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WEAK CONVERGENCE OF FIXED POINT ITERATIONS IN METRIC SPACES
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ABSTRACT. The concept of convergence in normed spaces is extended to metric spaces;
and weak convergence of fixed point iterations of contractions on metric spaces is obtained
in this article.
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1. INTRODUCTION

It is true in a non zero normed space (X, ‖·‖) that ‖x‖ = sup{|f(x)| :
f ∈ X∗, ‖f‖ = 1} = sup{sup{|f(x)| : f ∈ F} : F is a finite nonempty subset of
the set {g ∈ X∗ : ‖g‖ = 1}}. Here the collection of all finite nonempty subsets of
{g ∈ X∗ : ‖g‖ = 1} is a directed set under the inclusion relation. This article is to
consider metrics of the type d(x, y) = sup {di(x, y) : i ∈ I} on a nonempty set X,
when each di is a semi metric (i.e., di(x, y) = 0 need not imply x = y; following the
book [1], p.100) on X, for every i in a directed set (I,≤); and when di ≤ dj when-
ever i ≤ j. Convergence of a fixed point iteration through each di is considered as
weak convergence. For some results in connection with weak convergence for fixed
point results in nonlinear functional analysis see [2, 3, 5, 6].

The following two results (see [4]) are fundamental results which are applied
to obtain extensions for weak convergence. Many other generalized results can
also be applied to obtain results on weak convergence. If di is a semi metric on a
nonempty set X, then X is said to be di-complete or (X, di) is said to be complete,
if for a sequence (xn)∞n=1 in X such that di(xn, xm) −→ 0 as n, m −→ ∞, there is
a point x in X such that di(xn, x) −→ 0, as n −→∞.

Theorem 1.1. Suppose di is a semi metric on a nonempty set X such that (X, di)
is complete. Let T : X −→ X be a given function such that di(T 2(x), T (x)) ≤
kdi(T (x), x),∀x ∈ X, for some k ∈ (0, 1). Fix x0 ∈ X and define x1, x2, . . . ,
by xn+1 = T (xn),∀n = 0, 1, 2, . . . . Then there is a point x∗ in X such that
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di(xn, x∗) −→ 0 as n −→ ∞ and di(T (x∗), x∗) = 0. Moreover, if di is a metric,
then the fixed point of T is unique.

Theorem 1.2. Suppose (X, d) is a nonempty compact metric space. Let T : X −→ X
be a function such that d(T (x), T (y)) < d(x, y) whenever d(x, y) 6= 0. Then T has
a unique fixed point x∗. Moreover, if x0 ∈ X is fixed and x1, x2, . . . are defined by
xn+1 = T (xn),∀n = 0, 1, 2, . . . , then d(xn, x∗) −→ 0 as n −→∞.

2. MAIN RESULTS

Let X be a nonempty metric space with a metric d. Suppose (di)i∈I is a family
of semi metrics on X such that d(x, y) = sup

i∈I
di(x, y),∀x, y ∈ X. Suppose further

that (I,≤) is a directed set such that di(x, y) ≤ dj(x, y),∀x, y ∈ X, whenever i ≤ j
in I. These things are assumed in the following two results. The next theorem 2.1
assumes that one more condition is satisfied.

Consider a nonempty set of the form Ai = {y ∈ X : di(xi, y) = 0}, for some
xi ∈ X. If a set of this form Ai is called an i-zero set, and if there is a collection
(Ai)i∈I of i-zero sets such that Ai ⊇ Aj whenever i ≤ j in I, then it is assumed in
the next theorem 2.1 that

⋂
i∈I

Ai 6= ∅.

Theorem 2.1. Let (ki)i∈I be a given family of numbers in the open interval (0, 1). Let
T : X −→ X be a mapping such that di(T 2(x), T (x)) ≤ kidi(T (x), x),
∀x ∈ X,∀i ∈ I. Suppose further that each (X, di) is complete, for every i ∈ I.
Then there is a unique fixed point x∗ of T in X. Moreover, if x0 ∈ X is fixed and
x1, x2, . . . are defined by xn+1 = T (xn),∀n = 0, 1, 2, . . . , then di(xn, x∗) −→ 0 as
n −→∞, for each i ∈ I.

Proof. Fix x0 ∈ X, and define x1, x2, . . . in X by xn+1 = T (xn),∀n = 0, 1, 2, . . . .
Then, by theorem 1.1, for each i ∈ I, there is a point x∗i in X such that
di(xn, x∗i ) −→ 0 as n −→∞ and di(T (x∗i ), x

∗
i ) = 0.

Write Ai = {x ∈ X : di(x, x∗i ) = 0}, an i-zero set, for every i ∈ I. For i ≤ j in I,
if x ∈ Aj , then

0 ≤ di(x, x∗i )
≤ di(x, x∗j ) + di(x∗j , xn) + di(xn, x∗i )

≤ dj(x, x∗j ) + dj(x∗j , xn) + di(xn, x∗i )

= dj(x∗j , xn) + di(xn, x∗i );

and the right hand side tends to zero as n tends to infinity. Thus Aj ⊆ Ai,
whenever i ≤ j in I. So, by assumption,

⋂
i∈I

Ai 6= ∅. Suppose x∗ ∈
⋂
i∈I

Ai.

Since 0 ≤ di(x∗, xn) ≤ di(x∗, x∗i ) + di(x∗i , xn) = di(x∗i , xn), then di(x∗, xn) −→ 0
as n −→ ∞, for every i ∈ I. Also, 0 ≤ di(T (x∗), x∗) ≤ di(T (x∗), T (x∗i )) +
di(T (x∗i ), x

∗
i ) + di(x∗i , x

∗) ≤ kidi(x∗, x∗i ) + 0 + 0 = 0,∀i ∈ I, imply that T (x∗) = x∗.
Moreover, if y∗ = T (y∗) for some y∗ ∈ X, then 0 ≤ di(x∗, y∗) = di(T (x∗), T (y∗)) ≤
kidi(x∗, y∗),∀i ∈ I, imply that x∗ = y∗. This proves the theorem. �

Note that the assumption made before the statement of the theorem 2.1 is not
necessary in the previous theorem, if X is a compact metric space.

Lemma 2.2. Suppose (X, d) is compact. Let T : X −→ X be a mapping such that
di(T (x), T (y)) < di(x, y) whenever di(x, y) 6= 0, with x, y ∈ X and i ∈ I. Then T
has a unique fixed point x∗ in X. Moreover, if x0 ∈ X, and if xn+1 = T (xn), for
n = 0, 1, 2, . . . , then di(xn, x∗) −→ 0 as n −→∞, for each i ∈ I.
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Proof. Fix x0 ∈ X and define x1, x2, . . . in X by xn+1 = T (xn), for n = 0, 1, 2, . . . .
To each i ∈ I and to each x ∈ X, let [x]i = {y ∈ X : di(x, y) = 0}. Then for given
x, y ∈ X, either [x]i = [y]i or [x]i ∩ [y]i = ∅, for any i ∈ I. Define d̃i([x]i, [y]i) =
di(x, y),∀x, y ∈ X and define X̃i = {[x]i : x ∈ X}, for any i ∈ I. Then (X̃i, d̃i)
is a compact metric space, for any i ∈ I. Define Ti : (X̃i, d̃i) −→ (X̃i, d̃i) by
Ti([x]i) = T (x),∀x ∈ X, for any i ∈ I. Then d̃i(Ti([x]i), Ti([y]i)) < d̃i([x]i, [y]i)
whenever d̃i([x]i, [y]i) 6= 0. Then, by theorem 1.2, for each i ∈ I, there is a point
x∗i in X such that di(T (x∗i ), x

∗
i ) = 0, [x∗i ]i is the unique fixed point of Ti, and

di(xn, x∗i ) −→ 0 as n −→ ∞. Consider a subnet of (x∗i )i∈I that converges to some
x∗ in (X, d). Then di(T (x∗), x∗) ≤ di(T (x∗), T (x∗i )) + di(T (x∗i ), x

∗
i ) + di(x∗i , x

∗) ≤
2di(x∗, x∗i ) ≤ 2d(x∗, x∗i ),∀i ∈ I, imply that T (x∗) = x∗. If y∗ = T (y∗) for some
y∗ ∈ X, then di(x∗, y∗) = di(T (x∗), T (y∗)) < di(x∗, y∗), whenever di(x∗, y∗) 6= 0,
for any i ∈ I. This proves the uniqueness of the fixed point of T . Moreover,
di(x∗, x∗i ) ≤ di(T (x∗), T (x∗i )) + di(T (x∗i ), x

∗
i ) < di(x∗, x∗i ) whenever di(x∗, x∗i ) 6= 0.

This proves that di(x∗, x∗i ) = 0,∀i ∈ I. So, for every i ∈ I, di(xn, x∗) −→ 0 as
n −→∞. This completes the proof. �

Example 2.3. Let X be the collection of all bounded continuous real valued
functions defined on the real line R. This is a complete metric space under
the metric d defined by d(f, g) = sup

x∈R
|f(x)− g(x)| ,∀f, g ∈ X. To each i =

1, 2, . . . , define Bi = (−∞,−1 − 1
4i ] ∪ [−1 + 1

4i , 1 − 1
4i ] ∪ [1 + 1

4i ,∞), and define
di(f, g) = sup{|f(x)− g(x)| : x ∈ Bi},∀f, g ∈ X. Then define T : X −→ X by

(T (f))(x) =

{
f(x)

x for |x| ≥ 1
xf(x) for |x| ≤ 1.

Note that d(f, g) = sup
i∈I

di(f, g),∀f, g ∈ X, with I = {1, 2, . . . }, which is a directed

set under the usual ordering relation. It can be verified that X, di, d, and I satisfy
the conditions of the theorem 2.1 with kn = max

{
1

1+ 1
4n

, 1− 1
4n

}
. Here the zero

function is the unique fixed point.

This example 2.3 also reveals that the fixed point iteration may not converge
strongly with respect to d. But this is not the case when (X, d) is compact. Now
the proof of the theorem 2.2 is to be analyzed. The uniqueness part of the proof
implies that the net (x∗i )i∈I converges to x∗. If a subsequence (zm)∞m=1 of (xn)∞n=1

converges to some z∗ in (X, d), then d(zm, z∗) −→ 0 as m −→ ∞, and hence
di(zm, z∗) −→ 0 as m −→∞,∀i ∈ I; whereas di(zm, x∗) −→ 0 as m −→∞,∀i ∈ I.
Thus di(x∗, z∗) = 0,∀i ∈ I and hence d(x∗, z∗) = 0. Thus x∗ = z∗. So, every
subsequence of (xn)∞n=1 should converge to x∗ in the compact metric space (X, d).

Theorem 2.4. Under the assumptions of lemma 2.2, and for the sequence (xn)∞n=1

given in lemma 2.2, the following strong conclusion holds:

d(xn, x∗) −→ 0 as n −→∞.
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