Analysis and

Optimization

Theory &,
Journal of Nonlinear Analysis and Optimization S
Vol. 4, No. 2, (2013), 51-59 Eitors-in-Chif
ISSN : 1906-9605 e
http://www.math.sci.nu.ac.th S

ON THE MEANS OF PROJECTIONS ON CAT(0) SPACES

WATCHARAPONG ANAKKAMATEE AND SOMPONG DHOMPONGSA*

Department of Mathematics, Faculty of Science, Chiang Mai University, 50200,
Thailand

ABSTRACT. We improve a result on approximation a common element of two closed convex
subsets of a complete CAT(0) space appeared as Theorem 4.1 in [2]. New practical iterative
scheme is presented and conditions on two given sets are relaxed.
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1. INTRODUCTION

von Neumann introduced the alternating projection method and proved the fol-
lowing strong convergence in Hilbert spaces [cf. 2]:

Theorem 1.1 (von Neumann). Let H be a Hilbert space and A, B C H its closed
subspaces. Assumex € H is a starting point and {z,,} C H the sequence generated
by

Top_1 = Pa(2on_2), %on = Pp(x2,-1), n €N, (1.1)
where Py, Pp are projection mappings from H to A and B respectively. Then {z,}
converges in norm to a point from AN B.

When “subspaces” are replaced by “convex subsets”, we only have “weak conver-
gence” for the alternating projections:

Theorem 1.2. [3] Let H be a Hilbert space and A, B C H closed convex sets with
ANB # (. Assumezg € H is a starting point and {z,,} C H the sequence generated
by (1.1). Then {x, } weakly converges to a point from AN B.

It took 39 years since 1965 until Hundal [7] in 2004 could provide a counter
example:

Example 1.3. [7] There exist a hyperplane A C {5, a convex cone B C {5 and a
point xg € {5 such that the sequence generated by (1.1) from the starting point x
converges weakly to a point in A N B but not in norm.
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In 2011, Bacak, Searston, Sims [2] extend the result of Bregman for CAT(0)
spaces.

Theorem 1.4. [2, Theorem 4.1] Let X be a complete CAT(0) space and A,B C X
convex closed subsets such that AN B # (). Let xo € X be a starting point and
{z,} C X be the sequence generated by (1.1). Then:
() {zn,} weakly converges to a pointx € AN B.

(ii) If A and B are boundedly regular, then x,, — x.

(iii) If A and B are boundedly linearly regular, then z,, — x linearly.

(iv) If A and B are linearly regular, then x,, — x linearly with a rate indepen-

dent of the starting point.

It is the aim of this paper to present an iterative sequence which strongly con-
verges to a common point of the sets A and B. We do not impose any requirements
on A and B as stated in (ii).

2. PRELIMINARIES

Let (X, d) be a metric space. A geodesic joining z € X to y € X is a mapping ¢
from a closed interval [0,!] C R to X such that ¢(0) = z, ¢(I) = y and d(c(t),c(t')) =
|t — t'| for all t,t' € [0,]. Obviously, c is an isometry and d(z,y) = [. We call the
image of ¢ a geodesic segment joining x and y. If it is unique this geodesic is
denoted [z,y]. Write ¢(a0+ (1 —a)l) = ax & (1 — a)y for « € (0,1). We also
write the midpoint 1z & 1y of a segment [z, y] as %Gy_ The space X is said to be a
geodesic space if every two points of X are joined by a geodesic. It is said to be of
hyperbolic type [6] if it satisfies the following inequality:

d(p,az & (1 — )y) < ad(p,z) + (1 — a)d(p, y) 2.1)
for all p € X. Following [5], let {v1,va,...,v,} C X and {A1, A2, ..., An} C (0,1) with
7, Ai = 1 and write, by induction,

T A1 A2 An—1
@)\ivi:: 1—X, v, D VgD D
N ( )<1—/\n R IS -\,

Unfl) @ )\n’Unn (22)

Note for an example that %vl @ %’Ug @ %1}3 and %’Ug & %vl &) %’Ug are not necessary
coincide. Under (2.1) we can see that

i=1 n=1

for each x € X.
A metric space X is said to be a CAT(0) space (cf.[4] p.163) if it is a geodesic
space satisfying one of the following equivalent conditions.

(i) (CN) inequality: If o, z; € X, then

To D 1 1 1
& (15 ) < §a0) + 5P n0) - (o), forally € X.

(i) Law of cosine: If a = d(p, q),b = d(p,r),c = d(g,r) and ¢ is the Alexandrov
angle at p between [p, q] and [p, 7], then ¢ > a? + b? — 2abcos €.

Lemma 2.1. [4, Proposition 2.2] Let X be a CAT(0) space. Then foreachp,q,r,s € X
and a € [0,1],

dlap® (1 —a)g,ar @ (1 — «a)s) < ad(p,r) + (1 — a)d(q, ). (2.4)
In particular, (2.1) holds in CAT(0) spaces.
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Let C' be a nonempty subset of X. We will denote the family of nonempty
bounded closed subsets of C' by BC(C') and the family of nonempty compact sub-
sets of C' by K(C). Let H(-,-) be the Hausdor{f distance on BC(X), that is,

H(A, B) = max {sup dist(a, B),sup dist(b, A)} , A, Be BC(X),
acA beB

where dist(a, B) = inf{d(a,b) : b € B} is the distance from the point a to the subset

B.

A mapping t : C — C and a multivalued mapping 7' : C — BC/(C) are said
to be nonexpansive if for each x,y € C,
d(tz,ty) < d(x,y), and
H(Tz,Ty) < d(z,y),
respectively. If tx = x, we call z a fixed point of a single valued mapping ¢. And if
x € Tz, we call z a fixed point of a multivalued mapping 7. We use the notation
Fiz(S) to stand for the set of all fixed points of a mapping S. Thus Fiz(t) N Fiz(T)

is the set of common fixed points of t and T, i.e., x € Fiz(t) N Fiz(T) if and only if
r=trecTx.

Let {\,} be a given sequence in (0,1) such that > -, A\, = 1, let {v,} be a
bounded sequence in X and let vy be an arbitrary point in X. Let A}, = >"° Y
and assume thatzzin A, — 0 as n — oo. In [5] the element EBzozl AU, has

been defined. Here is its description. Set
Sp 1= Av1 D Aavg B - - B A\puy D N vp.
Thus, by (2.2),

n
Sp = (Z )\i)wn & A vo, (2.5)
i=1
where w; = v and for each n > 2,

A1 v B A2 Uz@...@L
Z?:l Ai Z?:l Ai Z?:l Ai

We know that {s,} is a Cauchy sequence. Thus s,, — x as n — oo for some

r € X. Write
o
T = @ AU, -
n=1

By (2.5), d(sn, wy) < AL d(wp,vp), it is seen that lim,,_, 8, = lim,—, w,. Thus
the limit z is independent of the choice of vy. Moreover, it had been shown in [5]
that
(A): ifyp and v, belong to X, d(v,,, yo) = d(z,yo) for all n where z = @~ | \pvn.
then v,, = x for all n.

Wpn = Unp.

Lemma 2.2. [5, Lemma 3.8] Let C' be a nonempty closed convex subset of a complete
CAT(0) space X, let{t,, : n € N} be a family of single-valued nonexpansive mappings
on C. Suppose (\,—, Fiz(t,) is nonempty. Definet: C — C by

t(x) = @ Antn(2)
n=1

forallz € C where {\,} C (0,1) withd >~ A\, =land > = N, — 0asn — oo.
Then t is nonexpansive and Fiz(t) = (., Fixz(t,).

n=1
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Theorem 2.3. [3, Lemma 2.2] Let C' be a nonempty closed convex subset of a
complete CAT(0) space X, lett : C — C be nonexpansive, fix u € C, and for each
s € (0,1) let x5 be the point of [u, t(x)] satisfying

d(u,xs) = sd(u,t(zs)).

Then Fiz(t) # 0 if and only if {xs} remains bounded as s — 1. In this case, the
JSollowing statements hold:

(1) {xs} converges to the unique fixed point z of t which is nearest to u;
©2) d*(u,2) < pnd?(u,u,) for all Banach limits i and all bounded sequences
{un} with d(uy,, t(u,)) — 0.

We will follow the proof of the following theorem to prove our main result (Theo-
rem 3.1).

Theorem 2.4. [5, Theorem 3.7] Let C' be a nonempty closed convex subset of a
complete CAT(0) space X . Let {t,, : C — C'} be a countable family of nonexpansive
mappings and T' : C — K(C) be a nonexpansive mapping with (-, Fiz(t,) N
Fix(T) # 0. Suppose that T'(p) = {p} forallp € (,—, Fiz(t,) N Fiz(T). Let t and
{A\n} be as in Lemma 2.2. Suppose thatu,z, € C are arbitrarily chosen and {z,} is
defined by

1 1
Znt1 = apu P (1 — ay) <2wn(2n) ® 2yn> , n€N, (2.6)

such that d(Yn, Ynt+1) < d(zn, 2nt+1) for alln € N, where y,, € T(z,) and {a,} is a
sequence in (0, 1) satisfying

(C1) limy,— 00 vy, = 0;

(€C2) >0 | ay, = o0;

(€3) >0 |l — apy1| < o0 or lim,—oo(an/any1) = 1.
Then {z, } converges to the unique point of (\,—, Fiz(t,) N Fiz(T) which is nearest
to u.

In the course of the proof of Theorem 2.4, the following results play important
role.

Lemma 2.5. [9, Proposition 2] Let a be a real number and let (a1, as, ...)
such that py,(a,) < a for all Banach limits p and limsup,, (ap+1 — an) <
limsup,, a, < a.

. Then

Lemma 2.6. [1, Lemma 2.3] Let {s,,} be a sequence of nonnegative real numbers,
{a,} a sequence of real numbers in [0, 1] with > >~ a, = o0, {N,} a sequence of
nonnegative real numbers with > >~ n, < oo, and {7, } a sequence of real numbers
with limsup,,__, .. 7» < 0. Suppose that

Snt1 < (1 — ap)sy + anyn + 1, forallm € N.

Then lim,,__, . s, = 0.

3. MAIN RESULTS
We first consider a convergence result.

Theorem 3.1. Let C' be a closed convex subset of a complete CAT(0) space X,
t : C — C be a nonexpansive mapping such that Fix(t) # 0 and M a positive real
number. Suppose {¢,,} and {a,} are sequences in (0, 1) satisfying Y .-, £, < 0o,
(C1), (C2) and (C3) respectively. Let u,z; € C be arbitrarily chosen and {z,} be
defined by

Znt1 = apu ® (1 — ap)u,, u, € C
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such that
d(up,tz,) < e, M (38.1)
foralln € N. If{z,} is bounded, then the sequence {z,} converges to the unique
point of Fix(t) which is nearest to u.
Proof. We follow the proof of Theorem 2.4. By (3.1), we see that
A(tn, unt1) < d(up,tzn) + d(tzn, tzni1) + d(tzn41, Unt1)
< d(zn, znt1) + M(en + €nt1)-
From the definition of z,,, we have
d(znt1,7n) = dlapu® (1 —ap)tn, ap—1u® (1 — ap_1)tn_1)
d(apu ® (1 — ap)tn, apu ® (1 — ap)tn—1)
+d(apu ® (1 — ap)tn_1,0n_1u® (1 — qp_1)Un_1)
(1 = an)d(tn, up—1) + |an — an—1|d(u, up—1)
(1 —apn)d(zn, 2n-1) + |an — an—1]d(u, tp—1)
+(1 — an)M(en + n_1).
Putting in Lemma 2.6, s, = d(zn, 2n—1),vn = 0 and 1, = |ap — ap_1|d(u, up—1) +
(I1—an)M(en+en—1)] or [sn, = d(2n, 2n—1), Yn = ll—a;—:l‘d(u,un,l) andn, = (1—
an)M (g, +en—1)] according to Y 7 | |a, — @py1| < 00 or limy, oo (@t /tng1) = 1,
respectively. Thus, using (C3) and 22021 €n < 00, we obtain

IN

IAIA

lim d(zp41,2n) = 0.

It follows from (C1) that

d(zn,un) < d(zn, 2n+1) + d(Znt1, un)
= d(zpn,2ne1) + d(anu ® (1 — ap)tn, uy)
< d(zn, 2nt1) + and(u,u,) — 0.
This implies
d(tn, tuy,) d(tn, tzn) + d(tzn, tuy,)

<
< e M+ d(zn,un) — 0.
Let x5 € [u,tx,] satisfying d(u,xs) = sd(u,txs) for all s € (0,1). By Theorem 2.3,
we have z =: lim;__,1 x5 which is the unique point of F'iz(t) nearest to u and
pn(d? (u, z) — d?(u,u,)) < 0 for all Banach limits p. Moreover, since d(t,, tn11) <
d(zn, Zny1) + M(en + €nq1) — 0,

limsup (d*(u, 2) — d*(u,un)) — (d*(u, z) — d*(u,upt1)) = 0.

n—-aoo
Therefore Lemma 2.5 implies

lim sup (dz(u, z)—(1-— an)d2(u,un)) = lim sup (dz(u, z) — dz(u,un)) <0.
n—oo n—oo

Consider the following estimates:

d(zn11,2) = Clanu® (1 — an)un, 2)

< and? (4, 2) + (1 — an)d® (Un, 2) — an (1 — an)d® (u, un)

= (1 —an)d®(tn,2)+ an (d2(u, 2) — (1 — an)d*(u, Un))

< (1= an)(d(tn, tzn) + d(tzn, 2))* + an (d2(u, 2) — (1 — an)d®(u, Un))
< (1= an)(d®(2n, 2) + 2, Md(20, 2) + €5 M?)

+an (d2(u, z)—(1— an)dQ(u, un))
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= (1= an)d(2n,2) + an (P (u,2) — (1 — an)d* (u, un))
+(1 — an)(2en Md(2n, 2) + e2M?)
< (1- an)dz(zn, z2) + an (d2(u7 z)—(1-— an)dz(u, un))
+(1 — an)(2en MN + &2 M?),
where N = sup{d(z,, 2) : n € N}. We can now use Lemma 2.6 to conclude the
proof. U

Here is our first main result.

Theorem 3.2. Let X be a complete CAT(0) space and {A; : i € N} be a _family of
closed convex subsets of X such that (-, A; # 0. Let {\,} be a sequence in (0, 1)
suchthatd> 2 A, = 1,332, X; — 0asn — oo where \; = 3272, | \;. Suppose
{en} and {a,,} are sequences in (0,1) satisfying > -, €, < 00, (C1), (C2) and (C3)
respectively. Let u,zy € X be arbitrarily chosen and set
1
o = sup{dist(z0. 40}, B € (03I T I 1),
ieN
Znt1 = apu @ (1 — ap)u,, where
o0
Uy = @ Niuldis ult € AyN Bz« dist(zn, Ay) + B2)

Joralln € N. Then the sequence {z, } converges to the unique point of ();—, A; which
is nearest to u.

Proof. For each i € N, let p; : X — A; be the projection mapping. Using the law
of cosine and the definition of 3,,, we have

d*(uf pizn) < d*(zn,upt) — d* (20, pizn)
< (d(z’mpzzn) + 671)2 - dQ(Znapizn)
= 26nd(3napizn) + ﬂi < 67L(2Tn, + 5n)
1 1
< (GVATTEE - ) (VAT TR ) =

Hence d(uZi, p;z,) < &, foralln € N. Let p: X — X be defined by

pr = @ Aipix
i=1

for each z € X. From Lemma 2.2, p is nonexpansive and Fiz(p) = (-, Fiz(p;) =
;= A;. For each n, we can choose m,, € N such that

Moy,

<®/\ un 7@ m,L )\ ) +d (@ )\zpzzm@ m,L )\ pzzn> < én.

Thus

d(un,pzn < d (@ )\Iun 7é Zmn )\ ) +d (é Zmn /\ un 7@ Zmn bV plzn)
+d (@ Zm” v pzzm@Azpzzn)

M

< Z Z"”n A uTL 7p’LZTL) +en < 2671,-
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Let g € ();2; Ai. Then
d(ZTL+17 q) = d(Oén'LL D (1 - an)”“? Q)

< apd(u,q) + (1 —ap) (@ )\iun ,Q)
< and(u,q)+ (1 - an)d (@A D Zmn o )
17 Oin (@ Zmn A un 7q)
< and(u, ) + (11— am) (5n + Z Zmn N d(usri:pizn) + d(pizn, Q))>
< and(u7 q) + (1 — an)d(zn, ) + 2(1 - an)fn
< max{d(u,q),d(zn,q)} + 2(1 — an)en.

By induction we have

d(zn+1,q) < max{d(u,q),d(z1,q)} +2 Z(l — Qp)en < oo foralln € N.

n=1
This implies the sequence {z,} is bounded. The result now follows from Theorem
3.1. O

When the domain is bounded, we have the following result where the sequence
{zn} is computable.

Theorem 3.3. Let X be a complete CAT(0) space and {A; : i € N} be a family of
closed convex subsets of X such that(\;-, A; # 0 and | J;=, A; is bounded. Let {\,}
be a sequence in (0,1) such that Y - A\, = 1. Y ;o A, — 0 as n — oo where
Ai = 22721 A Let {en} be a sequence in (0, 1) and {a,} be a sequence in (0,1)
satisfying fozl en < 00, (C1), (C2) and (C3) respectively. Letu, z; € C be arbitrarily
chosen. For eachn € N, choose k,, € N such that \; < €, for alli > k,, and set

1
rn = sup{dist(zn, A;)}, PBn € (O> 5\/@ - Tn) )
€N
Znt1 = anu® (1 — ay)ul,, where
Ai . , ,
Uy, = @ kiu,?l, uti € Ay N Bz, : dist(z,, As) + 52).
i=1 Zj:l )‘j

Then the sequence {z,} converges to the unique point of ;- , A; which is nearest to
u.

Proof. Let p; and p be as in the proof of Theorem 3.2. Thus we have
d(ui piz,) < en

for all n € N. For each n, we can choose m,, > k,, such that

(@ Azpzzn7@ mn 2y pzzn> < En.

Since A, < &, < 1, we have

PR

1@ e @
k. . Pizn, mn ~mnp y Pi%n
i=1 Zjnl/\ E A
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IN

T AN T icn mn71 iAn mi icn
i=1 27 1A i=1 E]‘:T Aj i=1 Z Aj i=1 ZJ':"l Aj

kn

m 1
Akp+1 Ai Am, = Ai
< - d . PiZns Php+12n | + -+ ~—d -1 Pi%n;Pmy, Zn
Sheita e T A PR e PO

j=1 i=1 i=1 j=1

mn mn

i
< K > Y <2K > N <2K)\, 44 <2Ke,,
i=kn+1 i=kn+1

where K = SUD,cN {supleN {d (@i 1 Zl Y pzzn7pl+12n> }} < 0.
Thus
d(u;,, pzn) < €0 (2K +2).

The result now follows from Theorem 3.1. O

As corollaries, with the same lines of proofs, the corresponding results hold for
a finite family {¢; : i = 1,2, ..., N} of mappings.

Applications

Let X be a complete CAT(0) space. For a function h : X — (—o00,00], the
a—sublevel set is defined by

r={reX:h(z) <a}l.

Let {h; : i € N} be a family of lower semi-continuous and convex functions from X
into (—o0, 00]. Bac¢ak, Searston and Sims [2] introduced the method for approxi-
mating a minimizer of the functional H : X — (—o00, o], where H = sup;y h; as
the following:

Proposition 3.4. [2, Proposition 5.2] Let X be a complete CAT(0) space and a
mapping F : X — (—o00, 0] be of the form F = max{f, g}, where f,g : X —
(—00, 00| are lower semi-continuous and convex functions. Let o > inf ecx F(z) >
—o0, and A% be nonempty. Assume that f is both uniformly convex and uniformly
continuous on bounded sets of X. Let tg € X be a starting point and {z,} C X be
the sequence generated by

Toan—1 = Pf(IQTL—l)y Ton = Pg(IQn—l)v n e N7

where P; and P, are projection mappings from X to A? and AY respectively. Then
{zn} converges to z € A%.

We now show Propositions providing the strong convergence of the sequence
{zn} to an (approximative) minimizer of the functional H.

Proposition 3.5. Let X be a complete CAT(0) space and a mapping H : X —
(—00, o] be of the form H = sup;cy hi, where h; : X — (—00, 00] are lower semi-
continuous and convex functions for all i 6 N. Leta > inf e x H(x) > —o0. Let {\,}
be a sequence in (0,1) such that Y - A, = 1. Y ;o X; — 0 as n — oo where
N = ZJ 41 Aj- Let{e,} and {a,,} be sequences in (0, 1) satisfying Y -, &, < 00,
(C1), (C2) and (C3) respectively. Let u,z; € X are arbitrarily chosen and set

1
rp = sup{dist(z,, A},,)}, B € (0, 5\/47",% +4e2 — rn> ,

ieN

Zny1 = @ (1 — ap)unp,
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where

o0
Uy, = @ Aitth,, up, € AR N B(zy : dist(zn, A) + B2)
i=1
Jor alln € N. Then the sequence {z,} converges to the unique point of A%, which is
nearest to u.

Proof. Since h; : X — (—00, 00| are lower semi-continuous and convex functions,
«

i, is closed and convex for all7 € N. The result then follows from Theorem 3.2. [
Proposition 3.6. Let X be a complete CAT(0) space and a mapping H : X —
(—00, 0] be of the form H = sup;cy h;. where h; : X — (—o00, 00| are lower semi-
continuous and convex functions for alli € N. Let o > inf, e x H(z) > —oo. Let {\,}
be a sequence in (0,1) such that Y oo A\, = 1, Y ;o N, — 0 as n — oo where
N = Zjiiﬂ Aj. Let {e,} be a sequence in (0, %) and {a,} be a sequence in (0,1)
satisfying Zzozl en < 00, (C1), (C2) and (C3) respectively. Letu, z; € C be arbitrarily
chosen. For eachn € N, choose k,, € N such that \; < ¢, for alli > k,, and set

1
rn = sup{dist(zn, A}.)}, Bn € <0, 5\/47’% +4e2 — rn) ,
ieN )
Znt1 = apu® (1 — ay)ul,,

where
kn

A _ ,
ul :@72“1 ul, € A N B(zy : dist(zn, AY) + B2).
n kn no n h; n ny<Lh,; n

i=1 Zj:l )‘j

If{zy} is bounded, then the sequence {z, } converges to the unique point of A%, which
is nearest to u.

Proof. Here we apply Theorem 3.3. O
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