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ABSTRACT. We present a unifying semi-local convergence analysis of two-step Newton-type
methods for solving nonlinear equations in a Banach space setting. Convergence order of
these methods is higher than two. Our analysis expands the applicability of these methods
by providing weaker convergence criteria and a convergence analysis – which is tighter
than earlier studies [1–4, 24–34] – is also presented. Numerical examples illustrating the
developed theoretical results are also given.
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1. INTRODUCTION

In this study, we are concerned with the problem of approximating a locally
unique solution x? of equation

F(x) = 0, (1.1)
where, F is a twice Fréchet differentiable operator defined on a convex subset D
of a Banach space X with values in a Banach space Y. Numerous problems in
science and engineering can be reduced to solving the above equation [18, 32].
Consequently, solving these equations is an important scientific field of research.
In many situations, finding a closed form solution for the non-linear equation (1.1)
is not possible. Therefore, iterative solution techniques are employed for solving
these equations. The study about convergence analysis of iterative methods is
usually divided into two categories : semi-local and local convergence analysis.
The semilocal convergence analysis is based upon the information around an initial
point to give criteria ensuring the convergence of the iterative procedure. While the
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local convergence analysis is based on the information around a solution to find
estimates of the radii of convergence balls.

In the present paper, we study the semi-local convergence of the Two-step
Newton-type method (TSNTM) defined by

yn = xn −F ′(xn)−1F(xn)

xn+1 = yn −F ′(xn)−1TF (xn)F(yn)

}
for each n = 0, 1, 2, . . . , (1.2)

where x0 ∈ D is an initial point, the operator TF (x) : D → Y is given as

TF (x) = I + VF (x) + VF (x)2GF (x),

where the operator VF (x) : D → Y is defined by

VF (x) = F ′(x)−1F ′′(x)F ′(x)−1F(x)

and GF : D → L(X,X) is a given linear operator for each x ∈ D. Some special
cases of (TSNTM) are
Case− 1. two-step Newton method of order three (TSNM-O-3) defined by

yn = xn −F ′(xn)−1F(xn)

xn+1 = yn −F ′(xn)−1F(yn)

}
(1.3)

for each n = 0, 1, 2, . . . ,
Case− 2. Two-step Newton method of order four (TSNM-O-4) defined by

yn = xn −F ′(xn)−1F(xn)

xn+1 = yn −F ′(xn)−1(I + VF (xn))F(yn)

}
(1.4)

for each n = 0, 1, 2, . . . ,
Case− 3. Two-step Newton method of order five (TSNM-O-5) defined by

yn = xn −F ′(xn)−1F(xn)

xn+1 = yn −F ′(xn)−1
(
I + VF (xn)

+
VF (xn)2

2

(5
2
I − VF ′(xn)

))
F(yn)

 (1.5)

for each n = 0, 1, 2, . . ..
Many other choices of operator TF lead to other popular iterative methods such as
Halley’s-type or Chebyshev-type methods []. Concerning the order of convergence
of such methods - in the case when X = Y = R - a theorem by Traub [33] states
that for sufficiently smooth GF (x) (TSNTM) has order four.

The following set of conditions (C) have been used to perform semi-local conver-
gence analysis of these method [1–29]
C1. there exists x0 ∈ D such that F ′(x0)−1 ∈ L(Y,X),
C2.

∥∥F ′(x0)−1F(x0)
∥∥ ≤ η,

C3.
∥∥F ′(x0)−1F ′′(x)

∥∥ ≤ L for each x ∈ D or
∥∥F ′(x0)−1(F ′(x)−F ′(y))

∥∥ ≤ L‖x− y‖
for each x, y ∈ D,

C4.
∥∥F ′(x0)−1(F ′′(x)−F ′′(y))

∥∥ ≤M‖x− y‖ for each x, y ∈ D,

C5. η ≤ L2 + 4M−L
√

L2 + 2M
3M(L+

√
L2 + 2M)

,

C6. U(x0, R0) ⊆ D where R0 is the small positive root of

p(t) =
M
6

t2 +
L
2

t− t + η.
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However, simple numerical examples can be used to show that even though the
condition (C5) is not satisfied but still (TSNTM) converges to the solution x?. As an
example, let X = Y = R, x0 = 1 and D = [ζ, 2 − ζ] for ζ ∈ (0, 1). Define function
F on D by

F(x) = x5 − ζ. (1.6)
Then, through some simple calculations, the conditions (C) yield

η =
(1− ζ)

5
, L = 4(2− ζ)3, M = 12(2− ζ)2.

Figure 1 plots the criterion (C4) for the problem (1.6). The curve (defined by the right
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Figure 1. Convergence criterion (C5) for (1.6).

hand side of the inequality (C4)) intersect the line η (see Figure 1) at ζ ≈ 0.72. We
notice in the Figure 1 that for ζ < 0.72 the criterion (C4) is not satisfied. However,
one may see that the method (1.2) is convergent. For additional examples, see the
Section 4.

In this paper, we are concerned with expanding the applicability of (TSNTM)
where the the condition (C5) (or (C6)) fails. To achieve this, we introduce the
center-Lipschitz conditions
C7.

∥∥F ′(x0)−1(F ′(x)−F ′(x0))
∥∥ ≤ L0 ‖x− x0‖ for each x ∈ D,

C8.
∥∥F ′(x0)−1TF (x)F ′(x0)

∥∥ ≤ b for each x ∈ D,
C9.

∥∥F ′(x0)−1(I − TF (x))F ′(x0)
∥∥ ≤ c for each x ∈ D.

Here onwards, the conditions (C1), (C2), (C3), (C4), (C7), (C8) and (C9) are referred
as the (H) conditions.

Several techniques are usually considered to study the convergence of iterative
methods, as we can see in the studies [1–33]. Among these, the most popular tech-
niques are based on majorizing sequences. In the studies that lead to convergence
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condition (C5), the condition (C3) was used to compute the upper bound∥∥F ′(xn)−1F ′(x0)
∥∥ ≤ 1

1− L‖xn − x0‖
. (1.7)

Instead of using (C3), we use the more precise and less expensive condition (C4)
which leads to ∥∥F ′(xn)−1F ′(x0)

∥∥ ≤ 1
1− L0 ‖xn − x0‖

. (1.8)

Note that
L0 ≤ L (1.9)

holds in general and L/L0 can be arbitrarily large [23]. This change - in the
study of semi-local convergence of method - leads to tighter error estimates on the
distances ‖yn − xn‖, ‖xn+1 − yn‖, ‖xn+1 − yn‖, ‖yn − x?‖, ‖xn − x?‖ and weaker
convergence criteria.

The rest of the paper is organized as follows. Section 2 develop results on
majorizing sequences for (TSNTM) (1.2), where as in the Section 3 we develop the
semilocal convergence of the (TSNTM). Section 4 presents a Lemma about the
special case Two-point Newton method. Finally, numerical examples are given in
the concluding Section 5.

2. Majorizing sequences

Here, we find sufficient conditions for the convergence of scalar sequences that
will be shown - in the next section - to be majorizing for (TSNTM). Let L0 > 0,
L > 0, b ≥ 0, c ≥ 0 and η > 0 be some positive constants. It is convenient for us to
define functions γ, α and hi for i = 1, 2, 3 by

γ(t) =
bL t

2
, γ = γ(η), (2.1)

α(t) =

[Lγ(t)2

2
+ Lγ(t) +

cL
2

]
t

1− L0(1 + γ(t))t
, α = α(η), (2.2)

h1(t) = [a(t) + L0(1 + γ(t))]t− 1, (2.3)

h2(t) =
bL
2

α(t)t + L0γ(t)(1 + γ(t))t− γ(t) (2.4)

and

h3(t) = a(t)t + L0(1 + γ(t))(1 + α(t))t− 1 (2.5)

where

a(t) =
L
2

γ(t)2 + Lγ(t) +
cL
2

, a = a(η).

Let the minimum positive zeros of the functions h1, h2 and h3 be η1, η2 and η3,
respectively. Note that - by the choice of η1 - α(t) is well defined on (0, η1) and
α ∈ (0, 1). We set

η0 = min{η1, η2, η3}. (2.6)
Then, for all t ∈ (0, η0) we have

α ∈ (0, 1) (2.7)

h1(t) < 0 (2.8)

h2(t) ≤ 0 (2.9)
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and

h3(t) ≤ 0. (2.10)

We can show the following result about the convergence of majorizing sequences.

Lemma 2.1. Let the positive constants be L0 > 0, L > 0, b ≥ 0, c ≥ 0, M ≥ 0 and
η > 0. Furthermore suppose that

η

{ ≤ η0 if η0 6= η1,

< η0 if η0 = η1.
(2.11)

Then, scalar sequence {tn} generated by

t0 = 0, s0 = η, tn+1 = sn +
bL(sn − tn)2

2(1− L0tn)
,

sn+1 = tn+1 +

L
2

(tn+1 − sn)2 + L(sn − tn)(tn+1 − sn) +
cL
2

(sn − tn)2

1− L0tn+1

(2.12)

is increasing, bounded from above by

t?? =
( 1 + γ

1− α

)
η (2.13)

and converges to its unique least upper bound t? which satisfies

0 ≤ t? ≤ t??. (2.14)

Moreover, the following estimates hold for each n = 0, 1, 2, . . .

0 ≤ tn+1 − sn ≤ γ(sn − tn) ≤ γαnη (2.15)

and

0 < sn+1 − tn+1 ≤ α(sn − tn) ≤ αn+1η. (2.16)

Proof. We use mathematical induction to prove (2.15) and (2.16). By (2.1), (2.2)
and (2.12), estimates (2.15) and (2.16) hold for n = 0 since

t1 − s0 =
bL
2

(s0 − t0)(s0 − t0) = γ(s0 − t0) (2.17)

and

s1 − t1 =

L
2

(t1 − s0)2 + L(s0 − t0)(t1 − s0) +
cL
2

(s0 − t0)2

1− L0t1
,

≤

L
2

γ2(s0 − t0)2 + Lγ(s0 − t0)2 +
cL
2

(s0 − t0)2

1− L0(1 + γ)η
,

≤ a(s0 − t0)
1− L0(1 + γ)η

(s0 − t0) = α(s0 − t0). (2.18)

Let us assume that (2.15) and (2.16) hold for all k ≤ n. Then, we have

tk+1 − sk ≤ γ(sk − tk) ≤ γαkη,

sk+1 − tk+1 ≤ α(sk − tk) ≤ αk+1η

and

tk+1 ≤ sk + γαkη ≤ tk + αkη + γαkη

≤ t− k − 1 + αk−1η + αkη + γαk−1η + γαkη
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≤ · · · ≤ t2 + (α2η + α3η + · · ·+ αkη) + (γα2η + · · ·+ γαkη)

≤ s1 + γαη + (α2η + α3η + · · ·+ αkη) + (γα2η + · · ·+ γαkη)

≤ t1 + αη + γαη + (α2η + α3η + · · ·+ αkη) + (γα2η + · · ·+ γαkη)

≤ η + γη + αη + γαη + (α2η + α3η + · · ·+ αkη) + (γα2η + · · ·+ γαkη)

=
1− αk+1

1− α
(1 + γ)η <

1 + γ

1− α
η = t??. (2.19)

Evidently, estimates (2.15) and (2.16) are true provided that
bL(sk − tk)
2(1− L0tk)

≤ γ (2.20)

and

a(sk − tk)
(1− L0tk+1)

≤ α. (2.21)

The estimate (2.20) can be written as

bL
2

αkη + γL0(1 + γ)
1− αk

1− α
η − γ ≤ 0. (2.22)

Inequality (2.22) motivates us to define recurrent functions fk on [0, 1) for each
k = 1, 2, 3, . . . by

fk(t) =
bL
2

tkη + γL0(1 + γ)
1− tk

1− t
η − γ. (2.23)

We need a relationship between two consecutive functions fk. We have by (2.23)
that

fk+1(t) = fk(t) +
bL
2

tk+1η − bL
2

tkη + γL0(tkη − tk−1η + γtkη − γtk−1η)

= fk(t)(t− 1)
[bL

2
t + +γL0(1 + γ)

]
tk−1η. (2.24)

It follows from (2.24) that

fk+1(t) ≤ fk(t) ≤ · · · ≤ f1(t). (2.25)

In view of (2.22) and (2.25) it suffices to show that

f1(α) ≤ 0 (2.26)

which is true by the choice of η2, (2.4) and (2.11). Similarly, estimate (2.21) can be
written as

aαk−1η + L0(1 + γ)
1− αk+1

1− α
η − 1 ≤ 0. (2.27)

Define recurrent functions gk on [0, 1) for each k = 1, 2, . . . by

gk(t) = atk−1η + L0(1 + γ)
1− tk+1

1− t
η − 1. (2.28)

Then, using (2.28) we get that

gk+1(t) = gk(t) + (t− 1)
[
a + L0(1 + γ)(1 + t)

]
tk−1η. (2.29)

It follows from (2.29) that

gk+1(t) ≤ gk(t) ≤ · · · ≤ g1(t). (2.30)

We can show instead of (2.27) that

g1(α) ≤ 0, (2.31)
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which is true by the choice of η3, (2.5) and (2.11). The induction for (2.15) and
(2.16) is complete. Hence, sequence {tn} is increasing, bounded from above by t??

(given by (2.13)) and converges to its unique least upper bound t?. The proof of the
Lemma is complete. �

We have the following useful and obvious extension of Lemma 2.1.

Lemma 2.2. Suppose there exists N ≥ 0 such that

t0 < s0 < t1 < · · · < tN < sN < tN+1 <
1
L0

. (2.32)

and

sN − tN

{ ≤ η0 if η0 6= η1

< η0 if η0 = η1.
(2.33)

Then, the conclusions of the Lemma 2.1 hold for sequence {tn}. Moreover, the
following estimates hold for each n = 0, 1, 2, 3, . . .

0 < tN+1+n − sN+n ≤ γN (sN+n − tN+n) (2.34)

and

0 < sN+1+n − tN+1+n ≤ αN (sN+n − tN+n) (2.35)

where γN = γ(sN − tN ), αN = α(sN − tN ) and t??
N =

1 + γN

1− αN
(sN − tN ).

Remark 2.3.
R1. Note that for N = 0, the Lemma 2.2 reduces to Lemma 2.1 with α0 = α and

γ0 = γ.

3. Semi-local convergence analysis

We need the following Ostrowski-type representation connecting F(xn+1) to the
method [1–28].

Lemma 3.1. Suppose that all iterates of the method (TSNTM) (1.2) are well defined.
Then, the following identity holds for each n = 0, 1, 2, . . .

F(xn+1) =
∫ 1

0

[
F ′(yn+θ(xn+1−yn))−F ′(yn)

]
(xn+1−yn)dθ+(F ′(yn)−F ′(xn))(xn+1−yn)

+ (I − TF (xn))
∫ 1

0

[F ′(xn + θ(yn − xn))−F ′(xn)](yn − xn)dθ. (3.1)

Proof. We have – by the definition of the method (TSNTM) (1.2) – that

F(yn) = F(yn)−F(xn)−F ′(xn)(yn − xn)

=
∫ 1

0

[F ′(xn + θ(yn − xn))−F ′(xn)](yn − xn)dθ. (3.2)

Moreover, we get in turn that

F(xn+1) = F(xn+1)−F(yn)−F ′(yn)(xn+1 − yn) + F(yn) + F ′(yn)(xn+1 − yn)

=
∫ 1

0

[F ′(yn + θ(xn+1 − yn))−F ′(yn)](xn+1 − yn)dθ

+ F(yn) + (F ′(yn)−F ′(xn))(xn+1 − yn) + F ′(xn)(xn+1 − yn)
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=
∫ 1

0

[F ′(yn + θ(xn+1 − yn))−F ′(yn)](xn+1 − yn)dθ

+ (F ′(yn)−F ′(xn))(xn+1 − yn) + F(yn) + F ′(xn)F ′(xn)−1TF (xn)F(yn)

=
∫ 1

0

[F ′(yn + θ(xn+1 − yn))−F ′(yn)](xn+1 − yn)dθ

+ (F ′(yn)−F ′(xn))(xn+1 − yn) + (I − TF (xn))F(yn)

=
∫ 1

0

[F ′(yn + θ(xn+1 − yn))−F ′(yn)](xn+1 − yn)dθ

+ (F ′(yn)−F ′(xn))(xn+1 − yn) + (I − TF (xn))∫ 1

0

[F ′(xn + θ(yn − xn))−F ′(xn)](yn − xn)dθ.

The proof of the Lemma is complete. �

We can show the main semi-local convergence result for the method (1.2) under
the (H) conditions.

Theorem 3.2. Suppose that the (H ) conditions and the conditions of Lemma 2.1
hold. Moreover, suppose that

U(x0, t
?) ⊆ D. (3.3)

Then, sequence {xn} generated by the (TSNTM ) (1.2) is well defined, remain in
U(x0, t

?) for all n ≥ 0 and converges to a solution x? ∈ U(x0, t
?) of equation F(x) =

0. Moreover, the following estimates hold

‖yn − xn‖ ≤ sn − tn, (3.4)

‖xn+1 − yn‖ ≤ tn+1 − sn, (3.5)

‖xn − x?‖ ≤ t? − tn (3.6)

and

‖yn − x?‖ ≤ t? − sn. (3.7)

Furthermore, if there exists R ≥ t? such that

U(x0, R) ⊆ D (3.8)

and

L0

2
(t? + R) = 1 (3.9)

then, the solution x? is unique in U(x0, R).

Proof. We shall prove that (3.4) and (3.5) hold using mathematical induction. Using
(C2), (1.2) and (2.12) , we get that

‖y0 − x0‖ =
∥∥F ′(x0)−1F(x0)

∥∥ ≤ η = s0 − t0 ≤ t?.

That is (3.4) holds for n = 0 and y0 ∈ U(x0, t
?) (by (2.13)). In view of (1.2), (2.12),

(C3) and (3.2), we obtain that

‖x1 − y0‖ ≤
∥∥F ′(x0)−1TF (x0)F ′(x0)

∥∥∥∥F ′(x0)−1F(y0)
∥∥

≤ bL
2

(s0 − t0)2 = t1 − s0, (3.10)
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which shows that (3.5) hold for n = 0. We also get that

‖x1 − x0‖ ≤ ‖x1 − y0‖+ ‖y0 − x0‖ ≤ t1 − s0 + s0 − t0 = t1 ≤ t?,

which implies that x1 ∈ U(x0, t
?). Let us assume that (3.4), (3.5), yk ∈ U(x0, t

?)
and xk+1 ∈ U(x0, t

?) hold for all k ≤ n. It follows from the proof of Lemma 2.1 and
(C5) that∥∥F ′(x0)−1(F ′(xk+1)−F ′(x0))

∥∥ ≤ L0 ‖xk+1 − x0‖ ≤ L0tk+1 < 1. (3.11)

Estimate (3.11) and the Banach Lemma on invertible operators [23] imply that

F ′(xk+1)−1 ∈ L(Y,X),∥∥F ′(xk+1)−1F ′(x0)
∥∥ ≤ 1

1− L0 ‖xk+1 − x0‖
≤ 1

1− L0tk+1
.

(3.12)

Then, we have by (1.2), (C3), (2.12) and (3.12) (for k replacing by k + 1) and the
induction hypotheses that

‖xk+1 − yk‖ ≤
∥∥F ′(xk)−1F ′(x0)

∥∥∥∥F ′(x0)−1TF (xk)F ′(x0)
∥∥∥∥F ′(x0)−1F(yk)

∥∥
≤ bL

2(1− L0tk)
(sk − tk)2 = tk+1 − sk. (3.13)

Using (1.2), (C3), (C4), (2.12), (3.1), (3.12), (3.13) and the induction hypotheses we
obtain in turn that∥∥F ′(x0)−1F(xk+1)

∥∥ ≤ ∥∥∥∥∫ 1

0

F ′(x0)−1[F ′(yk + θ(xk+1 − yk))−F ′(yk)]dθ

∥∥∥∥ ‖xk+1 − yk‖

+
∥∥F ′(x0)−1(F ′(yk)−F ′(xk))

∥∥ ‖xk+1 − yk‖+
∥∥F ′(x0)−1(I − TF (xk))F ′(x0)

∥∥∥∥∥∥∫ 1

0

F ′(x0)−1[F ′(xk + θ(yk − xk))−F ′(xk)]dθ

∥∥∥∥ ‖yk − xk‖

≤ L
2
‖xk+1 − yk‖2 + L‖yk − xk‖ ‖xk+1 − yk‖+

cL
2
‖yk − xk‖2

≤ L
2

(tk+1 − sk)2 + L(sk − tk)(tk+1 − sk) +
cL
2

(sk − tk)2.
(3.14)

Then, by (1.2), (2.12), (3.13) and (3.14), we get that

‖yk+1 − xk+1‖ ≤ ‖F ′(xk+1)F ′(x0)‖
∥∥F ′(x0)−1F(xk+1)

∥∥
≤

L
2

(tk+1 − sk)2 + L(sk − tk)(tk+1 − sk) +
cL
2

(sk − tk)2

1− L0tk+1

= sk+1 − tk+1. (3.15)

We shall also have that

‖yk+1 − x0‖ ≤ ‖yk+1 − xk+1‖+ ‖xk+1 − x0‖ ≤ sk+1 − tk+1 + tk+1 − t0 = sk+1 ≤ t?

and

‖xk+2 − x0‖ ≤ ‖xk+2 − yk+1‖+ ‖yk+1 − x0‖ ≤ tk+2 − sk+1 + sk+1 − t0 = tk+2 ≤ t?

Hence, yk+1 and xk+2 belongs to U(x0, t
?). It follows from (3.7), (3.8) and Lemma

2.1 that sequence {xn} is complete in a Banach space X and a such it converges to
some x? ∈ U(x0, t

?) (since U(x0, t
?) is a closed set). By letting k −→∞ in (3.14) we

obtain F(x?) = 0. Estimates (3.9) and (3.10) follows from (3.7) and (3.8) by using
standard majorization techniques. Finally to the uniqueness part, y? ∈ U(x0, R)
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be a solution of equation F(x) = 0. Let Q =
∫ 1

0
F ′(x? + θ(y? − x?))dθ. Using (C5),

(3.11) and (3.12), we get that

∥∥F ′(x0)−1(Q−F ′(x0))
∥∥ ≤ ∫ 1

0

∥∥∥∥F ′(x0)−1

[∫ 1

0

[F ′(x? + θ(y? − x?))−F ′(x0)]dθ

]∥∥∥∥
≤ L0

2
(t? + R) = 1. (3.16)

It follows from (3.16) and the Banach lemma on invertible operators that Q−1 ∈
L(Y,X). Then, using the identity

0 = F(y?)−F(x?) = Q(y? − x?)

we deduce that x? = y?. The proof of the Theorem is complete. �

Remark 3.3.
R1. The limit point t? can be replaced by t?? (given in closed from by (2.13)) in

Theorem 3.2.
R2. The conclusions of Theorem 3.2 hold if hypotheses of Lemma 2.1 are replaced

by those of Lemma 2.2.
R3. It follows from the (H) conditions that there exist b0, c0, L1, L2, L3 satisfying∥∥F ′(x0)−1TF (x0)F ′(x0)

∥∥ ≤ b0, (3.17)∥∥F ′(x0)−1(F ′(x1)−F ′(x0))
∥∥ ≤ L1 ‖x1 − x0‖ , (3.18)∥∥∥∥∫ 1

0

F ′(x0)−1[F ′(y0 + θ(x1 − y0))−F ′(y0)]dθ

∥∥∥∥ ≤ L2θ ‖x1 − y0‖ , (3.19)∥∥F ′(x0)−1(F ′(y0)−F ′(x0))
∥∥ ≤ L2 ‖y0 − x0‖ , (3.20)∥∥F ′(x0)−1(I − TF (x0))F ′(x0)

∥∥ ≤ c0, (3.21)

and∥∥∥∥∫ 1

0

F ′(x0)−1[F ′(x0 + θ(y0 − x0))−F ′(x0)]dθ

∥∥∥∥ ≤ L3θ ‖y0 − x0‖ , (3.22)

where

y0 = x0 −F ′(x0)−1F(x0)

and

x1 = x0 −F ′(x0)−1F(x0)−F ′(x0)−1TF (x0)F(x0 −F ′(x0)−1F(x0)).

Note that

b0 ≤ b, c0 ≤ c, L1 ≤ L0, L2 ≤ L and L3 ≤ L (3.23)

and b/b0, c/c0, L0/L1, L/L2, L/L3 can be arbitrarily large [23].
We may notice that estimates (3.17) – (3.21) are not additional to the (H) condi-

tions, since in practice the verifications of (C2)–(C5) require the computation of b0,
c0, L1, L2 and L3. Note that finding these constants only involve computations at
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the initial data. We define

r0 = 0, q0 = η, r1 = q0 +
b0L3(q0 − r0)2

2
,

q1 = r1 +

L2

2
(r1 − q0)2 + L2(q0 − r0)(r1 − q0) +

c0L3

2
(q0 − r0)2

(1− L1r1)

rn+1 = qn +
bL(qn − rn)2

2(1− L0rn)
,

qn+1 = rn+1 +

L
2

(rn+1 − qn)2 + L(qn − rn)(rn+1 − qn) +
cL
2

(qn − rn)2

(1− L0rn+1)

(3.24)

Furthermore, according to the proof of Theorem 3.2, {rn} is a majorizing sequence
for {xn} (see also (3.4) – (3.6)) and the tables in the next section. Note that the
majorizing sequence {vn} – for the method (1.2) – is given by

v0 = 0, vn+1 = un +
bL(un − vn)2

2(1− Lvn)
,

un+1 = vn+1 +

L
2

(vn+1 − un)2 + L(un − vn)(vn+1 − un) +
cL
2

(un − vn)2

(1− Lvn+1)
.

(3.25)

A simple inductive argument shows that

qn ≤ sn ≤ un (3.26)
rn ≤ tn ≤ vn (3.27)

rn+1 − qn ≤ tn+1 − sn ≤ vn+1 − un (3.28)
qn+1 − rn+1 ≤ sn+1 − tn+1 ≤ un+1 − vn+1 (3.29)

and

r? = lim
n−→∞

rn ≤ t? ≤ v? = lim
n−→∞

vn. (3.30)

Left hand side in the estimates (3.26) – (3.30) hold as strict inequalities if any of
the inequalities in (3.23) is strict. Moreover, right hand side in the estimates (3.26)
– (3.30) also hold as strict inequalities for n > 1 if L0 < L. Furthermore, {rn}, {tn}
can replace {vn} in the convergence results in the literature under the sufficient
convergence conditions given there [1–4] (see also (C5)).

Finally note that the conditions of Lemma 2.1 or Lemma 2.2 can be weaker
than those in the literature. In practice we shall use {rn} or {tn} to estimate
error bounds on the distances ‖xn+1 − yn‖, ‖yn − xn‖, ‖xn − x?‖, ‖yn − x?‖ and
we shall test if conditions of Lemma 2.1 or Lemma 2.2 or those in the literature
hold.

4. Special case I : Two-point Newton method

Let TF (x) = I. Then, we can choose b = 1 and c = 0. In this case method (1.2)
reduces to the two-point Newton method. In this case, Lemma 2.1 reduces to the
following Lemma.

Lemma 4.1. Let the positive constants be L0 > 0, L > 0 and η > 0. Suppose that

η

{ ≤ η0 if η0 6= η1

< η0 if η0 = η1.
(4.1)
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Then, scalar sequence {tn} generated by

t0 = 0, s0 = η, tn+1 = sn +
L(sn − tn)2

2(1− L0tn)

sn+1 = tn+1 +

L
2

(tn+1 − sn)2 + L(tn+1 − sn)(sn − tn)

1− L0tn+1

(4.2)

is increasing, bounded from above by

t?? =
(

1 + γ

1− α

)
η (4.3)

and converges to its unique least upper bound t? which satisfies

0 ≤ t? ≤ t??. (4.4)

Moreover, the following estimates hold for each n = 0, 1, 2, . . .

0 < tn+1 − sn ≤ γ(sn − tn) ≤ γαnη (4.5)

and

0 < sn+1 − tn+1 ≤ α(sn − tn) ≤ αn+1η. (4.6)

5. Numerical examples

Example 5.1. Let X = Y = R be equipped with the max-norm, x0 = ω, D =
[−2, 2]. Let us define F on D by

F(x) = x3 − 1. (5.1)

Here, w ∈ D. Through some algebraic manipulations, for the conditions (H), we
obtain

η =
|ω3 − 1|

3ω2
, L =

4
ω2

, M =
2
ω2

, L0 =
2 + |ω|

ω2
, b =

179
144

, c =
35
144

.

For ω = 1.21, the convergence criterion (C5) yields

0.1756621815 ≤ 0.1731485558.

Thus the criterion (C5) does not hold. Even though the criterion (C5) is not satisfied.
We can see that the method (1.2) converges. For example, let us choose GF (x) =
−I and which will result in a fourth order convergent iterative procedure. The
performance of this method for (5.1) is reported in the table 2.

Now let us validate the hypotheses of Lemma 2.1 and 2.2. From (2.1) – (2.5), we
obtain

η1 = 0.2196968398, η2 = 0.1803308682, η3 = 0.1803308682
and from the formulation (2.6), we obtain

η0 = η2 = 0.1803308682.

We notice that the condition (2.11) - of Lemma 2.1 - holds. That is : 0.1756621815 <
0.1803308682. For the sequence (2.12), we obtain the Table 1. From (2.13), we get

t?? = 0.4114076922.

Comparing the t?? with the values in the Table 1, we notice that the inequality
(2.14) holds. Furthermore, we notice in the Table 1 the hypothesis of Lemma 2.2
also hold. Since the conditions of Lemma 2.1 - and also that of Lemma 2.2 - holds
thus the Theorem 3.2 is applicable. Comparing tables 1 and 2, we see that the
estimates (3.4) – (3.7) hold. Comparing Tables 1 and 2, we notice that the
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estimates of Theorem 3.2 hold.

Example 5.2. In this example, we provide an application of our results to a special
nonlinear Hammerstein integral equation of the second kind. Consider the integral
equation

x(s) = 1 +
4
5

∫ 1

0

G(s, t)x(t)3 dt, s ∈ [0, 1], (5.2)

where, G is the Green kernel on [0, 1]× [0, 1] defined by

G(s, t) =

{
t(1− s), t ≤ s;

s(1− t), s ≤ t.
(5.3)

Let X = Y = C[0, 1] and D be a suitable open convex subset of X1 := {x ∈ X :
x(s) > 0, s ∈ [0, 1]}, which will be given below. Define F : D → Y by

[F(x)](s) = x(s)− 1− 4
5

∫ 1

0

G(s, t)x(t)3 dt, s ∈ [0, 1]. (5.4)

The first and second derivatives of F are given by

[F(x)′y](s) = y(s)− 12
5

∫ 1

0

G(s, t)x(t)2y(t) dt, s ∈ [0, 1], (5.5)

and

[F(x)′′yz](s) =
24
5

∫ 1

0

G(s, t)x(t)y(t)z(t) dt, s ∈ [0, 1], (5.6)

respectively. We use the max-norm. Let x0(s) = 1 for all s ∈ [0, 1]. Then, for any
y ∈ D, we have

[(I −F ′(x0))(y)](s) =
12
5

∫ 1

0

G(s, t)y(t) dt, s ∈ [0, 1], (5.7)

which means

‖I −F ′(x0)‖ ≤
12
5

max
s∈[0,1]

∫ 1

0

G(s, t) dt =
12

5× 8
=

3
10

< 1. (5.8)

It follows from the Banach theorem that F ′(x0)−1 exists and

‖F ′(x0)−1‖ ≤ 1

1− 3
10

=
10
7

. (5.9)

On the other hand, we have from (5.4) that

‖F(x0)‖ =
4
5

max
s∈[0,1]

∫ 1

0

G(s, t) dt =
1
10

.

Then, we get η = 1/7. Note that F ′′(x) is not bounded in X or its subset X1. Take
into account that a solution x? of equation (1.1) with F given by (5.3) must satisfy

‖x?‖ − 1− 1
10
‖x?‖3 ≤ 0, (5.10)

i.e., ‖x?‖ ≤ ρ1 = 1.153467305 and ‖x?‖ ≥ ρ2 = 2.423622140, where ρ1 and ρ2 are
the positive roots of the real equation z−1−z3/10 = 0. Consequently, if we look for
a solution such that x? < ρ1 ∈ X1, we can consider D := {x : x ∈ X1 and ‖x‖ <
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r}, with r ∈ (ρ1, ρ2), as a nonempty open convex subset of X. For example, choose
r = 1.7. Using (3.7) and (3.8), we have that for any x, y, z ∈ D

‖[(F ′(x)−F ′(x0))y] (s)‖ =
12
5

∥∥∥∥∫ 1

0

G(s, t)(x(t)2 − x0(t)2)y(t) dt

∥∥∥∥
≤ 12

5

∫ 1

0

G(s, t)‖x(t)− x0(t)‖ ‖x(t) + x0(t)‖y(t) dt

≤ 12
5

∫ 1

0

G(s, t) (r + 1)‖x(t)− x0(t)‖y(t) dt, s ∈ [0, 1]

(5.11)

and

‖(F ′′(x)yz)(s)‖ =
24
5

∫ 1

0

G(s, t)x(t)y(t)z(t) dt, s ∈ [0, 1]. (5.12)

Then, we get

‖F ′(x)−F ′(x0)‖ ≤
12
5

1
8
(r + 1)‖x− x0‖ =

81
100

‖x− x0‖, (5.13)

‖F ′′(x)‖ ≤ 24
5
× r

8
=

51
50

(5.14)

and

‖[[F ′′(x)−F ′′(x)] yz] (s)‖ =
24
5

∥∥∥∥∫ 1

0

G(s, t) (x(t)− x(t)))y(t)z(t)
∥∥∥∥ dt (5.15)

≤ 24
5

1
8
‖x− x‖ =

3
5
‖x− x‖. (5.16)

Now we can choose constants as follows:

M =
6
7
, L =

51
35

, L0 =
81
70

, b =
22
15

, c =
7
15

,

b0 =
11
15

, c0 =
2
15

, L1 =
11
70

, L2 =
16
35

, L2 =
16
35

, and η =
1
7
.

We can verify that the condition (C5) holds. From equations (2.1) – (2.6), we obtain

η1 = 0.5292437221, η2 = 0.4285556173, η3 = 0.4285556173.

From the formulation (2.7), we get

η0 = η2 = 0.4285556173.

We may see that the hypothesis (2.11) of Lemma 2.1 holds. Now let us compare
the sequences (2.12), (3.24) and (3.25), with (3.7). Comparison – among sequences
(2.12), (3.24) and (3.25) – is reported in Table 3. In the Table 3, we observe that
the sequence {qn} is finer than the sequence {sn} and {sn} is finer than than {un}
– which is also true by the estimates (3.26) and (3.29).

Concerning the uniqueness balls, let us denote the radii [1, 3, 4, 7, 9, 18–21]
by γ1 and γ2, respectively. These are given as the smallest positive roots of the
polynomials

p1(t) = L0 t− 1 (for t? = R) (5.17)

and

p2(t) =
M
6

t3 +
L
2

t2 − t + η (5.18)
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respectively. Using the values of L0, L, M and η we get

γ1 = 0.8641975309, γ2 = 0.1517444889. (5.19)

Note that U(x0, r − 1) ⊆ D, L0 < L and γ2 < γ1. Therefore, the new approach
provides the largest uniqueness ball and since r − 1 < γ1, we deduce that x? is
unique in U(x0, r − 1) = U(1, 0.7) ⊆ D.

Example 5.3. We consider nonlinear Hammerstein integral equation

x(s) = 1 +
∫ 1

0

G(s, t)x(t)2 dt, s, t ∈ [0, 1] (5.20)

where s ∈ C[0, 1], and the kernel G(s, t) is given as

G(s, t) =

{
(1− s)t, t ≤ s,

(1− t)s, s ≤ t.

Hammerstein integral equations are associated with boundary value problems for
differential equations [1]. For these equations higher order methods – utilizing
information about the second derivatives – may be advantageous [1].

To solve the nonlinear integral equation (4.1), we divide the interval (s, t ∈ [0, 1])
into n−points and approximate the integral part through an n−point Gauss-
Legendre quadrature. Let these n−points be ξi with i = 1, 2, . . . , n. Thus we
obtain

x(ξj) = 1 +
∫ 1

0

G(ξj , t)x(t)2 dt ≈ 1 +
n∑

i=1

ωi G(ξj , ξi)x(ξi)2 (5.21)

where the nodes ξi and weights wi are given as

ξi =
1
2
zi +

1
2
, ωi =

2
(1− z2

i )(P ′n(zi))2

where zi (also known as i−th Gauss-node) are the i−th zeros of the normalized
Legendre, i.e. Pn(1) = 1, polynomial Pn(z)

Pn(z) =
1

2n n!
dn

d xn
[(x2 − 1)n].

From (5.21), we get the nonlinear-system F : Rn → Rn

F(x) ≡ x− 1−Avx = 0 (5.22)

where

x = [x1, x2, . . . , xn]T, 1 = [1, 1, . . . , 1]T, A = [ai,j ]ni,j=1, vx = [x2
1, x

2
2, . . . , x

2
n]T

where ai,j = ωi G(ξj , ξi). Moreover, F ′(x) = I−2AD(x) where D(x) = diag{x1, x2, . . . , xn}
and F ′′(x) = A. The discretized system of equations (5.22) satisfies the condition
(C5) and it also satisfies the hypothesis – condition (2.11) – of Lemma 2.1.

To solve the nonlinear integral equation (4.1), we divide the interval through a
20−point Gauss-Legendre quadrature rule which results in 20−nonlinear equa-
tions with 20 unknowns. Solution is reported in the Table 4 when the residual is
‖xn+1 − xn‖L2

≤ 1× 10−50. For a second derivative F ′′(x) of size m×m the com-
putational cost of order is O

(
m2

)
[1]. As a result, for sufficiently large systems the

computational cost during each iteration of the four methods (NM-O2, TSNM-O3,
TSNM-O4, TSNM-O5) is of the same order [1]. Therefore, the fifth order method
TSNM-O5 is the most computationally efficient for solving such systems.
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n tn sn sn − tn tn+1 − sn t? − tn t? − sn

0 0.00× 10+00 3.85× 10−02 3.85× 10−02 1.04× 10−02 6.39× 10−02 2.54× 10−02

1 4.89× 10−02 6.14× 10−02 1.25× 10−02 1.67× 10−03 1.49× 10−02 2.46× 10−03

2 6.31× 10−02 6.39× 10−02 7.79× 10−04 7.25× 10−06 7.86× 10−04 7.46× 10−06

3 6.39× 10−02 6.39× 10−02 2.05× 10−07 5.07× 10−13 2.05× 10−07 5.07× 10−13

4 6.39× 10−02 6.39× 10−02 3.77× 10−18 1.71× 10−34 3.77× 10−18 1.71× 10−34

5 6.39× 10−02 6.39× 10−02 2.34× 10−50 6.56× 10−99 2.34× 10−50 6.56× 10−99

6 6.39× 10−02 6.39× 10−02 5.55× 10−147 3.71× 10−292 5.55× 10−147 3.71× 10−292

7 6.39× 10−02 6.39× 10−02 7.47× 10−437 6.70× 10−872 7.47× 10−437 6.70× 10−872

8 6.39× 10−02 6.39× 10−02 1.81× 10−1306 0.00× 10+00 1.81× 10−1306 0.00× 10+00

9 6.39× 10−02 6.39× 10−02 0.00× 10+00 0.00× 10+00 0.00× 10+00 0.00× 10+00

Table 1. Majorizing sequence (2.12) for (4.1).

n ‖xn+1 − xn‖ ‖xn+1 − yn‖ ‖xn − yn‖ ‖xn − x?‖ ‖yn − x?‖
0 4.00× 10−02 1.50× 10−03 3.85× 10−02 4.00× 10−02 1.52× 10−03

1 1.61× 10−05 2.58× 10−10 1.61× 10−05 1.61× 10−05 2.58× 10−10

2 5.35× 10−19 2.86× 10−37 5.35× 10−19 5.35× 10−19 2.86× 10−37

3 6.53× 10−73 4.27× 10−145 6.53× 10−73 6.53× 10−73 4.27× 10−145

4 1.46× 10−288 2.12× 10−576 1.46× 10−288 1.46× 10−288 2.12× 10−576

5 3.59× 10−1151 0.00× 10+00 3.59× 10−1151 3.59× 10−1151 0.00× 10+00

6 0.00× 10+00 0.00× 10+00 0.00× 10+00 0.00× 10+00 0.00× 10+00

7 0.00× 10+00 0.00× 10+00 0.00× 10+00 0.00× 10+00 0.00× 10+00

8 0.00× 10+00 0.00× 10+00 0.00× 10+00 0.00× 10+00 0.00× 10+00

9 0.00× 10+00 0.00× 10+00 0.00× 10+00 0.00× 10+00 0.00× 10+00

Table 2. Method (1.2) applied to F(x) = x3 − 1.

n qn sn un rn+1 − qn tn+1 − sn vn+1 − un

0 1.43× 10−01 1.43× 10−01 1.43× 10−01 3.42× 10−03 2.18× 10−02 2.18× 10−02

1 1.47× 10−01 1.76× 10−01 1.80× 10−01 9.69× 10−07 1.85× 10−04 3.40× 10−04

2 1.47× 10−01 1.77× 10−01 1.81× 10−01 1.24× 10−13 5.28× 10−09 2.17× 10−08

3 1.47× 10−01 1.77× 10−01 1.81× 10−01 2.00× 10−27 3.79× 10−18 6.91× 10−17

4 1.47× 10−01 1.77× 10−01 1.81× 10−01 5.23× 10−55 1.96× 10−36 7.02× 10−34

5 1.47× 10−01 1.77× 10−01 1.81× 10−01 3.56× 10−110 5.20× 10−73 7.23× 10−68

6 1.47× 10−01 1.77× 10−01 1.81× 10−01 1.65× 10−220 3.68× 10−146 7.68× 10−136

7 1.47× 10−01 1.77× 10−01 1.81× 10−01 3.57× 10−441 1.84× 10−292 8.66× 10−272

8 1.47× 10−01 1.77× 10−01 1.81× 10−01 1.66× 10−882 4.62× 10−585 1.10× 10−543

9 1.47× 10−01 1.77× 10−01 1.81× 10−01 3.60× 10−1765 2.90× 10−1170 1.78× 10−1087

Table 3. Comparison among the sequences (2.12), (3.24) and
(3.25). Estimates (3.26) – (3.30) hold.
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n
‖xn+1 − xn‖L2

NM-O2 TSNM-O3 TSNM-O4 TSNM-O5

1 9.869× 10−2 1.931× 10−3 1.074× 10−4 6.652× 10−5

2 4.275× 10−4 4.233× 10−6 2.139× 10−16 4.122× 10−23

3 3.957× 10−8 8.426× 10−18 4.275× 10−63 1.886× 10−123

4 1.931× 10−16 3.957× 10−50 −−− −−−
5 2.224× 10−33 −−− −−− −−−
6 8.001× 10−65 −−− −−− −−−
Table 4. Errors for the Newton (NM-O2) and the methods (1.2)
applied to (5.20).
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