

Vol. 4, No. 2, (2013), 127-130

ISSN: 1906-9685

http://www.math.sci.nu.ac.th

AN EMBEDDING THEOREM FOR A CLASS OF CONVEX SETS IN NONARCHIMEDEAN NORMED SPACES

MASOUMEH AGHAJANI, KOUROSH NOUROUZI*

Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran

ABSTRACT. In this article we show that the class of all compact convex sets of a real nonarchimedean normed space can be embedded in a real nonarchimedean normed space.

KEYWORDS: Embedding theorem; Nonarchimedean normed space. **AMS Subject Classification**: Primary: 46A55, Secondary: 46S10

1. INTRODUCTION AND PRELIMINARIES

In [1], Rådström showed that the class of all compact convex sets of a real normed space can be embedded in a real normed space. In this article we give a nonarchimedean counterpart for this fact. We start by recalling a few essential concepts from [2].

Let K be a field. A nonarchimedean absolute value on K is a function $|\cdot|:K\to\mathbb{R}$ such that, for any $a,b\in K$ we have

- 1. $|a| \geq 0$,
- 2. |a| = 0 if and only if a = 0,
- 3. $|ab| = |a| \cdot |b|$,
- 4. $|a+b| \leq \max(|a|,|b|)$.

The field K is called nonarchimedean if it is equipped with a nonarchimedean absolute value such that the corresponding metric is complete.

Let X be a vector space over field K which is equipped with a nonarchimedean absolute value (nonarchimedean vector space, for short). A nonarchimedean norm $\|\cdot\|$ on X is a function $\|\cdot\|:X\to\mathbb{R}$ such that

- 1. ||x|| = 0 implies that x = 0;
- 2. $||ax|| = |a| \cdot ||x||$, for any $a \in K$ and $x \in X$;
- 3. $||x + y|| \le \max(||x||, ||y||)$, for any $x, y \in X$.

Moreover, a nonarchimedean vector space X equipped with a nonarchimedean norm is called a nonarchimedean normed space. Nonarchimedean normed spaces

Email address: nourouzi@kntu.ac.ir (Kourosh Nourouzi).

Article history: Received 23 November 2012. Accepted 12 August 2013.

^{*} Corresponding author.

over the nonarchimedean field \mathbb{R} , will be called real nonarchimedean normed spaces.

Throughout this paper we assume that K is a nonarchimedean field and X is a nonarchimedean normed space over K. We set $\mathcal{B} = \{a \in K : |a| \leq 1\}$.

A subset $A \subseteq X$ is called convex if either A is empty or is of the form $A = x + A_0$ for some vector $x \in X$ and some \mathcal{B} -submodule $A_0 \subseteq X$. A lattice L in X is an \mathcal{B} -submodule which satisfies the condition that for any vector $x \in X$ there is a nonzero scalar $a \in K$ such that $ax \in L$. For more basic facts see [2].

2. MAIN RESULTS

For nonempty convex subsets A and B of X and scalar $\lambda \in K$, let A+B=: $\{x+y:x\in A,y\in B\}$ and $\lambda A=$: $\{\lambda x:x\in A\}$. Addition and scalar multiplication satisfy (A+B)+C=A+(B+C), A+B=B+A, and $\lambda (A+B)=\lambda A+\lambda B$.

Lemma 2.1. Let A, B, and C be subsets of a nonarchimedean normed space X, where C is closed and B is nonempty convex and bounded. Then $A+B\subseteq C+B$ implies $A\subseteq C$.

Proof. Since B is convex, there exist a \mathcal{B} -submodule B_0 and $b \in X$ such that $B=b+B_0$. By assumption we have $A+B_0\subseteq C+B_0$. Let $a\in A\backslash C$. There is a lattice L such that $(a+L)\cap (C)=\emptyset$. Since L is \mathcal{B} -submodule of X, $(a+L)\cap (C+L)=\emptyset$. Boundedness of B implies that B_0 is bounded and so there is $\alpha\in K$ such that $B_0\subseteq \alpha L$. If $|\alpha|\le 1$, then $(a+B_0)\cap (C+B_0)=\emptyset$ which is a contradiction. If $|\alpha|>1$, then a=z+b, for some $z\in C$ and $b\in B_0$. This implies that $(z+b+\alpha^{-1}B_0)\cap (C+\alpha^{-1}B_0)=\emptyset$, which is a contradiction since $(b+\alpha^{-1}B_0)\cap \alpha^{-1}B_0\neq \emptyset$.

Lemma 2.1 implies that:

Corollary 2.2. Let A, B, and C be subsets of a nonarchimedean normed space X, where A and C are closed and B is nonempty convex and bounded. Then A+B=C+B implies A=C.

For subsets A and C of X, define

$$\mathfrak{h}(A,C) =: \inf\{\varepsilon > 0 : C \subseteq N_{\varepsilon}(A), A \subseteq N_{\varepsilon}(C)\},\$$

where $N_{\varepsilon}(A) =: \{z \in X : d(z,A) < \varepsilon\}$ and d(z,A) denotes distance of z from A. By convention $\inf \emptyset = \infty$. The extended real valued function \mathfrak{h} has the following properties for each subset A,B, and C:

- (i) $\mathfrak{h}(A,B) \geq 0$ and $\mathfrak{h}(A,A) = 0$;
- (ii) $\mathfrak{h}(A,B) = \mathfrak{h}(B,A)$;
- (iii) $\mathfrak{h}(A,B) \leq \max(\mathfrak{h}(A,C),\mathfrak{h}(C,B));$
- (iv) $\mathfrak{h}(A,B)=0$ if and only if $\overline{A}=\overline{B}$, where \overline{A} denotes the closure of A in X.

The Proof of Properties 1 and 2 are easy and we just give the proof of Properties 3 and 4. By contradiction, let $\mathfrak{h}(A,B)>\max(\mathfrak{h}(A,C),\mathfrak{h}(C,B))$ for some subsets A,B,C. Then there would be positive numbers λ_1 and λ_2 where $\lambda_1<\mathfrak{h}(A,B)$, $\lambda_2<\mathfrak{h}(A,B)$, $A\subseteq N_{\lambda_1}(C)$, $C\subseteq N_{\lambda_1}(A)$ and $C\subseteq N_{\lambda_2}(B)$, $B\subseteq N_{\lambda_2}(C)$. Therefore $B\subseteq N_{\lambda}(A)$ and $A\subseteq N_{\lambda}(B)$ where $\lambda=\max(\lambda_1,\lambda_2)$. This is a contradiction since $\lambda<\mathfrak{h}(A,B)$. To prove 4, let $\mathfrak{h}(A,B)=0$ and $x\in\overline{A}$. For each $\gamma>0$ there exists nonzero $\lambda>0$ such that $\lambda\leq\gamma$ with $B\subseteq N_{\lambda}(A)$, $A\subseteq N_{\lambda}(B)$ and $N_{\lambda}(x)\cap A\neq\emptyset$. Since $A\subseteq N_{\lambda}(B)$ so $N_{\lambda}(x)\cap B\neq\emptyset$ and consequently $N_{\gamma}(x)\cap B\neq\emptyset$, that is $x\in\overline{B}$. By a similar way we have $\overline{B}\subseteq\overline{A}$. Conversely, if $\overline{A}=\overline{B}$ and $\mathfrak{h}(A,B)>0$, then there

exists $\lambda > 0$ such that either $B \nsubseteq N_{\lambda}(A)$ or $A \nsubseteq N_{\lambda}(B)$. If $x \in A \setminus N_{\lambda}(B)$, then $N_{\lambda}(x) \cap B = \emptyset$. That is to say x is not an element of \overline{B} , which is a contradiction.

Lemma 2.3. If A and C are convex sets in a nonarchimedean normed space, then for each nonempty convex and bounded set B we have

$$\mathfrak{h}(A,C) = \mathfrak{h}(A+B,C+B).$$

Proof. If $C \subseteq N_{\lambda}(A)$ and $A \subseteq N_{\lambda}(C)$, for some $\lambda \geq 0$, then $C + B \subseteq N_{\lambda}(A + B) = B + N_{\lambda}(A)$, $A + B \subseteq N_{\lambda}(C + B) = B + N_{\lambda}(C)$. Therefore $\mathfrak{h}(A + B, C + B) \leq \mathfrak{h}(A, C)$. The inverse inequality is obtained by Lemma 2.1.

By part A of Theorem 1 in [1], if M is a commutative semigroup with the law of cancellation, then M can be embedded in a group N. Also, if G is a group in which M is embedded, then N is isomorphic to a subgroup of G containing M. Therefore, by Corollary 2.2, the semigroup of all nonempty compact convex subsets of a nonarchimedean normed space can be embedded in a minimal group N as a semigroup.

Hereafter let \mathbb{R} be equipped with a nonarchimedean absolute value $|\cdot|$.

Theorem 2.4. Let M be an additive commutative semigroup with the law of cancellation. If a multiplication by real scalars is defined on M which satisfies

$$\lambda(A+B) = \lambda A + \lambda B, \quad (\lambda_1 + \lambda_2)A = \lambda_1 A + \lambda_2 A, \quad \lambda_1(\lambda_2 A) = \lambda_1 \cdot \lambda_2 A, \quad 1A = A,$$

for every $A, B \in M$ and $\lambda, \lambda_1, \lambda_2 \in \mathbb{R}$, then M can be embedded in a minimal real nonarchimedean vector space N.

Moreover, if a metric d is given on M with

$$d(A+C,B+C) = d(A,B), \quad d(\lambda A,\lambda B) = \lambda d(A,B),$$

for every $A, B \in M$ and $\lambda \in \mathbb{R}$ and the operations addition and scalar multiplication are continuous in the topology induced by d, then a nonarchimedean norm can be defined on N which makes it as a real nonarchimedean normed space.

Proof. Following to the proof of Theorem 1 in [1], consider the equivalence relation \sim defined as $(A,B) \sim (C,D)$ if and only if A+D=B+C, for $A,B,C,D\in M$. By [A,B] denote the equivalence class containing the pair (A,B). The set N shall consist of equivalence classes [A,B], where A and B are elements of M. Addition and scalar multiplication in N are defined by [A,B]+[C,D]=[A+C,B+D] and $\lambda[A,B]=[\lambda A,\lambda B]$ for $\lambda\in[0,+\infty)$, otherwise $\lambda[A,B]=[-\lambda B,-\lambda A]$. Obviously the given operations are well defined and N constitutes a nonarchimedean vector space. For some $B\in M$ define $f:M\to N$ by f(A)=[A+B,B] for each $A\in M$. The mapping f is well defined and embeds M in the nonarchimedean vector space N. Clearly, for $\lambda\in\mathbb{R}$ and $A\in M$ the scalar product λA coincides with the one given on M.

Let d be a nonarchimedean metric on M satisfying the assumptions of theorem. Define d_0 on $N\times N$ as

$$d_0([A, B], [C, D]) = d(A + D, B + C).$$

Let $[A,B],[C,D] \in N$ and $d_0([A,B],[C,D]) = 0$. So d(A+D,B+C) = 0 which implies that A+D=B+C, that is $(A,B) \sim (C,D)$. Conversely, if $(A,B) \sim (C,D)$, then $d_0([A,B],[C,D]) = 0$. Obviously

$$d_0([A, B], [C, D]) = d_0([C, D], [A, B]).$$

$$\begin{array}{lll} d_0([A,B],[C,D]) & = & d(A+D,B+C) \\ & \leq & \max(d(A+F+E+D,B+E+E+D),d(B+E+F+C,B+E+E+D)) \\ & = & \max(d(A+F,B+E),d(E+D,F+C)) \\ & = & \max(d_0([A,B],[E,F]),d_0([E,F],[C,D])). \end{array}$$

Since nonarchimedean metric d_0 is invariant under translation, so the function $\|\cdot\|: N \to \mathbb{R}$, where $\|[A,B] - [C,D]\| =: d_0([A,B],[C,D])$ is a nonarchimedean norm on N. Therefore addition and scalar multiplication are continuous operations, and if $A,B \in M$, the distance between A and B equals d(A,B).

By Corollaries 2.2 and 2.3 and Theorem 2.4, we have the following.

Theorem 2.5. Let M be a class of nonempty closed, bounded convex subsets of X which is closed under addition and scalar multiplication and equipped with a nonarchimedean metric. Then M can be isometrically embedded in a real nonarchimedean normed space N. In particular the operations addition and scalar multiplication of M are induced by the operations of N.

Moreover, if H is a nonarchimedean normed space in which M is embedded in the above way, then H contains a subspace containing M and isometric to N.

It is worth mentioning that the class of all nonempty compact convex sets of a real nonarchimedean normed space satisfies Theorem 2.5.

REFERENCES

- H. Rådström, An embedding theorem for space of convex sets, Proc. Amer. Math. Soc. 3 (1952) 165-169.
- 2. P. Schneider, Nonarchimedean Functional Analysis, Springer-Verlag, 2002.