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1. INTRODUCTION

The concept of partial metric p on a nonempty set X was introduced by Matthews
[8]. One of the most interesting properties of a partial metric is that p(x, x) may
not be zero for x ∈ X. Also, each partial metric p on a nonempty set X generates a
T0 topology on X. After the definition of partial metric space, Matthews proved the
partial metric version of Banach fixed point theorem. Then many authors gave some
generalizations of this result on this space (See [1, 3, 7, 9, 10, 11, 12]). Recently,
Chi, Karapınar and Thanh [4] obtained a fixed point theorem using a new type
contractive condition, which is quite different from usual contractive conditions.

On the other hand, Heckman defined the concept of weak partial metric space
and viewed some topological properties of it. Then Altun and Durmaz [2] proved the
fundamental fixed point theorem on this space. Also, Durmaz et al [5], obtained
some generalization of the result of [2]. In this work, we continue to study on fixed
point theory in weak partial metric space. For this, we use Chi, Karapınar and
Thanh type contractive condition.

2. PRELIMINARIES

In this section, we recall partial metric and weak partial metric space and some
properties of them.
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Definition 2.1 ([8]). A partial metric on a nonempty set X is a function p : X×X →
R+ (nonnegative real numbers) such that for all x, y, z ∈ X :

(i) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y) (T0-separation axiom),
(ii) p(x, x) ≤ p(x, y) (small self-distance axiom),
(iii) p(x, y) = p(y, x) (symmetry),
(iv) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z) (modified triangular inequality).
A partial metric space (for short PMS) is a pair (X, p) such that X is a nonempty

set and p is a partial metric on X.

Example 2.2. A mapping p : R× R → R+ defined by

p(x, y) =

 |x− y| , x, y ∈ [0, 1)

max {x, y} , otherwise

is a partial metric on R+.

Example 2.3. Let p : N ∪ {0} × N ∪ {0} → R+ be defined by

p(x, y) =



0 , x = y ≥ 0

2−|x| , x 6= 0 and y = 0

2−|y| , x = 0 and y 6= 0

2−min{|x|,|y|} , otherwise

is a partial metric on N ∪ {0} .

Example 2.4. Let P (N) be the set all subsets of N . If

p(x, y) = 1−
∑

n∈x∩y

2−n

for all x, y ∈ P (N), then p is a partial metric on P (N).

If p is a partial metric on X, then the functions ps, pw : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

and

pw(x, y) = max{p(x, y)− p(x, x), p(x, y)− p(y, y)}
= p(x, y)−min{p(x, x), p(y, y)}

are ordinary metrics on X. It is easy to see that ps and pw are equivalent metrics
on X. For example, let X = R+ and p(x, y) = max{x, y}, then ps(x, y) = |x− y| =
pw(x, y).

Note that each partial metric p on X generates a T0-topology τp with a base
of the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X :
p(x, y) < p(x, x) + ε}. Since τp may not be Hausdorff, then if there exists the limit
of a sequence may not be unique, too.

Remark 2.5. A sequence {xn} in a PMS (X, p) converges to a point x ∈ X, with
respect to τp, if and only if p(x, x) = limn→∞ p(x, xn). Indeed, let {xn} converges
to x ∈ X, with respect to τp, then there for all ε > 0, exists a positive integer n0

such that xn ∈ Bp(x, ε) for n ≥ n0. Therefore, considering the small self distance
property we have p(x, x) ≤ p(xn, x) < p(x, x) + ε for n ≥ n0 and so letting limit
n →∞, we have p(x, x) = limn→∞ p(x, xn). The converse may be shown similarly.
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Example 2.6. Let X = R+ and p(x, y) = max{x, y}. Define a sequence in X by
xn = 1

n for all n ∈ N. Then {xn} converges to any point of X.

Definition 2.7. (X, p) is a partial metric space. Then
(i) A sequence {xn} in X is called a Cauchy sequence if there exists (and is finite)

limn,m→∞ p(xn, xm).
(ii) (X, p) is called complete if every Cauchy sequence {xn} in X converges, with

respect to τp, to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

It is well known that, every convergent sequence on an ordinary metric space
is Cauchy, but this is not true on partial metric space. For example, let X = R+

and p(x, y) = max{x, y}. Define a sequence {xn} by {xn} = {0, 1, 0, 1, · · · }, then it
converges to any point of [1,∞), but it is not a Cauchy sequence. Also, we know
that an ordinary metric is continuous and so sequentially continuous, but this is
not true as shown in Example 2.2 for a partial metric.

The following lemma have an important role in the proof of our main result.

Lemma 2.8. Assume that xn → z as n →∞ in a PMS (X, p) such that p(z, z) = 0.
Then limn→∞ p(xn, y) = p(z, y) for every y ∈ X.

According to [8], a sequence {xn} in X converges, with respect to τps , to a point
x ∈ X if and only if

lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, x) = p(x, x).

By omitting the small self distance axiom, Heckmann [6] introduced the concept
of weak partial metric space (for short WPMS), which is generalized version of
Matthews’ partial metric space. That is, the function p : X × X → R+ is called
weak partial metric on X if it satisfies T0 seperation axiom, symmetry and modified
triangular inequality. Heckmann also shows that, if p is weak partial metric on X,
then for all x, y ∈ X we have the following weak small self-distance property

p(x, y) ≥ p(x, x) + p(y, y)
2

. (2.1)

Weak small self-distance property shows that WPMS are not far from small self-
distance axiom. It is clear that PMS is a WPMS, but the converse may not be true.

A basic example of a WPMS but not a PMS is the pair (R+, p), where p(x, y) =
x + y

2
for all x, y ∈ R+. For another example, for x, y ∈ R the function p(x, y) =

ex + ey

2
is a non partial metric but weak partial metric on R.

The concepts of convergence of a sequence, Cauchy sequence and complete-
ness in WPMS are defined as in PMS. Following Heckmann, in [2, 5] gave some
fundamental fixed point results on weak partial metric space such that:

Theorem 2.1. ([2])Let (X, p) be a complete WPMS and let F : X → X be a map
such that

p(Fx, Fy) ≤ ap(x, y) + bp(x, Fx) + cp(y, Fy) +
dp(x, Fy) + ep(y, Fx)

for all x, y ∈ X, where a, b, c, d, e ≥ 0 and, if d ≥ e, then a + b + c + 2d < 1, if d < e,
then a + b + c + 2e < 1. Then F has a unique fixed point.

Theorem 2.2. ([5])Let (X, p) be a complete WPMS, α ∈ [0, 1) and T : X → X a
mapping. Suppose that for each x, y ∈ X the following condition holds:

p(Tx, Ty) ≤ max {αp(x, y),min {p(x, x), p(y, y)}}
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Then:
(1) the set Xp = {x ∈ X : p(x, x) = inf {p(y, y) : y ∈ X}} is nonempty,
(2) there is a unique u ∈ Xp such that u = Tu,
(3) for each x ∈ Xp the sequence {Tnx} converges with respect to the metric pw

to u.

3. THE MAIN RESULT

Theorem 3.1. Let (X, p) be a complete weak partial metric space and T : X → X
be a mapping such that for all x, y ∈ X

p(Tx, Ty) ≤ max

 ap(x, y), bp(x, Tx), cp(y, Ty),
d {p(x, Ty) + p(y, Tx)} ,
min {p(x, x), p(y, y)}

 (3.1)

for some a, b, c ∈ [0, 1) and d ∈ [0, 1
2 ). Then

(a) Xp = {x ∈ X : p(x, x) = inf {p(y, y) : y ∈ X}} is nonempty,
(b) There is a unique u ∈ Xp such that u = Tu.

Proof. Let x0 ∈ X and {xn} be the sequence defined by xn = Txn−1 for all n ∈ N.
First, we will prove that Xp is nonempty. For this, by taking x = xn−1 and y = xn

in (3.1) and then

p(Txn−1, Txn) ≤ max

 ap(xn−1, xn), bp(xn−1, Txn−1), cp(xn, Txn),
d {p(xn−1, Txn) + p(xn, Txn−1)} ,
min {p(xn−1, xn−1), p(xn, xn)}


≤ max

 ap(xn−1, xn), bp(xn−1, Txn−1), cp(xn, Txn),
d {p(xn−1, xn) + p(xn, xn+1)} ,
min {p(xn−1, xn−1), p(xn, xn)}


≤ max

 ap(xn−1, xn), bp(xn−1, Txn−1), cp(xn, Txn),
2dp(xn−1, xn), 2dp(xn, xn+1),
min {p(xn−1, xn−1), p(xn, xn)}

 .

We suppose that α = max {a, b, c, 2d}, then

p(xn, xn+1) ≤ max
{

αp(xn−1, xn), αp(xn, xn+1),
min {p(xn−1, xn−1), p(xn, xn)}

}
(3.2)

So we consider this in two cases:
Case I:

max {αp(xn−1, xn), αp(xn, xn+1),min {p(xn−1, xn−1), p(xn, xn)}} = αp(xn, xn+1)

then we obtain
p(xn, xn+1) ≤ αp(xn, xn+1)

since α ∈ [0, 1), we say that p(xn, xn+1) = 0 and then xn = Txn. Since p(xn, xn) ≤
2p(xn, xn+1), we obtain p(xn, xn) = 0. This implies that Xp is nonempty.

Case II:

max {αp(xn−1, xn), αp(xn, xn+1),min {p(xn−1, xn−1), p(xn, xn)}} 6= αp(xn, xn+1)

for all n ∈ N, then from (3.2), we obtain

p(xn, xn+1) ≤ max {αp(xn−1, xn),min {p(xn−1, xn−1), p(xn, xn)}}

≤ max
{

αp(xn−1, xn),
p(xn−1, xn−1) + p(xn, xn)

2

}
(3.3)
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≤ p(xn−1, xn).

Hence {p(xn, xn+1)} is a decreasing sequence of nonnegative real numbers. It
follows that, there exist r ≥ 0 such that

lim
n→∞

p(xn, xn+1) = r.

If r = 0, then p(xn, xn) ≤ 2p(xn, xn+1) for all n ∈ N. So lim
n→∞

p(xn, xn) = 0. Now,
we consider the case r > 0. To do this, we set

rn = max {αp(xn−1, xn),min {p(xn−1, xn−1), p(xn, xn)}}
for all n ∈ N. From (3.3) and lim

n→∞
p(xn, xn+1) = r we have lim

n→∞
rn = r.

We shall prove that rn = αp(xn, xn−1) for finite n. If rn = αp(xn, xn−1) for
infinitely many n then there exists a sequence {nk} of positive integers such that

rnk
= αp(xnk

, xnk−1).

Letting nk →∞ we obtain r = αr. This is a contradiction with α ∈ [0, 1) and r > 0.
Hence rn = αp(xn, xn−1) for finite n. Combining this fact with the definition of rn

, we can deduce that
lim

n→∞
p(xn, xn) = r.

Now for each n = 1, 2, ... by (P4) in the definition of weak partial metric space , we
have

min {p(xn, xn), p(xn+2, xn+2)} ≤ p(xn, xn) + p(xn+2, xn+2)
2

≤ p(xn, xn+2)
≤ p(xn, xn+1) + p(xn+1, xn+2)− p(xn+1, xn+1).

It follows from the above inequalities and

lim
n→∞

p(xn, xn+1) = lim
n→∞

p(xn, xn) = r

that
lim

n→∞
p(xn, xn+2) = r.

By induction we infer that
lim

n→∞
p(xn, xn+s) = r

for every positive integers s that is equivalent to saying that lim
n,m→∞

p(xn, xm) = r.

Hence {xn} is a Cauchy sequence in (X, p). Since (X, p) is complete there exist
u ∈ X such that {xn} converges to u as n →∞ that is

r = p(u, u) = lim
n→∞

p(xn, u) = lim
n,m→∞

p(xn, xm).

Let us prove
p(u, Tu) ≤ p(u, u).

For each n, we have

min {p(u, u), p(Tu, Tu)} ≤ p(u, u) + p(Tu, Tu)
2

≤ p(u, Tu)
≤ p(u, xn) + p(xn, Tu)− p(xn, xn). (3.4)

Now we need some computations for p(xn, Tu). So from (3.1) we have

p(Tu, xn) = p(Tu, Txn−1)
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≤ max

 ap(u, xn−1), bp(u, Tu), cp(xn−1, Txn−1),
d {p(u, Txn−1) + p(xn−1, Tu)} ,
min {p(u, u), p(xn−1, xn−1)}


≤ max

{
ap(u, xn−1), bp(u, Tu), cp(xn−1, xn),
2dp(u, xn), 2dp(xn−1, Tu), p(u, xn−1)

}
≤ max

p(u, xn−1), bp(u, Tu), cp(xn−1, xn),
2dp(u, xn), 2dp(xn−1, Tu)

≤ max
{

p(u, xn−1), bp(u, Tu), cp(xn−1, xn), 2dp(u, xn),
2d [p(xn−1, u) + p(u, Tu)− p(u, u)]

}
≤ max {p(u, u), bp(u, Tu), 2dp(u, Tu)}
≤ max {p(u, u), αp(u, Tu)} (3.5)

and we get {p(Tu, xn)} is bounded sequence. Thus it has a convergent subse-
quence {p(Tu, xnk

)}. Taking the limits from (3.5) as nk →∞ and we get

lim
nk→∞

p(Tu, xnk
) ≤ max {p(u, u), αp(u, Tu)} .

Also letting nk →∞ in (3.4) and combining with the above fact , we have

p(u, Tu) ≤ p(u, u) + max {p(u, u), αp(u, Tu)} − p(u, u)
≤ max {p(u, u), αp(u, Tu)}
≤ p(u, u).

Set
ρp = inf {p(y, y) : y ∈ X}

For each k = 1, 2, ... we can fix xk ∈ X such that

p(xk, xk) ≤ ρp +
1
k

.

By what we have proved for each k = 1, 2, ... we can seek uk such that Tnxk → uk

as n →∞ and
p(Tuk, uk) ≤ p(uk, uk) = ruk .

We shall show that
lim

n,m→∞
p(un, um) = ρp.

Given ε > 0 and put n0 :=
[

3
ε(1−α)

]
+ 1. If k ≥ n0 then using (3.1) we have

ρp ≤ p(Tuk, Tuk)

≤ max

 ap(uk, uk), bp(uk, Tuk), cp(uk, Tuk),
d

{
p(uk, Tuk) + p(uk, Tuk)

}
,

min
{
p(uk, uk), p(uk, uk)

}


≤ max
{
αp(uk, Tuk), p(uk, uk)

}
≤ p(uk, uk)

and so

ρp ≤ p(Tuk, Tuk) ≤ p(uk, uk) = ruk ≤ p(xk, xk)

≤ ρp +
1
k
≤ ρp +

1
n0

< ρp +
[
ε(1− α)

3

]
.

This implies that

Uk : = p(xk, xk)− p(Txk, Txk)
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< ρp +
[
ε(1− α)

3

]
− ρp =

[
ε(1− α)

3

]
.

Also if k ≥ n0 then

p(uk, uk) = ruk
≤ p(xk, xk) < ρp +

1
k

< ρp +
1
n0

implies that

p(uk, uk) < ρp +
[
ε(1− α)

3

]
.

Now, for each m,n > n0, it follows from p(uk, Tuk) ≤ p(uk, uk) for all k = 1, 2, ...
that

p(un, um) ≤ p(um, Tum) + p(Tun, un) + p(Tum, Tun)
−p(Tum, Tum)− p(Tun, Tun)

≤ p(um, um) + p(un, un) + p(Tum, Tun)
−p(Tum, Tum)− p(Tun, Tun)

= Um + Un + p(Tum, Tun)

≤ 2
[
ε(1− α)

3

]
+ p(Tum, Tun). (3.6)

On the other hand, we have

p(Tum, Tun) ≤ max

 ap(um, un), bp(um, Tum), cp(un, Tun),
d {p(um, Tun) + p(un, Tum)} ,
min {p(um, um), p(un, un)}


≤ max


ap(um, un), bp(um, Tum), cp(un, Tun),

d

{
p(um, un) + p(un, Tun)− p(un, un)+
p(un, um) + p(um, Tum)− p(um, um)

}
,

min {p(um, um), p(un, un)}


≤ max


ap(um, un), bp(um, Tum), cp(un, Tun),

d

{
p(um, un) + p(un, un)− p(un, un)+
p(un, um) + p(um, um)− p(um, um)

}
,

min {p(um, um), p(un, un)}


≤ max

{
ap(um, un), bp(um, Tum), cp(un, Tun),
2dp(um, un),min {p(um, um), p(un, un)}

}
≤ max {αp(um, un), p(um, um), p(un, un)} .

By combining the above inequality with (3.6) we get

p(un, um) ≤ 2
[
ε(1− α)

3

]
+ p(Tum, Tun)

≤ 2
[
ε(1− α)

3

]
+ max {αp(um, un), p(um, um), p(un, un)} .

This implies that

p(un, um) ≤ max

 αp(um, un) + 2
[

ε(1−α)
3

]
,

p(um, um) + 2
[

ε(1−α)
3

]
, p(un, un) + 2

[
ε(1−α)

3

]  .

Thus

ρp ≤ p(un, um)
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≤ max


2
3ε, p(um, um) + 2

[
ε(1−α)

3

]
,

p(un, un) + 2
[

ε(1−α)
3

] 
≤ max


2
3ε, ρp +

[
ε(1−α)

3

]
+ 2

[
ε(1−α)

3

]
,

ρp +
[

ε(1−α)
3

]
+ 2

[
ε(1−α)

3

] 
≤ max

{
2
3
ε, ρp + (1− α)ε

}
≤ max

{
2
3
ε, ρp + ε

}
= ρp + ε.

Therefore lim
n,m→∞

p(un, um) = ρp, hence {un} is Cauchy sequence. Since (X, p) is

complete, there exist y ∈ X such that un → y as n →∞ that is

p(y, y) = lim
n→∞

p(un, y) = lim
n,m→∞

p(un, um) = ρp.

Hence y ∈ Xp or Xp 6= ∅. In this way (a) is proved.
Now if y ∈ Xp then there exist u ∈ X such that

p(u, Tu) ≤ p(u, u) = ry

where
u = lim

n→∞
Tny.

We have
ρp ≤ p(Tu, Tu) and ρp ≤ p(u, u) = p(u, Tu)

and

ρp ≤
p(Tu, Tu) + p(u, u)

2
≤ p(u, Tu) = p(u, u) = ry ≤ p(y, y) = ρp

so
p(u, u) = p(Tu, u) = p(Tu, Tu)

or u = Tu. To finish the proof we have to show that if u, v ∈ Xp are both fixed point
of T then u = v. Indeed it follows from Tu = u ,Tv = v and p(u, u) = p(v, v) = ρp

that

p(u, v) = p(Tu, Tv)

≤ max

 ap(u, v), bp(u, Tu), cp(v, Tv),
d {p(u, Tv) + p(v, Tu)} ,
min {p(u, u), p(v, v)}


≤ max {αp(u, v), p(u, u), p(v, v)} .

This implies that (1− α)p(u, v) ≤ 0 or p(u, v) ≤ p(u, u) = p(v, v) = ρp. If

(1− α)p(u, v) ≤ 0

then p(u, v) = 0, that is u = v. If

p(u, v) ≤ p(u, u) = p(v, v) = ρp

then p(u, v) = p(u, u) = p(v, v) that is u = v.
�
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Corollary 3.1. Let (X, p) be a complete weak partial metric space and T : X → X
be a mapping such that for all x, y ∈ X

p(Tx, Ty) ≤ max
{

ap(x, y), bp(x, Tx), cp(y, Ty),
d {p(x, Ty) + p(y, Tx)}

}
for some a, b, c ∈ [0, 1) and d ∈ [0, 1

2 ). Then Xp is nonempty and there is a unique
u ∈ Xp such that u = Tu.

Corollary 3.2. Let (X, p) be a complete weak partial metric space and T : X → X
be a mapping such that for all x, y ∈ X

p(Tx, Ty) ≤ max {ap(x, y),min {p(x, x), p(y, y)}}
for some a ∈ [0, 1) . Then Xp is nonempty and there is a unique u ∈ Xp such that
u = Tu.

Corollary 3.3. Let (X, p) be a complete weak partial metric space and T : X → X
be a mapping such that for all x, y ∈ X

p(Tx, Ty) ≤ ap(x, y) + bp(x, Tx) + cp(y, Ty) + d {p(x, Ty) + p(y, Tx)}
for some a + b + c + d < 1 and a, b, c, d ≥ 0. Then T has a unique fixed point.
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