ty, Ray;t))
1
min{g(F(Ray, Ty, t)), g(F(Riz, Sz, t))},

V9(F(Ray, Sy; 1).g(F(Ray, Ty; 1)),
9(F(Ray, Sz;t)).g(F (R2y>Ty;t))}]
g(F'(Sz,Ty;t))
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Jor every z,y € X, where ¢ satisfies the condition (?) . Then Ry, R2, S and T have
a unique common fixed point in X .

Corollary 3.3. Let R, S, T be three continuous self maps of a complete N.A Menger
PM- spaces (X, F, A) satisfies;
(i) R(z) C S(z) NT(x), and pair {R, S} and {R, T} are R-weakly commuting
(i)
9(F(Rz, Ry;t)) <¢[max{g(F(Sz,Ty;t)), g(F(Sz, Rx;t)), g(F(Ty, Ry;t)),
1
5 (9(F(Sz, Ry;t)) + g(F(Ty, Ra3t))),
min{g(F(Ry,Ty,1)), g(F(Rx, Sz,t))},

V9(F(Ry, Sy;t)).9(F(Ry,Ty; 1)),
g(F(Ry, Sz;t)).9(F(Ry, Ty;t)) N
g(F(Sz,Ty;t))

Jor every x,y € X, where ¢ satisfies the condition (®). Then R,S and T have a
unique common fixed point in X.

Corollary 3.4. Let R, S be two continuous self maps of a complete N.A Menger PM
space (X, F, A) satisfying;
() R(X) C S(X) and the pair {R, S} is R-weakly commuting
(ii)
9(F(Rx, Ry;t)) <¢[man{g(F(Sz, Sy;t)), g(F(Sz, Ra;t)), g(F(Sy, Ry; T)),
1
5 (9(F(Sz, Ry;t)) + g(F(Sy, R; 1)),
min{g(F(Ry, Sy,1)), g(F(Rx, Sx,1))},
V9(F(Ry, Sy; 1)).9(F(Ry, Sy;t)),

g(F(Ry, Sz;t)).9(F(Ry, Sy; t)) N
g(F(Sz, Sy;t))

Jor every x,y € X, Where ¢ satisfies the condition (?). Then Rand S have a unique
common fixed point in X.
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