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ABSTRACT. In the present article, by applying our 2013 Metatheorem and the Brøndsted-
Jachymski Principle, we obtain various forms generalizations of Zorn’s Lemma and their
applications. Such examples are our version of the Zermelo fixed point theorem, equiv-
alent formulations of the Caristi fixed point theorem, and Jachymski’s 2003 theorem on
equivalent conditions when fixed point sets are same to periodic point sets.
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1. Introduction

There are several fields in the fixed point theory. Analytical fixed point theory
is originated from Brouwer in 1912 and concerns mainly with topological vector
spaces. Metric fixed point theory is originated from Banach in 1922 and deals with
generalizations of contractions and nonexpansive maps. Topological fixed point
theory relates mainly originated works of Lefschetz, Nielsen, and Reidemeister.

Now the Ordered fixed point theory began by Zermelo [36](1908) implicitly and
was developed mainly by Knaster [16](1928), Zorn [37](1935), Bourbaki [3](1949-
50), Tarski [30, 31](1949, 1955), Ekeland [10, 11](1972,1974), Caristi [7](1976),
Brézis-Browder [4](1976), Takahashi [29](1991), and many others. Moreover, in
1985-86 [18, 19], we discovered a Metatheorem stating that any maximum elements
in ordered sets can be fixed points, stationary points, collectively fixed points, collec-
tively stationary points, and conversely. Consequently, Ordered fixed point theory
is a rich source of information on fixed points of families of multimaps on ordered
sets.
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Recently in 2022 [20, 21, 22, 24], we obtained an extended form of Metatheorem
and applied it to a large number of known or new results. Moreover in 2022 [24], we
found the Brøndsted-Jachymski Principle on ordered sets showing the equalities of
maximal elements, fixed point sets and periodic point sets of progressive selfmaps.
Later we rearranged the order of statements to the 2023 Metatheorem in [25], which
will be the basis of future study in various fields of mathematics.

In the present article, by applying Metatheorem and its particular Brøndsted-
Jachymski Principle, we obtain various forms of Zorn’s Lemma and their applica-
tions.

In Section 2, we introduce our 2023 Metatheorem and the Brøndsted-Jachymski
Principle. Section 3 devotes various types of generalizations of Zorn’s Lemma. We
show their important applications in Sections 4-6. In Section 4, we introduce our
version of the Zermelo fixed point theorem and its usefulness. Section 5 devotes to
equivalent formulations of the Caristi fixed point theorem. In Section 6, we improve
Jachymski’s 2003 theorem [13] on equivalent conditions when fixed point sets are
same to periodic point sets. Finally, Section 7 devotes to some conclusion.

2. Our Metatheorem and The Brøndsted-Jachymski Principle

In order to give some equivalents of the Ekeland variational principle, we intro-
duced a metatheorem in 1985-86 [18, 19] on equivalent statements in the Ordered
fixed point theory. Later we found some more additional equivalent statements and,
consequently, we obtain an extended version of the metatheorem in 2022 [20-22,24]
as follows in [25]:
Metatheorem. Let X be a set, A its nonempty subset, and G(x, y) a sentence
formula for x, y ∈ X. Then the following are equivalent:

(α) There exists an element v ∈ A such that G(v, w) for any w ∈ X\{v}.
(β1) If f : A −→ X is a map such that for any x ∈ A with x ̸= f(x), there

exists a y ∈ X \ {x} satisfying ¬G(x, y), then f has a fixed element v ∈ A, that is,
v = f(v).

(β2) If F is a family of maps f : A −→ X such that for any x ∈ A with x ̸= f(x),
there exists a y ∈ X{x} satisfying ¬G(x, y), then F has a common fixed element
v ∈ A, that is, v = f(v) for all f ∈ F.

(γ1) If f : A −→ X is a map such that ¬G(x, f(x)) for any x ∈ A, then f has
a fixed element v ∈ A, that is, v = f(v).

(γ2) If F is a family of maps f : A −→ X satisfying ¬G(x, f(x)) for all x ∈ A
with x ̸= f(x), then F has a common fixed element v ∈ A, that is, v = f(v) for all
f ∈ F.

(δ1) If F : A ⊸ X is a multimap such that, for any x ∈ A \ F (x) there exists
y ∈ X\\{x} satisfying ¬G(x, y), then F has a fixed element v ∈ A, that is, v ∈ F (v).

(δ2) Let F be a family of multimaps F : A ⊸ X such that, for any x ∈ A \F (x)
there exists y ∈ X \ {x} satisfying ¬G(x, y). Then F has a common fixed element
v ∈ A, that is, v ∈ F (v) for all F ∈ F.

(ϵ1) If F : A ⊸ X is a multimap satisfying ¬G(x, y) for any x ∈ A and any
y ∈ F (x) ⊸ {x}, then F has a stationary element v ∈ A, that is, {v} = F (v).

(ϵ2) If F is a family of multimaps F : A ⊸ X such that ¬G(x, y) holds for any
x ∈ A and any y ∈ F (x) \ {x}, then F has a common stationary element v ∈ A,
that is, {v} = F (v) for all F ∈ F.
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(ζ1) If a multimap F : A ⊸ X satisfy, for all x ∈ A with F (x) ̸= ∅, there exists
y ∈ X \ {x} such that ¬G(x, y) holds, then there exists v ∈ A such that F (v) = ∅.

(ζ2) Let F be a family of multimaps F : A ⊸ X such that, for all x ∈ A with
F (x) ̸= ∅, there exists y ∈ X \ {x} such that ¬G(x, y) holds. Then there exists
v ∈ A such that F (v) = ∅ for all F ∈ F.

(η) If Y is a subset of X such that for each x ∈ A \ Y there exists a z ∈ X \ {x}
satisfying ¬G(x, z), then there exists a v ∈ A ∩ Y .

Here, ¬ denotes the negation. We give the proof for completeness.

Proof. Note that each of (β), (γ), (ϵ) implies (δ). and that (β2)− (ζ2) imply (β1)−
(ζ1), respectively. We adopt our previous proof for (α) =⇒ (γ1) as follows:

(α) =⇒ (δ1) : Suppose v /∈ F (v) in (δ1). Then there exists a y ∈ X \ {v}
satisfying ¬G(v, y). This contradicts (α).

(δ1) =⇒ (β1) : Clear.
(β1) =⇒ (γ1) : Clear.
We prove (γ1) =⇒ (α) as follows:
(γ1) =⇒ (ϵ1) : Suppose F has no stationary element, that is, F (x) \ {x} ̸= ∅ for

any x ∈ A. Choose a choice function f on {F (x) \ {x} : x ∈ A}. Then f has no
fixed element by its definition. However, ¬G(x, f(x)) for any x ∈ A. Therefore, by
(γ1), f has a fixed element, a contradiction.

(ϵ1) =⇒ (γ2) : Define a multimap F : A ⊸ X by F (x) := {f(x) : f ∈ F} ̸= ∅
for all x ∈ A. Since ¬G(x, f(x)) for any x ∈ A and any f ∈ F, by (ϵ1), F has a
stationary element v ∈ A, which is a common fixed element of F.

(γ2) =⇒ (α) : Suppose that for any x ∈ A, there exists a y ∈ X \ {x} satisfying
¬G(x, y). Choose f(x) to be one of such y. Then f : A −→ X has no fixed element
by its definition. However, ¬G(x, f(x)) for all x ∈ A. Let F = {f}. By (γ2), f has
a fixed element, a contradiction.

Consequently, we showed equivalency of (α)− (γ2).
We show that (α) ⇐⇒ (ϵ2) as follows:
(α) + (ϵ1) =⇒ (ϵ2) : By (α), there exists a v ∈ A such that G(v, w) for all

w ∈ X \ {v}. For each F ∈ F, by (ϵ1), we have a vF ∈ A such that {vF } = F (vF ).
Suppose v ̸= vF . Then G(v, vF ) holds by (α) and ¬G(v, vF ) holds by assumption
on (ϵ2). This is a contradiction. Therefore v = vF for all F ∈ F.

(ϵ2) =⇒ (ϵ1) =⇒ (α) : Already shown.
(α) =⇒ (ζ2) : By (α) there exists v ∈ A such that G(v, x) holds for all x ∈ X\{v}.

Suppose to the contrary, there exists F ∈ F such that F (v) ̸= ∅. By hypothesis, there
exists w ∈ X with w ̸= v and ¬G(v, w) holds. Therefore it leads a contradiction
and F (v) = ∅ for all F ∈ F.

(ζ2) =⇒ (α) : Suppose that, for each x ∈ A, there exists y ∈ X \ {x} such that
¬G(x, y) holds. For each x ∈ A, define a multimap F : A ⊸ X \ {x} by

F (x) = {y ∈ X : ¬G(x, y)} ̸= ∅ for all x ∈ A.

Then, by (ζ2), there exists v ∈ A such that F (v) = ∅. This is a contradiction.
(α) =⇒ (η) : By (α), there exists a v ∈ A such that G(v, w) for all w ̸= v. Then

by the hypothesis, we have v ∈ Y . Therefore, v ∈ A ∩ Y .
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(η) =⇒ (α) : For all x ∈ A, let
A(x) := {y ∈ X : x ̸= y, ¬G(x, y)}.

Choose Y = {x ∈ X : A(x) = ∅}. If x /∈ Y , then there exists a z ∈ A(x). Hence the
hypothesis of (η) is satisfied. Therefore, by (η), there exists a v ∈ A ∩ Y . Hence
A(v) = ∅; that is, G(v, w) for all w ̸= v. Hence (α) holds.

This completes our proof. □

Remark 2.1. All of the elements v′s in Metatheorem are same as we have seen in
the proof. We adopted the Axiom of Choice in (γ1) =⇒ (ϵ1).

Example 2.2. Khamsi [15]: Let A be an abstract set partially ordered by ≺. We
will say that a ∈ A is a minimal element of A if and only if b ≺ a implies b = a. The
concept of minimal element is crucial in the proofs given for Caristi’s fixed point
theorem.

(K) Let (A,≺) be a partially ordered set. Then the following statements are
equivalent.

(1) A contains a minimal element.
(2) Any multimap T defined on A, such that for any x ∈ A there exists y ∈ T (x)

with y ≺ x, has a fixed point, i.e., there exists a in A such that a ∈ T (a).

This follows from Metatheorem (α) and (δ1).

For a partially ordered set (X,≼) and a map f : X −→ X, we define
Max(≼) : the set of maximal elements;
Fix(f) : the set of fixed points of f ;
Per(f) : the set of periodic points x ∈ X; that is, x = fn(x) for some n ∈ N.

In our previous work [25], we established the following based on Brøndsted [5] in
1976 and Jachymski [13] in 2003:
Brøndsted-Jachymski Principle. Let (X,≼) be a partially ordered set and f :
X −→ X be a progressive map (that is, x ≼ f(x) for all x ∈ X). Then X admits
a maximal element v ∈ X if and only if v is a fixed point of f if and only if v is a
periodic point, that is,

Max(≼) = Fix(f) = Per(f).

This is a particular form of Metatheorem and not claiming the non-emptiness of
three sets. We noticed that, in most applications of this principle, the existence of
a maximal element or a fixed point is achieved by the upper bound of a chain in
(X,≼) as we can see examples in Section 4.

3. Generalized Zorn’s Lemma

The following is a useful consequence of Metatheorem as in [25] without listing
(β1)− (ζ1).

Theorem 3.1. Let (X,≼) be a partially ordered set, x0 ∈ X, let A = S(x0) =
{y ∈ X : x0 ≼ y} have an upper bound (resp. A = T (x0) = {z ∈ X : z ≼ x0} have
a lower bound) v ∈ A.

Then the following equivalent statements hold:
(α) There exists a maximal (resp. minimal) element v ∈ A such that v ⪯̸ w

(resp. w ⪯̸ v) for any w ∈ X\{v}.
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(β) If F is a family of maps f : A −→ X such that for any x ∈ A with x ̸= f(x),
there exists a y ∈ X \ {x} satisfying x ⪯ y (resp. y ⪯ x), then F has a common
fixed element v ∈ A, that is, v = f(v) for all f ∈ F.

(γ) If F is a family of maps f : A −→ X satisfying x ⪯ f(x) (resp. f(x) ⪯ x)
for all x ∈ A with x ̸= f(x), then F has a common fixed element v ∈ A, that is,
v = f(v) for all f ∈ F.

(δ) Let F be a family of multimaps F : A ⊸ X such that, for any x ∈ A \ F (x)
there exists y ∈ X \{x} satisfying x ⪯ y (resp. y ⪯ x). Then F has a common fixed
element v ∈ A, that is, v ∈ F (v) for all F ∈ F.

(ϵ) If F is a family of multimaps F : A ⊸ X such that x ⪯ y (resp. y ⪯ x) holds
for any x ∈ A and any y ∈ F (x) \ {x}, then F has a common stationary element
v ∈ A, that is, {v} = F (v) for all F ∈ F.

(ζ) Let F be a family of multimaps F : A ⊸ X such that, for all x ∈ A with
F (x) ̸= ∅, there exists y ∈ X \ {x} such that x ⪯ y (resp. y ⪯ x) holds. Then there
exists v ∈ A such that F (v) = ∅ for all F ∈ F.

(η) If Y is a subset of X such that for each x ∈ A \ Y there exists a z ∈ X \ {x}
satisfying x ⪯ z (resp. z ⪯ x), then there exists a v ∈ A ∩ Y .

Proof. (α) Since A has an upper bound v ∈ A, for each x ∈ A, we have x0 ≼ x ≼ v.
If v ≼ w for some w ∈ X, then w ∈ S(x0) = A and w ≼ v. Since (X,≼) is partially
ordered, we have w = v. Hence v is maximal. Therefore, the maximal case of (α)
holds. Similarly, the minimal case of (α) also holds.

Let G(x, y) be x ⪯̸ y (resp, y ⪯̸ x). Then (α)−(η) are equivalent by Metatheorem.
□

Remark 3.2. (1) All the elements v′s in Theorem 3.1 are same as we have seen in
the proof of Metatheorem.

(2) Note that (α) ⇐⇒ (γ1) is a new proof of the Brøndsted-Jachymski Principle.

(3) Theorem 3.1 improves the Abian-Brown fixed point theorem, the Tarski-
Kantorovitch theorem, and Zorn’s lemma. See [25].

(4) In Sections 4 and 5, we can see some other theorems which are closely related
to Theorem 3.1

A partially ordered set (X,≼) is said to be inductive (complete, resp.) if every
non-empty chain in X has an upper bound (a least upper bound, resp.).

From Theorem 3.1, we have the following:

Corollary 3.3. Let (X,≼) be a partially ordered set satisfying one of the following:

(a) all nonempty chain in X has an upper bound (⇔ X is inductive),
(b) all nonempty chain in X has a least upper bound (⇔ X is complete),
(c) all nonempty well-ordered subset of X has an upper bound,
(d) all nonempty well-ordered subset of X has a least upper bound,

Then the equivalent statements in Theorem 3.1 for the maximum case hold.

From the Brøndsted-Jachymski Principle and Corollary 3.3, we have the following
generalization of Zorn’s lemma:
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Corollary 3.4. Let (X,≼) be a partially ordered set satisfying one of (a)–(d) in
Corollary 3.3. If f : X −→ X is progressive, then we have

Max(≼) = Fix(f) = Per(f) ̸= ∅.

Example 3.5. For complete partially ordered sets, particular results of Corollary
3.4 are known as follows; see Kang ([14], p.20):

Tarski [30] and Davis [8] proved that the completeness of a lattice is equivalent
to the existence of fixed points of increasing selfmap. And Tascović [32] proved that
a partially ordered set is complete iff every progressive selfmap has a fixed point.

Smarzenski [26] obtained a result related to (γ1). Smithson [27, 28] obtained
some fixed point theorems for a partially ordered space satisfying (d) and multimaps
satisfying (δ1).

Example 3.6. Recall that Tasković [32] showed that Zorn’s lemma is equivalent
to the following Theorem 3.1(γ):

(T) Let F be a family of self-maps defined on a partially ordered set A such
that x ≼ f(x) [resp. f(x) ≼ x] for all x ∈ A and all f ∈ F . If each chain
in A has an upper bound (resp. lower bound), then the family F has a
common fixed point.

4. Extending Zermelo’s theorem

The following is known the Zermelo fixed point theorem by Dunford-Schwartz
([9], p.5, Theorem I.2.5.) :

Theorem 4.1. (Zermelo) Let (P,≼) be a partially ordered set in which every chain
has a supremum. Assume that f : P −→ P is such that f is progressive, that is,

p ≼ f(p) for all p ∈ P.

Then f has a fixed point.

Amann [1] derived several fixed point theorems from Theorem 4.1. For exam-
ple, Tarski’s fixed point theorem, fixed point theorems for condensing maps and
nonexpansive maps.

Jachymski [13] noted: “The above theorem attributed to Zermelo although it
does not appear explicitly in any of his papers. However, a proof of it can be de-
rived from Zermelo’s proof [36] of the well-ordering principle. This observation is
due to Bourbaki [3], who was the first to formulate the theorem in the above form.
(Actually, Bourbaki used well-ordered subsets of P instead of chains so his assump-
tion is formally weaker than that of Theorem 4.1. However it is more convenient
for us to work with chains as will be seen in the sequel. The proof of Zermelo’s
theorem does not depend on the Axiom of Choice (AC). If, however, we allow the
use of Zorn’s Lemma, then the proof is straightforward; moreover, the assump-
tion on (P,≼) can be weakened then to ‘every chain has an upper bound’. This is
Kneser’s [17] fixed point theorem which turns out to be equivalent to the AC as
shown by Abian [1]. In the literature, Zermelo’s Theorem is sometimes called the
Bourbaki-Kneser theorem (cf. Zeidler [35]. p.504 ).”

Recently Toyoda [33] also noted: “The Zermelo fixed point theorem is also known
as the Bourbaki fixed point theorem or the Bourbaki-Kneser fixed point theorem.
It implies the Caristi fixed point theorem, the Bernstein-Cantor-Schröder theorem,
the Ekeland variational principle, the Takahashi minimization theorem, and others.
Moreover, under the Axiom of Choice, it implies Zorn’s Lemma.”
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We have generalizations of the Zermelo theorem from Section 3, see Theorems
3.1(γ1), 3.3(γ1), Corollaries 3.4(γ1), 3.5 for single-valued case and their multi-valued
versions in Section 3. Therefore, many generalizations of Zorn’s Lemma also extends
the Zermelo theorem.

As an example, from Theorem 3.1(α) and (γ1), we have the following:

Theorem 4.2. Let (X,≼) be a partially ordered set, x0 ∈ X, let A = S(x0) = {y ∈
X : x0 ≼ y} has an upper bound. If f : A −→ X is a map such that x ≼ f(x) for
any x ∈ A, then

Max(≼) = Fix(f) = Per(f) ̸= ∅.

Recall that Theorem 3.1(γ1) follows from (α) under the Axiom of Choice.
From Theorem 3.1(α) and (γ1), we have the following:

Theorem 4.3. Let (X,≼) be a partially ordered set, x0 ∈ X, φ : X −→ X a
map, and let B = {φn(x0) ∈ X : n ∈ N} have upper bounds and A = B ∪
{its upper bounds} such that x ≼ φ(x) for all x ∈ A. Then we have

Max(≼) = Fix(φ) = Per(φ) ̸= ∅.

5. Equivalent formulations of Caristi theorem

In this section, we consider a particular case of Theorem 3.1 as follows:

Theorem 5.1. Let (X,≼) be a partially ordered metric space, and a function
φ : X −→ R+ be lower semicontinuous such that

x ≼ y iff d(x, y) ≤ φ(x)− φ(y) for x, y ∈ X.

Let x0 ∈ X and A = S(x0) = {y ∈ X : x0 ≼ y} have an upper bound.
Then the following equivalent statements (α)− (η) of Theorem 3.1 hold.
(α) There exists a maximal element v ∈ A, that is, d(v, w) > φ(v) − φ(w) for

any w ∈ X \ {v}.
(β) If F is a family of maps f : A −→ X such that for any x ∈ A with x ̸= f(x),

there exists a y ∈ X \ {x} satisfying d(x, y) ≤ φ(x) − φ(y), then F has a common
fixed element v ∈ A, that is, v = f(v) for all f ∈ F.

(γ) If F is a family of maps f : A −→ X satisfying d(x, f(x)) ≤ φ(x)− φ(f(x))
for all x ∈ A with x ̸= f(x), then F has a common fixed element v ∈ A, that is,
v = f(v) for all f ∈ F.

(δ) If F is a family of multimaps F : A ⊸ X such that, for any x ∈ A \ F (x),
there exists y ∈ X \{x} satisfying d(x, y) ≤ φ(x)−φ(y), then F has a common fixed
element v ∈ A, that is, v ∈ F (v) for all F ∈ F.

(ϵ) If F is a family of multimaps F : A ⊸ X such that d(x, y) ≤ φ(x) − φ(y)
holds for any x ∈ A and any y ∈ F (x) \ {x}, then F has a common stationary
element v ∈ A, that is, {v} = Fi(v) for all F ∈ F.

(ζ) Let F be a family of multimaps T : A ⊸ X such that, for all x ∈ A with
T (x) ̸= ∅, there exists y ∈ X \ {x} such that d(x, y) ≤ φ(x) − φ(y) holds. Then
there exists v ∈ A such that T (v) = ∅ for all T ∈ F.

(η) If Y is a subset of X such that for each x ∈ A \ Y there exists a z ∈ X \ {x}
such that d(x, z) ≤ φ(x)− φ(z), then there exists an element v ∈ A ∩ Y .

From Theorem 5.1 we have equivalent formulations of the Caristi theorem as
follows:
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Theorem 5.2. Let (X, d) be a complete metric space, and a function φ : X −→ R+

be lower semicontinuous such that

x ≼ y iff d(x, y) ≤ φ(x)− φ(y) for x, y ∈ X.

Then the equivalent statements (α)− (η) of Theorem 5.1 hold where we include

(γ1) (Caristi) If f : X −→ X is a map such that d(x, f(x)) ≤ φ(x) − φ(f(x))
for any x ∈ X, then f has a fixed and periodic element v ∈ X, that is, v = f(v).

Proof. Since (γ1) holds by the Caristi fixed point theorem and (α) holds by Brunner
[?] in 1987, so do the others. This completes our proof. □

There are possibly dual equivalent formulations of the Caristi theorem.

6. Jachymski’s 2003 Theorem

In this article, we introduced many examples of maps f : X −→ X satisfying
Per(f) = Fix(f) ̸= ∅. Such sets X can have more rich properties by applying the
following main theorem of Jachymski ([13], Theorem 2):

Theorem 6.1. Let X be a nonempty abstract set and T : X −→ X. The following
statements are equivalent:

(a) Per(T ) = Fix(T ) ̸= ∅.
(b) (Zermelo) There exists a partial ordering ≼ such that every chain in (X,≼)

has a supremum and T is progressive with respect to ≼.
(c) (Caristi) There exists a complete metric d and a lower semicontinuous

function φ : X −→ R+ such that T satisfies the Caristi condition.
(d) There exists a complete metric d and a d-Lipschitzian function φ : X −→

R+ such that T satisfies the Caristi condition and T is nonexpansive with
respect to d; i.e.

d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X.

(e) (Hicks-Rhoades) For each α ∈ (0, 1), there exists a complete metric d such
that T is nonexpansive with respect to d and

d(Tx, T 2x) ≤ αd(x, Tx) for all x ∈ X.

(f) There exists a complete metric d such that T is continuous with respect to
d and for each x ∈ X, the sequence (Tnx)∞n=1 is convergent (the limit may
depend on x).

(g) There exists a partition of X, X =
∪

γ∈Γ Xγ , such that all the sets Xγ are
nonempty, T-invariant and pairwise disjoint, and for all γ ∈ Γ, T |Xγ

has
a unique periodic point.

(h) For each α ∈ (0, 1), there exists a partition of X, X =
∪

γ∈Γ Xγ , and
complete metrics dγ on Xγ such that all the sets Xγ are nonempty; T-
invariant and pairwise disjoint; and

dγ(Tx, Ty) ≤ αdγ(x, y) for all x, y ∈ X.

Remark 6.2. ([13]) Implication (a) =⇒ (b) is a converse to Zermelo’s theorem.
Implication (a) =⇒ (c) is a reciprocal to Caristi’s theorem; in fact, a stronger result,
(a) =⇒ (d) can be obtained here. Implication (a) =⇒ (e) is a converse to a fixed
point theorem of Hicks-Rhoades. Finally (a) =⇒ (f) answers a question posed by
Matkowski.
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Comments 6.3. Each of (a)–(h) seems to be order theoretic fixed point theorems.
For them, we state our own comments.

(a) This could be Fix(T ) = Per(T ) = Max(≼) ̸= ∅ by defining ≼ on X.
(b) Zermelo’s theorem is improved in Section 4 and has many equivalents there.

Note that its conclusion should be as above in (a).
(c) Caristi’s theorem is improved by Theorem 5.2 and its conclusion should be

as in (a).
(d) This is a variant of Caristi’s theorem and its conclusion should be as in

(a).
(e) Here nonexpansiveness is redundant in view of Theorem H(iv) in [25].

7. Conclusion

Zermelo’s fixed point theorem suggested in 1904 and 1908 more than one hun-
dred years ago, Kuratowski-Zorn’s Lemma or Zorn’s Lemma in 1935, Bourbaki’s
fixed point theorem in 1949-50, and some other classical results are all improved
in the present article. Moreover, their equivalent formulations based on our 2023
Metatheorem and the Brøndsted-Jachymski Principle should be reflected in the
most of classical works on Ordered fixed point theory.

In many fields of mathematical sciences, there are plentiful number of theo-
rems concerning maximal points or various fixed points that can be applicable our
Metatheorem. Some of such theorems can be seen in our previous works [20-25] and
the present article. Therefore, Metatheorem is a machine to expand our knowledge
easily. In this article we presented relatively old and well-known examples.
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