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ABSTRACT. We improve a result on approximation a common element of two closed convex
subsets of a complete CAT(0) space appeared as Theorem 4.1 in [2]. New practical iterative
scheme is presented and conditions on two given sets are relaxed.
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1. INTRODUCTION

von Neumann introduced the alternating projection method and proved the fol-
lowing strong convergence in Hilbert spaces [cf. 2]:

Theorem 1.1 (von Neumann). Let H be a Hilbert space and A,B ⊂ H its closed
subspaces. Assume x0 ∈ H is a starting point and {xn} ⊂ H the sequence generated
by

x2n−1 = PA(x2n−2), x2n = PB(x2n−1), n ∈ N, (1.1)
where PA, PB are projection mappings from H to A and B respectively. Then {xn}
converges in norm to a point from A ∩B.

When ‘‘subspaces’’ are replaced by ‘‘convex subsets’’, we only have ‘‘weak conver-
gence’’ for the alternating projections:

Theorem 1.2. [3] Let H be a Hilbert space and A,B ⊂ H closed convex sets with
A∩B 6= ∅. Assume x0 ∈ H is a starting point and {xn} ⊂ H the sequence generated
by (1.1). Then {xn} weakly converges to a point from A ∩B.

It took 39 years since 1965 until Hundal [7] in 2004 could provide a counter
example:

Example 1.3. [7] There exist a hyperplane A ⊂ `2, a convex cone B ⊂ `2 and a
point x0 ∈ `2 such that the sequence generated by (1.1) from the starting point x0

converges weakly to a point in A ∩B but not in norm.
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In 2011, Bačák, Searston, Sims [2] extend the result of Bregman for CAT(0)
spaces.

Theorem 1.4. [2, Theorem 4.1] Let X be a complete CAT(0) space and A,B ⊂ X
convex closed subsets such that A ∩ B 6= ∅. Let x0 ∈ X be a starting point and
{xn} ⊂ X be the sequence generated by (1.1). Then:

(i) {xn} weakly converges to a point x ∈ A ∩B.
(ii) If A and B are boundedly regular, then xn −→ x.
(iii) If A and B are boundedly linearly regular, then xn −→ x linearly.
(iv) If A and B are linearly regular, then xn −→ x linearly with a rate indepen-

dent of the starting point.

It is the aim of this paper to present an iterative sequence which strongly con-
verges to a common point of the sets A and B. We do not impose any requirements
on A and B as stated in (ii).

2. PRELIMINARIES

Let (X, d) be a metric space. A geodesic joining x ∈ X to y ∈ X is a mapping c
from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y and d(c(t), c(t′)) =
|t − t′| for all t, t′ ∈ [0, l]. Obviously, c is an isometry and d(x, y) = l. We call the
image of c a geodesic segment joining x and y. If it is unique this geodesic is
denoted [x, y]. Write c(α 0 + (1 − α)l) = αx ⊕ (1 − α)y for α ∈ (0, 1). We also
write the midpoint 1

2x⊕ 1
2y of a segment [x, y] as x⊕y

2 . The space X is said to be a
geodesic space if every two points of X are joined by a geodesic. It is said to be of
hyperbolic type [6] if it satisfies the following inequality:

d(p, αx⊕ (1− α)y) ≤ αd(p, x) + (1− α)d(p, y) (2.1)

for all p ∈ X. Following [5], let {v1, v2, ..., vn} ⊂ X and {λ1, λ2, ..., λn} ⊂ (0, 1) with∑n
i=1 λi = 1 and write, by induction,

n⊕
i=1

λivi := (1− λn)
( λ1

1− λn
v1 ⊕

λ2

1− λn
v2 ⊕ · · · ⊕ λn−1

1− λn
vn−1

)
⊕ λnvn. (2.2)

Note for an example that 1
3v1 ⊕ 1

3v2 ⊕ 1
3v3 and 1

3v2 ⊕ 1
3v1 ⊕ 1

3v3 are not necessary
coincide. Under (2.1) we can see that

d

(
n⊕

i=1

λivi, x

)
≤

n∑
n=1

λid(vi, x) (2.3)

for each x ∈ X.
A metric space X is said to be a CAT(0) space (cf.[4] p.163) if it is a geodesic

space satisfying one of the following equivalent conditions.
(i) (CN) inequality: If x0, x1 ∈ X, then

d2

(
y,

x0 ⊕ x1

2

)
≤ 1

2
d2(y, x0) +

1
2
d2(y, x1)−

1
4
d2(x0, x1), for all y ∈ X.

(ii) Law of cosine: If a = d(p, q), b = d(p, r), c = d(q, r) and ξ is the Alexandrov
angle at p between [p, q] and [p, r], then c2 ≥ a2 + b2 − 2ab cos ξ.

Lemma 2.1. [4, Proposition 2.2] Let X be a CAT(0) space. Then for each p, q, r, s ∈ X
and α ∈ [0, 1],

d(αp⊕ (1− α)q, αr ⊕ (1− α)s) ≤ αd(p, r) + (1− α)d(q, s). (2.4)

In particular, (2.1) holds in CAT(0) spaces.
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Let C be a nonempty subset of X. We will denote the family of nonempty
bounded closed subsets of C by BC(C) and the family of nonempty compact sub-
sets of C by K(C). Let H(·, ·) be the Hausdorff distance on BC(X), that is,

H(A,B) = max
{

sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)
}

, A, B ∈ BC(X),

where dist(a,B) = inf{d(a, b) : b ∈ B} is the distance from the point a to the subset
B.

A mapping t : C −→ C and a multivalued mapping T : C −→ BC(C) are said
to be nonexpansive if for each x, y ∈ C,

d(tx, ty) ≤ d(x, y), and

H(Tx, Ty) ≤ d(x, y),
respectively. If tx = x, we call x a fixed point of a single valued mapping t. And if
x ∈ Tx, we call x a fixed point of a multivalued mapping T . We use the notation
Fix(S) to stand for the set of all fixed points of a mapping S. Thus Fix(t)∩Fix(T )
is the set of common fixed points of t and T , i.e., x ∈ Fix(t)∩Fix(T ) if and only if
x = tx ∈ Tx.

Let {λn} be a given sequence in (0, 1) such that
∑∞

n=1 λn = 1, let {vn} be a
bounded sequence in X and let v0 be an arbitrary point in X. Let λ′n =

∑∞
i=n+1 λi

and assume that
∑∞

i=n λ′i −→ 0 as n −→ ∞. In [5] the element
⊕∞

n=1 λnvn has
been defined. Here is its description. Set

sn := λ1v1 ⊕ λ2v2 ⊕ · · · ⊕ λnvn ⊕ λ′nv0.

Thus, by (2.2),

sn =
( n∑

i=1

λi

)
wn ⊕ λ′nv0, (2.5)

where w1 = v1 and for each n ≥ 2,

wn =
λ1∑n
i=1 λi

v1 ⊕
λ2∑n
i=1 λi

v2 ⊕ · · · ⊕ λn∑n
i=1 λi

vn.

We know that {sn} is a Cauchy sequence. Thus sn −→ x as n −→ ∞ for some
x ∈ X. Write

x =
∞⊕

n=1

λnvn.

By (2.5), d(sn, wn) ≤ λ′nd(wn, v0), it is seen that limn−→∞ sn = limn−→∞ wn. Thus
the limit x is independent of the choice of v0. Moreover, it had been shown in [5]
that

(A): if y0 and vn belong to X, d(vn, y0) = d(x, y0) for all n where x =
⊕∞

n=1 λnvn,
then vn = x for all n.

Lemma 2.2. [5, Lemma 3.8] Let C be a nonempty closed convex subset of a complete
CAT(0) space X, let {tn : n ∈ N} be a family of single-valued nonexpansive mappings
on C. Suppose

⋂∞
n=1 Fix(tn) is nonempty. Define t : C −→ C by

t(x) =
∞⊕

n=1

λntn(x)

for all x ∈ C where {λn} ⊂ (0, 1) with
∑∞

n=1 λn = 1 and
∑∞

i=n λ′i −→ 0 as n −→∞.
Then t is nonexpansive and Fix(t) =

⋂∞
n=1 Fix(tn).
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Theorem 2.3. [8, Lemma 2.2] Let C be a nonempty closed convex subset of a
complete CAT(0) space X, let t : C → C be nonexpansive, fix u ∈ C, and for each
s ∈ (0, 1) let xs be the point of [u, t(xs)] satisfying

d(u, xs) = sd(u, t(xs)).

Then Fix(t) 6= ∅ if and only if {xs} remains bounded as s −→ 1. In this case, the
following statements hold:

(1) {xs} converges to the unique fixed point z of t which is nearest to u;
(2) d2(u, z) ≤ µnd2(u, un) for all Banach limits µ and all bounded sequences

{un} with d(un, t(un)) −→ 0.

We will follow the proof of the following theorem to prove our main result (Theo-
rem 3.1).

Theorem 2.4. [5, Theorem 3.7] Let C be a nonempty closed convex subset of a
complete CAT(0) space X. Let {tn : C −→ C} be a countable family of nonexpansive
mappings and T : C −→ K(C) be a nonexpansive mapping with

⋂∞
n=1 Fix(tn) ∩

Fix(T ) 6= ∅. Suppose that T (p) = {p} for all p ∈
⋂∞

n=1 Fix(tn) ∩ Fix(T ). Let t and
{λn} be as in Lemma 2.2. Suppose that u, z1 ∈ C are arbitrarily chosen and {zn} is
defined by

zn+1 = αnu⊕ (1− αn)
(

1
2
wn(zn)⊕ 1

2
yn

)
, n ∈ N, (2.6)

such that d(yn, yn+1) ≤ d(zn, zn+1) for all n ∈ N, where yn ∈ T (zn) and {αn} is a
sequence in (0, 1) satisfying

(C1) limn→∞ αn = 0;
(C2)

∑∞
n=1 αn = ∞;

(C3)
∑∞

n=1 |αn − αn+1| < ∞ or limn−→∞(αn/αn+1) = 1.

Then {zn} converges to the unique point of
⋂∞

n=1 Fix(tn) ∩ Fix(T ) which is nearest
to u.

In the course of the proof of Theorem 2.4, the following results play important
role.

Lemma 2.5. [9, Proposition 2] Let a be a real number and let (a1, a2, ...) ∈ `∞ be
such that µn(an) ≤ a for all Banach limits µ and lim supn(an+1 − an) ≤ 0. Then
lim supn an ≤ a.

Lemma 2.6. [1, Lemma 2.3] Let {sn} be a sequence of nonnegative real numbers,
{αn} a sequence of real numbers in [0, 1] with

∑∞
n=1 αn = ∞, {ηn} a sequence of

nonnegative real numbers with
∑∞

n=1 ηn < ∞, and {γn} a sequence of real numbers
with lim supn−→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + ηn for all n ∈ N.

Then limn−→∞ sn = 0.

3. MAIN RESULTS

We first consider a convergence result.

Theorem 3.1. Let C be a closed convex subset of a complete CAT(0) space X,
t : C −→ C be a nonexpansive mapping such that Fix(t) 6= ∅ and M a positive real
number. Suppose {εn} and {αn} are sequences in (0, 1) satisfying

∑∞
n=1 εn < ∞,

(C1), (C2) and (C3) respectively. Let u, z1 ∈ C be arbitrarily chosen and {zn} be
defined by

zn+1 = αnu⊕ (1− αn)un, un ∈ C
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such that
d(un, tzn) ≤ εnM (3.1)

for all n ∈ N. If {zn} is bounded, then the sequence {zn} converges to the unique
point of Fix(t) which is nearest to u.

Proof. We follow the proof of Theorem 2.4. By (3.1), we see that

d(un, un+1) ≤ d(un, tzn) + d(tzn, tzn+1) + d(tzn+1, un+1)
≤ d(zn, zn+1) + M(εn + εn+1).

From the definition of zn, we have

d(zn+1, zn) = d(αnu⊕ (1− αn)un, αn−1u⊕ (1− αn−1)un−1)
≤ d(αnu⊕ (1− αn)un, αnu⊕ (1− αn)un−1)

+d(αnu⊕ (1− αn)un−1, αn−1u⊕ (1− αn−1)un−1)
≤ (1− αn)d(un, un−1) + |αn − αn−1|d(u, un−1)
≤ (1− αn)d(zn, zn−1) + |αn − αn−1|d(u, un−1)

+(1− αn)M(εn + εn−1).

Putting in Lemma 2.6, [sn = d(zn, zn−1), γn = 0 and ηn = |αn − αn−1|d(u, un−1) +
(1−αn)M(εn+εn−1)] or [sn = d(zn, zn−1), γn =

∣∣1− αn−1
αn

∣∣d(u, un−1) and ηn = (1−
αn)M(εn + εn−1)] according to

∑∞
n=1 |αn−αn+1| < ∞ or limn−→∞(αn/αn+1) = 1,

respectively. Thus, using (C3) and
∑∞

n=1 εn < ∞, we obtain

lim
n−→∞

d(zn+1, zn) = 0.

It follows from (C1) that

d(zn, un) ≤ d(zn, zn+1) + d(zn+1, un)
= d(zn, zn+1) + d(αnu⊕ (1− αn)un, un)
≤ d(zn, zn+1) + αnd(u, un) −→ 0.

This implies

d(un, tun) ≤ d(un, tzn) + d(tzn, tun)
≤ εnM + d(zn, un) −→ 0.

Let xs ∈ [u, txs] satisfying d(u, xs) = sd(u, txs) for all s ∈ (0, 1). By Theorem 2.3,
we have z =: lims−→1 xs which is the unique point of Fix(t) nearest to u and
µn(d2(u, z)− d2(u, un)) ≤ 0 for all Banach limits µ. Moreover, since d(un, un+1) ≤
d(zn, zn+1) + M(εn + εn+1) −→ 0,

lim sup
n−→∞

(
d2(u, z)− d2(u, un)

)
−
(
d2(u, z)− d2(u, un+1)

)
= 0.

Therefore Lemma 2.5 implies

lim sup
n→∞

(
d2(u, z)− (1− αn)d2(u, un)

)
= lim sup

n→∞

(
d2(u, z)− d2(u, un)

)
≤ 0.

Consider the following estimates:

d2(zn+1, z) = d2(αnu⊕ (1− αn)un, z)

≤ αnd2(u, z) + (1− αn)d2(un, z)− αn(1− αn)d2(u, un)

= (1− αn)d2(un, z) + αn

�
d2(u, z)− (1− αn)d2(u, un)

�
≤ (1− αn)(d(un, tzn) + d(tzn, z))2 + αn

�
d2(u, z)− (1− αn)d2(u, un)

�
≤ (1− αn)(d2(zn, z) + 2εnMd(zn, z) + ε2

nM2)

+αn

�
d2(u, z)− (1− αn)d2(u, un)

�
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= (1− αn)d2(zn, z) + αn

�
d2(u, z)− (1− αn)d2(u, un)

�
+(1− αn)(2εnMd(zn, z) + ε2

nM2)

≤ (1− αn)d2(zn, z) + αn

�
d2(u, z)− (1− αn)d2(u, un)

�
+(1− αn)(2εnMN + ε2

nM2),

where N = sup{d(zn, z) : n ∈ N}. We can now use Lemma 2.6 to conclude the
proof. �

Here is our first main result.

Theorem 3.2. Let X be a complete CAT(0) space and {Ai : i ∈ N} be a family of
closed convex subsets of X such that

⋂∞
i=1 Ai 6= ∅. Let {λn} be a sequence in (0, 1)

such that
∑∞

n=1 λn = 1,
∑∞

i=n λ′i −→ 0 as n −→∞where λ′i =
∑∞

j=i+1 λj . Suppose

{εn} and {αn} are sequences in (0, 1) satisfying
∑∞

n=1 εn < ∞, (C1), (C2) and (C3)
respectively. Let u, z1 ∈ X be arbitrarily chosen and set

rn = sup
i∈N

{dist(zn, Ai)}, βn ∈
(

0,
1
2

√
4r2

n + 4ε2
n − rn

)
,

zn+1 = αnu⊕ (1− αn)un, where

un =
∞⊕

i=1

λiu
Ai
n , uAi

n ∈ Ai ∩B(zn : dist(zn, Ai) + β2
n)

for all n ∈ N. Then the sequence {zn} converges to the unique point of
⋂∞

i=1 Ai which
is nearest to u.

Proof. For each i ∈ N, let pi : X −→ Ai be the projection mapping. Using the law
of cosine and the definition of βn, we have

d2(uAi
n , pizn) ≤ d2(zn, uAi

n )− d2(zn, pizn)
≤ (d(zn, pizn) + βn)2 − d2(zn, pizn)
= 2βnd(zn, pizn) + β2

n ≤ βn(2rn + βn)

<

(
1
2

√
4r2

n + 4ε2
n − rn

)(
1
2

√
4r2

n + 4ε2
n + rn

)
= ε2

n.

Hence d(uAi
n , pizn) < εn for all n ∈ N. Let p : X −→ X be defined by

px =
∞⊕

i=1

λipix

for each x ∈ X. From Lemma 2.2, p is nonexpansive and Fix(p) =
⋂∞

i=1 Fix(pi) =⋂∞
i=1 Ai. For each n, we can choose mn ∈ N such that

d

( ∞⊕
i=1

λiu
Ai
n ,

mn⊕
i=1

λi∑mn

j=1 λj
uAi

n

)
+ d

( ∞⊕
i=1

λipizn,

mn⊕
i=1

λi∑mn

j=1 λj
pizn

)
< εn.

Thus

d(un, pzn) ≤ d

 
∞M

i=1

λiu
Ai
n ,

mnM
i=1

λiPmn
j=1 λj

uAi
n

!
+ d

 
mnM
i=1

λiPmn
j=1 λj

uAi
n ,

mnM
i=1

λiPmn
j=1 λj

pizn

!

+d

 
mnM
i=1

λiPmn
j=1 λj

pizn,

∞M
i=1

λipizn

!

<

mnX
i=1

λiPmn
j=1 λj

d(uAi
n , pizn) + εn < 2εn.
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Let q ∈
⋂∞

i=1 Ai. Then
d(zn+1, q) = d(αnu⊕ (1− αn)un, q)

≤ αnd(u, q) + (1− αn)d

 
∞M

i=1

λiu
Ai
n , q

!

≤ αnd(u, q) + (1− αn)d

 
∞M

i=1

λiu
Ai
n ,

mnM
i=1

λiPmn
j=1 λj

uAi
n

!

+(1− αn)d

 
mnM
i=1

λiPmn
j=1 λj

uAi
n , q

!

≤ αnd(u, q) + (1− αn)

 
εn +

mnX
i=1

λiPmn
j=1 λj

(d(uAi
n , pizn) + d(pizn, q))

!

≤ αnd(u, q) + (1− αn)d(zn, q) + 2(1− αn)εn

≤ max{d(u, q), d(zn, q)}+ 2(1− αn)εn.

By induction we have

d(zn+1, q) ≤ max{d(u, q), d(z1, q)}+ 2
∞∑

n=1

(1− αn)εn < ∞ for all n ∈ N.

This implies the sequence {zn} is bounded. The result now follows from Theorem
3.1. �

When the domain is bounded, we have the following result where the sequence
{zn} is computable.

Theorem 3.3. Let X be a complete CAT(0) space and {Ai : i ∈ N} be a family of
closed convex subsets of X such that

⋂∞
i=1 Ai 6= ∅ and

⋃∞
i=1 Ai is bounded. Let {λn}

be a sequence in (0, 1) such that
∑∞

n=1 λn = 1,
∑∞

i=n λ′i −→ 0 as n −→ ∞ where
λ′i =

∑∞
j=i+1 λj . Let {εn} be a sequence in (0, 1

2 ) and {αn} be a sequence in (0, 1)
satisfying

∑∞
n=1 εn < ∞, (C1), (C2) and (C3) respectively. Let u, z1 ∈ C be arbitrarily

chosen. For each n ∈ N, choose kn ∈ N such that λ′i < εn for all i ≥ kn and set

rn = sup
i∈N

{dist(zn, Ai)}, βn ∈
(

0,
1
2

√
4r2

n + 4ε2
n − rn

)
,

zn+1 = αnu⊕ (1− αn)u′n, where

u′n =
kn⊕
i=1

λi∑kn

j=1 λj

uAi
n , uAi

n ∈ Ai ∩B(zn : dist(zn, Ai) + β2
n).

Then the sequence {zn} converges to the unique point of
⋂∞

i=1 Ai which is nearest to
u.

Proof. Let pi and p be as in the proof of Theorem 3.2. Thus we have

d(uAi
n , pizn) < εn

for all n ∈ N. For each n, we can choose mn > kn such that

d

( ∞⊕
i=1

λipizn,

mn⊕
i=1

λi∑mn

j=1 λj
pizn

)
< εn.

Since λ′i < εn < 1
2 , we have

d

0
@

knM
i=1

λiPkn
j=1 λj

pizn,

mnM
i=1

λiPmn
j=1 λj

pizn

1
A
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≤ d

0
@

knM
i=1

λiPkn
j=1 λj

pizn,

kn+1M
i=1

λiPkn+1
j=1 λj

pizn

1
A+ · · ·+ d

0
@

mn−1M
i=1

λiPmn−1
j=1 λj

pizn,

mnM
i=1

λiPmn
j=1 λj

pizn

1
A

≤
λkn+1Pkn+1
j=1 λj

d

0
@

knM
i=1

λiPkn
j=1 λj

pizn, pkn+1zn

1
A+ · · ·+

λmnPmn
j=1 λj

d

0
@

mn−1M
i=1

λiPmn−1
j=1 λj

pizn, pmn zn

1
A

≤ K

mnX
i=kn+1

λi

1− λ′i
< 2K

mnX
i=kn+1

λi < 2Kλ
′
kn+1 < 2Kεn,

where K = supn∈N

{
supl∈N

{
d

(⊕l
i=1

λiPl
j=1 λj

pizn, pl+1zn

)}}
< ∞.

Thus
d(u′n, pzn) ≤ εn(2K + 2).

The result now follows from Theorem 3.1. �

As corollaries, with the same lines of proofs, the corresponding results hold for
a finite family {ti : i = 1, 2, ..., N} of mappings.

Applications

Let X be a complete CAT(0) space. For a function h : X −→ (−∞,∞], the
α−sublevel set is defined by

Aα
h = {x ∈ X : h(x) ≤ α}.

Let {hi : i ∈ N} be a family of lower semi-continuous and convex functions from X
into (−∞,∞]. Bačák, Searston and Sims [2] introduced the method for approxi-
mating a minimizer of the functional H : X −→ (−∞,∞], where H = supi∈N hi as
the following:

Proposition 3.4. [2, Proposition 5.2] Let X be a complete CAT(0) space and a
mapping F : X −→ (−∞,∞] be of the form F = max{f, g}, where f, g : X −→
(−∞,∞] are lower semi-continuous and convex functions. Let α > infx∈X F (x) >
−∞, and Aα

F be nonempty. Assume that f is both uniformly convex and uniformly
continuous on bounded sets of X. Let x0 ∈ X be a starting point and {xn} ⊂ X be
the sequence generated by

x2n−1 = Pf (x2n−1), x2n = Pg(x2n−1), n ∈ N,

where Pf and Pg are projection mappings from X to Aα
f and Aα

g respectively. Then
{xn} converges to z ∈ Aα

F .

We now show Propositions providing the strong convergence of the sequence
{zn} to an (approximative) minimizer of the functional H.

Proposition 3.5. Let X be a complete CAT(0) space and a mapping H : X −→
(−∞,∞] be of the form H = supi∈N hi, where hi : X −→ (−∞,∞] are lower semi-
continuous and convex functions for all i ∈ N. Let α > infx∈X H(x) > −∞. Let {λn}
be a sequence in (0, 1) such that

∑∞
n=1 λn = 1,

∑∞
i=n λ′i −→ 0 as n −→ ∞ where

λ′i =
∑∞

j=i+1 λj . Let {εn} and {αn} be sequences in (0, 1) satisfying
∑∞

n=1 εn < ∞,
(C1), (C2) and (C3) respectively. Let u, z1 ∈ X are arbitrarily chosen and set

rn = sup
i∈N

{dist(zn, Aα
hi

)}, βn ∈
(

0,
1
2

√
4r2

n + 4ε2
n − rn

)
,

zn+1 = αnu⊕ (1− αn)un,
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where

un =
∞⊕

i=1

λiu
i
n, ui

n ∈ Aα
hi
∩B(zn : dist(zn, Aα

fi
) + β2

n)

for all n ∈ N. Then the sequence {zn} converges to the unique point of Aα
H which is

nearest to u.

Proof. Since hi : X −→ (−∞,∞] are lower semi-continuous and convex functions,
Aα

hi
is closed and convex for all i ∈ N. The result then follows from Theorem 3.2. �

Proposition 3.6. Let X be a complete CAT(0) space and a mapping H : X −→
(−∞,∞] be of the form H = supi∈N hi, where hi : X −→ (−∞,∞] are lower semi-
continuous and convex functions for all i ∈ N. Let α > infx∈X H(x) > −∞. Let {λn}
be a sequence in (0, 1) such that

∑∞
n=1 λn = 1,

∑∞
i=n λ′i −→ 0 as n −→ ∞ where

λ′i =
∑∞

j=i+1 λj . Let {εn} be a sequence in (0, 1
2 ) and {αn} be a sequence in (0, 1)

satisfying
∑∞

n=1 εn < ∞, (C1), (C2) and (C3) respectively. Let u, z1 ∈ C be arbitrarily
chosen. For each n ∈ N, choose kn ∈ N such that λ′i < εn for all i ≥ kn and set

rn = sup
i∈N

{dist(zn, Aα
hi

)}, βn ∈
(

0,
1
2

√
4r2

n + 4ε2
n − rn

)
,

zn+1 = αnu⊕ (1− αn)u′n,

where

u′n =
kn⊕
i=1

λi∑kn

j=1 λj

ui
n, ui

n ∈ Aα
hi
∩B(zn : dist(zn, Aα

hi
) + β2

n).

If {zn} is bounded, then the sequence {zn} converges to the unique point of Aα
H which

is nearest to u.

Proof. Here we apply Theorem 3.3. �
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