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ABSTRACT. Presić (Publ. de L’Inst. Math. Belgrade, 5 (19), 75-78) introduced the
concept of a kth-order Banach type contraction mapping and obtained fixed point of such

mappings on metric spaces. Ćirić and Presić (Acta Math. Univ. Comenian. LXXVI (2)
(2007), 143-147) extended the notion to kth-order Ciric type contraction mappings on a
metric space. On the other hand, Matthews (Ann. New York Acad. Sci. 728 (1994),
183-197) introduced the concept of a partial metric as a part of the study of denotational
semantics of dataflow networks. He gave a modified version of the Banach contraction
principle, more suitable in this context. In this paper, we study the common fixed points
of kth-order Ciric type contractions in the framework of partial metric spaces. We also
present an example to validate our result.
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1. INTRODUCTION AND PRELIMINARIES

Banach contraction principle [7] is a simple and powerful result with a wide range of
applications, including iterative methods for solving linear, nonlinear, differential, integral,
and difference equations. There are several generalizations and extensions of the Banach
contraction principle in the existing literature.

Banach contraction principle reads as follows:
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Theorem 1.1. [7] Let (X, d) be a complete metric space and mapping f : X → X satisfies

d(fx, fy) ≤ kd(x, y) for all x, y ∈ X.

where k ∈ [0, 1). Then, there exists a unique x in X such that x = fx. Moreover, for any
x0 ∈ X, the iterative sequence xn+1 = fxn converges to x.

Let f : Xk → X, where k ≥ 1 is a positive integer. A point x∗ ∈ X is called a fixed
point of f if x∗ = f(x∗, ..., x∗). Consider the k-th order nonlinear difference equation

xn+1 = f(xn−k+1, xn−k+2, ..., xn) for n = k − 1, k, k + 1, ... (1.1)

with the initial values x0, x1, ..., xk−1 ∈ X.
Equation (1.1) can be studied by means of fixed point theory in view of the fact that x

in X is a solution of (1.1) if and only if x is a fixed point of f . One of the most important
results in this direction is obtained by Presić [20] in the following way.

Theorem 1.2. [20] Let (X, d) be a complete metric space, k a positive integer and f :
Xk → X. Suppose that

d(f(x1, ..., xk), f(x2, ..., xk+1)) ≤
kX

i=1

qid(xi, xi+1) (1.2)

holds for all x1, ..., xk+1 in X, where qi ≥ 0 and
kP

i=1

qi ∈ [0, 1). Then f has a unique fixed

point x∗. Moreover, for any arbitrary points x1, ..., xk+1 in X, sequence {xn} defined by
xn+k = f(xn, xn+1..., xn+k−1), for all n ∈ N converges to x∗.

It is easy to show that for k = 1, Theorem 1.1 reduces to the Banach contraction
principle.

Ćirić and Presić [11] generalized above theorem as follows.

Theorem 1.3. [11] Let (X, d) be a complete metric space, k a positive integer and f :
Xk → X. Suppose that

d(f(x1, ..., xk), f(x2, ..., xk+1)) ≤ λ max{d(xi, xi+1) : 1 ≤ i ≤ k}, (1.3)

holds for all x1, ..., xk+1 in X, where λ ∈ [0, 1). Then f has a fixed point x∗ ∈ X.
Moreover, for any arbitrary points x1, ..., xk+1 ∈ X, the sequence {xn} defined by xn+k =
f(xn, xn+1..., xn+k−1), for all n ∈ N converges to x∗. Moreover, if

d(f(u, ..., u), f(v, ..., v)) < d(u, v),

holds for all u, v ∈ X, with u 6= v, then x∗ is unique fixed point of f .

The applicability of the above result to the study of global asymptotic stability of the
equilibrium for the nonlinear difference equation (1.1) can be found in [10]. For further
work in this direction, we refer to [2, 16, 19, 23].

On the other hand, partial metric space is a generalized metric space in which each
object does not necessarily have to have a zero distance from itself [17]. A motivation
behind introducing the concept of a partial metric was to obtain appropriate mathematical
models in the theory of computation [13, 17, 22, 24, etc]. Altun and Simsek [4], Oltra
and Valero [18] and Valero [25] established potential generalizations of the results in [17].
Romaguera [21] proved a Caristi type fixed point theorem on partial metric spaces. Further
results in this direction were proved in [1, 3, 5, 6, 8, 9, 14, 15].

Recently, Geroge et al. [12] proved generalized fixed point theorem of Presic type in
cone metric spaces and gave its application to Markov process.

The aim of this paper is to study the common fixed point results for mappings satisfying
Presić type contractive conditions in the setup of partial metric spaces.

In the sequel the letters R, R+ and N will denote the set of all real numbers, the set of
all nonnegative real numbers and the set of all positive integer numbers, respectively.
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Consistent with [4] and [17], the following definitions and results will be needed in the
sequel.

Definition 1.4. Let X be a nonempty set. A function p : X ×X → R+ is said to be a
partial metric on X if for any x, y, z ∈ X, the following conditions hold true:

(P1): p(x, x) = p(y, y) = p(x, y) if and only if x = y;
(P2): p(x, x) ≤ p(x, y);
(P3): p(x, y) = p(y, x);
(P4): p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

The pair (X, p) is then called a partial metric space.
If p(x, y) = 0, then (P1) and (P2) imply that x = y. But the converse does not hold
always.

A trivial example of a partial metric space is the pair (R+, p) , where p : R+×R+ → R+

is defined as p(x, y) = max{x, y}.

Example 1.5. [17] If X = {[a, b] : a, b ∈ R, a ≤ b}, then p([a, b], [c, d]) = max{b, d} −
min{a, c} defines a partial metric p on X.

For some more examples of partial metric spaces, we refer to [4, 9, 21, 24].

Each partial metric p on X generates a T0 topology τp on X which has as a base the
family open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) <
p(x, x) + ε},for all x ∈ X and ε > 0.

Observe (see [17, p. 187]) that a sequence {xn} in a partial metric space (X, p) converges
to a point x ∈ X, with respect to τp, if and only if p(x, x) = limn→∞ p(x, xn).

If p is a partial metric on X, then the function pS : X ×X → R+ given by pS(x, y) =
2p(x, y)− p(x, x)− p(y, y), defines a metric on X.

Furthermore, a sequence {xn} converges in (X, pS) to a point x ∈ X if and only if

lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, x) = p(x, x).

Definition 1.6. [17]. Let (X, p) be a partial metric space.

(a): A sequence {xn} in X is said to be a Cauchy sequence if lim
n,m→∞

p(xn, xm)

exists and is finite.
(b): (X, p) is said to be complete if every Cauchy sequence {xn} in X converges

with respect to τp to a point x ∈ X such that lim
n→∞

p(x, xn) = p(x, x). In this

case, we say that the partial metric p is complete.

Lemma 1.7. [4, 17] Let (X, p) be a partial metric space. Then:

(a): A sequence {xn} in X is a Cauchy sequence in (X, p) if and only if it is a
Cauchy sequence in metric space (X, pS).

(b): A partial metric space (X, p) is complete if and only if the metric space (X, pS)
is complete.

2. INTRODUCTION AND PRELIMINARIES

In this section, we obtain some common fixed point results for self maps satisfying Presić
type contractions defined on a complete partial metric space. We begin with the following
theorem.

Theorem 2.1. Let (X, p) be a complete partial metric space. Suppose that f, g : Xk → X
be two mappings satisfy

p(f(x1, ..., xk), g(x2, ..., xk+1)) ≤ λ max{p(xi, xi+1) : 1 ≤ i ≤ k}, (2.1)
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for all x1, ..., xk+1 in X, where λ ∈ [0, 1), k a positive integer. Then f has a unique fixed
point x∗. Moreover, for any arbitrary points x1, ..., xk+1 in X, sequence {xn : n ∈ N}
defined by xn+k = f(xn, xn+1..., xn+k−1) converges to x∗.

Proof. Let x1, ..., xk+1 be arbitrary k elements in X. Define

x2n+k = f(x2n, x2n+1, ..., x2n+k−1) and

x2n+1+k = g(x2n+1, x2n+2, ..., x2n+k)

for all n = 1, 2, .... First, we prove that the following inequalities holds for each n ∈ N :

p(x2n, x2n+1) ≤ λ
2n
k max

�
p(xi, xi+1)

λ
2i
k

: 1 ≤ i ≤ k

�
. (2.2)

It is obvious to note that (2.2) is valid for n = 1, 2, 3, ..., k. Now let the following k
inequalities:

p(xn, xn+1) ≤ λ
2n
k max

�
p(xi, xi+1)

λ
2i
k

: 1 ≤ i ≤ k

�
,

p(xn+1, xn+2) ≤ λ
2(n+1)

k max

�
p(xi, xi+1)

λ
2i
k

: 1 ≤ i ≤ k

�
,

. . .,

p(xn+k−1, xn+k) ≤ λ
2(n+k−1)

k max

�
p(xi, xi+1)

λ
2i
k

: 1 ≤ i ≤ k

�
by the induction hypotheses. Then we have

p(x2n+k, x2n+k+1) = p (f(x2n, ..., x2n+k−1) , g(x2n+1, ..., x2n+k))

≤ λ max {p(xi, xi+1) : 2n ≤ i ≤ 2n + k − 1}

≤ λ.λ
2n
k max

�
p(xi, xi+1)

λ
2i
k

: 1 ≤ i ≤ k

�

= λ
2n+k

k max

�
p(xi, xi+1)

λ
2i
k

: 1 ≤ i ≤ k

�
and the inductive proof of (2.2) is complete. In similar way, we obtain

p(x2n+k+1, x2n+k+2) ≤ λ
2n+k+1

k max

�
p(xi, xi+1)

λ
2i
k

: 1 ≤ i ≤ k

�
.

Hence

p(xn+k, xn+k+1) ≤ λ
n+k

k max

�
p(xi, xi+1)

λ
i
k

: 1 ≤ i ≤ k

�
for all n = 1, 2, .... Now we have

ps(xn+k, xn+k−1) = 2p(xn+k, xn+k−1)− p(xn+k, xn+k)− p(xn+k−1, xn+k−1)

≤ 2p(xn+k, xn+k−1) + p(xn+k, xn+k) + p(xn+k−1, xn+k−1)

≤ 4p(xn+k, xn+k−1)

≤ 4λ
n+k−1

k max

�
p(xi, xi+1)

λ
i
k

: 1 ≤ i ≤ k

�
.

So we have

ps(xn+k, xn) ≤ ps(xn+k, xn+k−1) + ... + ps(xn+1, xn)

≤ 4λn[λk−1 + ... + λ1]max

�
p(xi, xi+1)

λi
: 1 ≤ i ≤ k

�

≤ 4λn

1− λ
max

�
p(xi, xi+1)

λi
: 1 ≤ i ≤ k

�
.

Hence {xn} is a Cauchy sequence in (X, ps). By Lemma 1.7, {xn} is a Cauchy sequence
in (X, p). Now, since (X, p) is complete, there exists u in X such that xn → u as n →∞.
So that

lim
n→∞

p(xn, xn) = lim
n→∞

p(xn, u) = p(u, u).
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Now, for any integer n we have

p(u, g(u, u, ..., u))

≤ p(u, x2n+k) + p(x2n+k, g(u, u, ..., u))− p(x2n+k, x2n+k)

= p(u, x2n+k) + p(f(x2n, x2n+1..., x2n+k−1), g(u, u, ..., u))− p(x2n+k, x2n+k)

≤ p(u, x2n+k) + λ max{p(x2n, u), p(x2n+1, u), ..., p(x2n+k−1, u)} − p(x2n+k, x2n+k).

On taking limit as n →∞, we obtain

p(u, g(u, u, ..., u)) ≤ λp(x2n, u),

implies u = g(u, u, ..., u). Again

p(f(u, u, ..., u), u)

≤ p(f(u, u, ..., u), x2n+k+1) + p(x2n+k+1, u)− p(x2n+k+1, x2n+k+1)

= p(f(u, u, ..., u), g(x2n+1, x2n+2..., x2n+k)) + p(u, x2n+k+1)− p(x2n+k+1, x2n+k+1)

≤ λ max{p(u, x2n+1), p(u, x2n+2), ..., p(u, x2n+k)}+ p(u, x2n+k+1)− p(x2n+k+1, x2n+k+1)

and on taking limit as n →∞, we get

p(f(u, u, ..., u), u) ≤ λp(u, u),

which implies f(u, u, ..., u) = u. Hence u is the common fixed point of f and g.
Now, to prove the uniqueness of u, let v be another point in X such that v = f(v, v, ..., v) =

g(v, v, ..., v). Then, we have

p(u, v) = p(f(u, u, ..., u), g(v, v, ..., v))

≤ λp(u, v),

implies u = v. So, u is the unique common fixed point of f and g in X.
�

Example 2.2. Let X = [0, 2]. Let p : X × X → R+ defined by p(x, y) = |x− y| if
x, y ∈ [0, 1), and p(x, y) = max{x, y} otherwise. It is easily seen that (X, p) is a complete
partial metric space. For a positive integer k, we define f, g : Xk → X by

f(x1, ..., xk) =

( x2 + x3 + xk

6
, if x1, ..., xk ∈ [0, 1)

0, otherwise,

g(x1, ..., xk) =

( x1 + x2 + xk

6
, if x1, ..., xk ∈ [0, 1)

0, otherwise.

Now for all x1, x2, ..., xk+1 ∈ [0, 1) and λ = 1/2, we have

p(f(x1, ..., xk), g(x2, ..., xk+1)) =
���x2 + x3 + xk

6
− x2 + x3 + xk+1

6

���
=

1

6
|xk − xk+1|

≤ 1

2
max{p(xi, xi+1) : 1 ≤ i ≤ k}

= λ max{p(xi, xi+1) : 1 ≤ i ≤ k}.

If for x1, x2, ..., xk,∈ [0, 1) and xk+1 ∈ [1, 2], then

p(f(x1, ..., xk), g(x2, ..., xk+1)) =
1

6
(x2 + x3 + xk)

≤ 1

2
xk+1 = λ max{p(xi, xi+1) : 1 ≤ i ≤ k}.

When some xj’s ∈ [1, 2], and x1, x2, ..., xj−1, xj+1, ..., xk+1 ∈ [0, 1), then we obtain p(f(x1, ..., xk), g(x2, ..., xk+1)) =
0 and (2.1) is satisfied obviously. Thus the conditions of Theorem 2.1 are satisfied and
there exist a unique u = 0 in X such that f(u, u, ..., u) = g(u, u, ..., u) = u.
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Corollary 2.3. Let (X, p) be a complete partial metric space, k a positive integer and
f, g : Xk → X. Suppose that

p(f(x1, ..., xk), g(x2, ..., xk+1)) ≤
kX

i=1

λip(xi, xi+1), (2.3)

holds for all x1, ..., xk+1 in X, where λi ≥ 0 and
kP

i=1

λi ∈ [0, 1). Then f and g have a

unique fixed point x∗.

In Theorem 2.1, take f = g to obtain the following corollary which extends and gener-
alizes the corresponding results of [20].

Corollary 2.4. Let (X, p) be a complete partial metric space. Suppose that a mapping
f : Xk → X satisfies

p(f(x1, ..., xk), f(x2, ..., xk+1)) ≤ λ max{p(xi, xi+1) : 1 ≤ i ≤ k}, (2.4)

for all x1, ..., xk+1 in X, where λ ∈ [0, 1), k a positive integer. Then f has a fixed point
x∗. Moreover, for any arbitrary points x1, ..., xk+1 in X, sequence {xn : n ∈ N} defined by
xn+k = f(xn, xn+1..., xn+k−1) converges to x∗.

If we take f = g in Theorem 2.1, then the following corollary is obtained which extends
and generalizes the comparable results of [11].

Corollary 2.5. Let (X, p) be a complete partial metric space, k a positive integer and
f : Xk → X. Suppose that

p(f(x1, ..., xk), f(x2, ..., xk+1)) ≤
kX

i=1

λip(xi, xi+1), (2.5)

holds for all x1, ..., xk+1 in X, where λi ≥ 0 and
kP

i=1

λi ∈ [0, 1). Then f has a unique fixed

point x∗. Moreover, for any arbitrary points x1, ..., xk+1 in X, sequence {xn} defined by
xn+k = f(xn, xn+1..., xn+k−1), for all n ∈ N converges to x∗.
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