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ABSTRACT. In this paper we develope the weak contraction mapping principle in the context
of partial metric spaces which are generalizations of metric spaces meant for the study of
denotational semantics of programming languages. We consider certain control conditions
for this purpose and accomplish the task in partial metric spaces. Additionally, a partial
order is defined on this space. An illustrative example is given. The method we use in this
paper is a combination of analytic and order theoretic methodologies.
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1. INTRODUCTION

Fixed points play an important role in computer science especially for justifica-
tions of induction and recursive definitions. In 1994 Matthews [23, 24] introduced
the conception of partial metric spaces as generalizations of metric spaces where
self distance may be non-zero. The motivation for such a generalization comes
from the study of denotational semantics of programming languages in computer
science [38] where it was felt that a metric approach to this study is not possible
unless the definition of the metric is suitably modified. Our interest is to prove
fixed point results in this space. Fixed points have important roles to play in com-
puter science, especially in semantics [37]. The study of fixed points in partial
metric spaces was initiated in [23] where Matthews established a contraction map-
ping theorem in partial metric spaces. Other fixed point results followed this work.
Some instances of these works are in [1, 4-6, 21, 22, 31, 33, 35, 40].
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In metric spaces we find a lot of efforts to generalize the Banachs contraction
mapping principle as, for instances, in [7, 9, 25, 39]. Particularly, Alber and
Guerre-Delabriere in [3] introduced the concept of weak contraction in Hilbert
spaces. Rhoades in [34] has shown that the result which Alber et al. proved
in [3] is also valid in complete metric spaces. A weak contraction is intermediate to
contraction mapping and a nonexpansive mapping. The weak contraction principle
established by Rhoades in metric spaces as mentioned above has been generalized
in a number of ways. Dutta and Choudhury [15] has proved a generalization
employing a method different from that used by Rhoades. Another approach of
generalisation was initiated by Eslamian and Abkar [17] and was further adopted
by Choudhury and Kundu [14].
A separate methodology was applied to this problem by Popescu [32] and proved
that some of the control conditions used by Doric [16] are not required. There
are several other fixed point results of weakly contractive mappings and their gen-
eralizations. Some instances of these works are noted in [10, 12-13, 16, 28, 29, 41].

In recent years fixed point theory has experienced a rapid development in par-
tially ordered metric spaces. References [2, 8, 11, 19, 27, 30] are some instances
of these works. Particularly, Harjani et. al have established a generalized weak
contraction principle in partially ordered metric spaces [20].

The purpose of this paper is to weaken the contractive conditions in partial met-
ric spaces having a partial ordering defined on them. We have shown that the
weak contractions necessarily have fixed points in partially ordered partial metric
spaces. using the notion of weak control conditions two fixed point theorems in
ordered partial metric spaces in view of Popescu [32] conditions has been proved.
Here our effort is to show that a parallel development is also possible in partial
metric spaces with a partial order. Our approach is a blending of analytic and
order theoretic methods. We have given an illustrative examples.

The following are some essential concepts for our discussion in this paper.

Definition 1.1. [23] Let X be a nonempty set and let p : X ×X →R+ be such that
the following are satisfied, for all x, y, z ∈ X

(P1) x = y ⇐⇒ p(x, x) = p(y, y) = p(x, y)
(P2) p(x, x) ≤ p(x, y)
(P3) p(x, y) = p(y, x)
(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Then the pair (X, p) is called a partial metric space and p is called a partial
metric on X.
It is clear that, if p(x, y) = 0, then from (p1) and (p2) x = y. But if x = y, p(x, y)
may not be 0. If p be a partial metric on X, then the function dp : X × X → R+

defined as

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) (1.1)

satisfies the conditions of an usual metric on X [23]. Each partial metric p on X
generates a T0 topology τp on X, whose base is a family of open p−balls {Bp(x, ε) :
x ∈ X, ε > 0} where Bp(x, ε) = {y ∈ X : p(x, y) ≤ p(x, x) + ε} for all x ∈ X and
ε > 0 [23].
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The concepts of convergence, Cauchy sequence, completeness and continuity in
partial metric space is given in the following definition.

Definition 1.2. [23] Let (X, p) be a partial metric space.

(1) A sequence {xn} in the partial metric space (X, p) converges to the limit x if
and only if p(x, x) = lim

n→∞
p(x, xn).

(2) A sequence {xn} in the partial metric space (X, p) is called a Cauchy se-
quence if lim

m,n→∞
p(xm, xn) exists and is finite.

(3) A partial metric space (X, p) is called complete if every Cauchy sequence {xn}
in X converges with respect to τp to a point x ∈ X such that
p(x, x) = lim

m,n→∞
p(xm, xn).

(4) A mapping f : X → X is said to be continuous at x0 ∈ X if for every ε > 0,
there exists δ > 0 such that f(Bp(x0, δ)) ⊆ Bp(fx0, ε).

The following implication follows from the above definition.
If a function f : X → X where (X, p) is a partial metric space is continuous

then fxn → fx whenever xn → x as n→∞.

Lemma 1.3. [23] Let (X, p) be a partial metric space.

(1) A sequence {xn} is a Cauchy sequence in the partial metric space (X, p) if and
only if it is a Cauchy sequence in the metric space (X, dp).

(2) A partial metric space (X, p) is complete if and only if the metric space (X, dp)
is complete. Moreover, lim

n→∞
dp(x, xn) = 0 if and only if p(x, x) = lim

n→∞
p(x, xn) =

lim
m,n→∞

p(xm, xn).

Definition 1.4. A function f : R → R is said to be monotone non-decreasing (or
monotone increasing) if x ≥ y implies f(x) ≥ f(y).

The following are examples of a partial metric spaces.

Example 1.5. [22] Let X =[0,1] and p : X × X →R+ be defined as p(x, y) =
max{x, y}. Then, (X, p) is a partial metric space and it is also complete.

We construct the following example of a partial metric spaces.

Example 1.6. Let X = {0, 1, 2, 3, 4, .....}. We define p : X ×X →R+ as

p(x, y) =
{

x+ y + 2, if x 6= y,
1, if x = y.

Then p is a partial metric on X.
The properties (P1), (P2) and (P3) are directly verified by inspection. We prove

(P4) in the following. Let a, b, c ∈ X. If a 6= c then
i) p(a, c) = a + c + 2 < a + b + 2 + b + c + 2 − 1 = p(a, b) + p(b, c) − p(b, b) (if

b 6= a and b 6= c).

ii) p(a, c) = a + c + 2 < 1 + a + c + 2 = p(a, b) + p(b, c) − p(b, b) (if b = a and
b 6= c).



150 B.S.CHOUDHURY, A KUNDU /JNAO : VOL. 4, NO. 1, (2013), 147-158

If a = c then p(a, c) = 1 ≤ p(a, b) + p(b, c)− 1 = p(a, b) + p(b, c)− p(b, b).
Thus (P4) is satisfied.

In view of (1.1) the function dp : X ×X → R+ defined as

dp(x, y) =
{

2x+ 2y + 2, if x 6= y,
0, if x = y.

It is a metric on X.

2. MAIN RESULTS

Theorem 2.1. Let (X,�) be a partially ordered set and let there be a partial metric
p on X such that (X, p) is a complete partial metric space. Let f : X → X be a
continuous and non-decreasing mapping such that

ψ(p(fx, fy)) ≤ ψ(M(x, y))− β(M(x, y)) whenever x, y ∈ X and x � y, (2.1)

with

M(x, y) = max{p(x, y), p(Tx, x), p(y, Ty), 1
2
[p(y, Tx) + p(x, Ty)]} (2.2)

where
i) ψ : [0,∞)→ [0,∞) is a monotone non-decreasing function such that ψ(t) = 0 if

and only if t = 0,
ii) β : [0,∞)→ [0,∞) is a function satisfying β(0) = 0, lim inf

n→∞
β(an) > 0 whenever

lim
n→∞

an = a > 0,

iii) β(t) > ψ(t)− ψ(t−) for all t > 0, where ψ(t−) is the left limit of ψ at t.
If there exists x0 ∈ X such that x0 � fx0, then f has a fixed point.

Proof. Starting with x0 ∈ X, and following the same steps as in theorem 2.1, we
obtain a sequence {xn} in X defined as

fxn = xn+1 for all n ≥ 0, (2.3)

for which

x0 � fx0 = x1 � fx1 = x2 � fx2 � ........ � fxn−1 = xn � fxn = xn+1 � .....
(2.4)

If xn = xn+1, then f has a fixed point. Therefore we assume that

xn 6= xn+1, for all n ≥ 0.

Then it follows from the definition of p that

p(xn, xn+1) 6= 0 for all n ≥ 0. (2.5)

Let, if possible, for some n

p(xn−1, xn) < p(xn, xn+1). (2.6)

By triangular inequality of partial metric space,
1
2
(p(xn−1, xn+1) + p(xn, xn)) ≤ 1

2
(p(xn−1, xn) + p(xn, xn+1))

≤ max{p(xn−1, xn), p(xn, xn+1)}

Now,

M(xn−1, xn) = max{p(xn−1, xn), p(xn−1, xn), p(xn, xn+1),
1
2
[p(xn, xn) + p(xn−1, xn+1)]}

= p(xn, xn+1) [by ( 2.6)]
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Substituting x = xn−1 and y = xn in (2.1), using (2.2), (2.3), (2.4) and the
monotone property of ψ, for all n ≥ 0, we have

ψ(p(xn, xn+1)) = ψ(p(fxn−1, fxn))

≤ ψ(M(xn−1, xn))− β(M(xn−1, xn))

. ≤ ψ(p(xn, xn+1))− β(p(xn, xn+1)) (2.7)

A consequence of the properties of β given in condition (ii) of the theorem is that
β(a) > 0 for a > 0. Then from (2.5), β(p(xn, xn+1)) > 0. With this, (2.7) leads to a
contradiction. Therefore, for all n ≥ 1,

p(xn, xn+1) ≤ p(xn−1, xn).

Thus the sequence {p(xn, xn+1)} is a monotone decreasing sequence of non-negative
real numbers and consequently there exists r ≥ 0 such that

lim
n→∞

p(xn, xn+1) = r. (2.8)

Suppose that r > 0. If there exists n such that p(xn, xn+1) = r, then, by (2.7) we
have ψ(r) ≤ ψ(r)−β(r). Since β(r) > 0, this is a contradiction. So p(xn, xn+1) >
r, for all n ≥ 0. Then taking limit infimum as n → ∞ in (2.7), using (2.8) and the
fact that {p(xn, xn+1)} is monotone decreasing, we have

ψ(r+) ≤ ψ(r+)− lim
n→∞

inf β(p(xn, xn+1)).

By virtue of condition (ii), lim
n→∞

inf β(p(xn, xn+1)) > 0. So the above inequality leads
to a contradiction. Hence

lim
n→∞

p(xn, xn+1) = 0. (2.9)

It follows by (P1) and (P2) of definition 1.1 that

lim
n→∞

p(xn, xn) = 0. (2.10)

Since from (1.1), dp(x, y) ≤ 2p(x, y) for all x, y ∈ X, for all n ≥ 0, from (2.9) it
follows that

lim
n→∞

dp(xn, xn+1) = 0. (2.11)

Next we show that {xn} is a Cauchy sequence in (X, dp). If not, then there exists
some ε > 0 for which we can find two subsequences {xm(k)} and {xn(k)} of {xn}
such that, for all k ≥ 0,

n(k) > m(k) > k,

dp(xm(k), xn(k)) ≥ ε (2.12)
and

dp(xm(k), xn(k)−1) < ε. (2.13)
Now, for all k ≥ 0, we have

ε ≤ dp(xm(k), xn(k)) ≤ dp(xm(k), xn(k)−1) + dp(xn(k)−1, xn(k))

< ε+ dp(xn(k)−1, xn(k)) (by(2.13)).
Taking k →∞ in the above inequality, using (2.11), we obtain

lim
k→∞

dp(xm(k), xn(k)) = ε. (2.14)

Also, for all k ≥ 0, we have
dp(xm(k)−1, xn(k)−1) ≤ dp(xm(k)−1, xm(k)) + dp(xm(k), xn(k)) + dp(xn(k), xn(k)−1)
and dp(xm(k), xn(k)) ≤ dp(xm(k), xm(k)−1)+dp(xm(k)−1, xn(k)−1)+dp(xn(k)−1, xn(k)).
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Taking limit as k →∞ in the above two inequalities, using (2.11) and (2.14) we
obtain

lim
k→∞

dp(xm(k)−1, xn(k)−1) = ε. (2.15)

For k=1,2,3...

dp(xn(k)−1, xm(k)) ≤ dp(xn(k)−1, xn(k)) + dp(xn(k), xm(k)) (2.16)

and
dp(xn(k), xm(k)) ≤ dp(xn(k), xn(k)−1) + dp(xn(k)−1, xm(k)). (2.17)

Making k → ∞ in (2.16) and (2.17) respectively, and using (2.14) and (2.11) we
have

lim
k→∞

dp(xn(k)−1, xm(k)) = ε. (2.18)

Again for k=1,2,3...

dp(xn(k), xm(k)−1) ≤ dp(xn(k), xm(k)) + dp(xm(k), xm(k)−1)

and dp(xn(k), xm(k)) ≤ dp(xn(k), xm(k)−1) + dp(xm(k)−1, xm(k)).
Making k →∞ in the above two inequalities and using (2.14) and (2.11) we obtain

lim
k→∞

dp(xn(k), xm(k)−1) = ε. (2.19)

Since for all x, y ∈ X, dp(x, y) ≤ 2p(x, y)− p(x, x)− p(y, y) by using, (2.14), (2.15),
(2.18) and (2.19) we get

lim
k→∞

p(xm(k), xn(k)) =
ε

2
, (2.20)

lim
k→∞

p(xn(k)+1, xm(k)) =
ε

2
, (2.21)

lim
k→∞

p(xm(k)−1, xn(k)+1) =
ε

2
(2.22)

and
lim

k→∞
p(xn(k), xm(k)−1) =

ε

2
. (2.23)

Next we show that for sufficiently large k, p(xm(k), xn(k)) ≤
ε

2
.

If not, then there exists a subsequence {k(i)} of N such that for all i > 0,
ε

2
< p(xm(k(i)), xn(k(i)))). (2.24)

In view of (2.4), substituting x = xm(k(i))−1 and y = xn(k(i))−1 in (2.1), for all i > 0,
we have

ψ(p(xm(k(i)), xn(k(i))))
= ψ(p(fxm(k(i))−1, fxn(k(i))−1))
≤ ψ(M(xm(k(i))−1, xn(k(i))−1))− β(M(xm(k(i))−1, xn(k(i))−1)). (2.25)

M(xm(k(i))−1, xn(k(i))−1)
= max{p(xm(k(i))−1, xn(k(i))−1), p(xm(k(i))−1, xm(k(i))), p(xn(k(i))−1, xn(k(i))),

1
2 (p(xm(k(i))−1, xn(k(i))) + p(xn(k(i))−1, xm(k(i))))}

Taking limit as i → ∞ in (2.25), using (2.20)- (2.23) in the above inequality,
taking into account the inequality (2.24) and the monotone property of ψ, we obtain

ψ(
ε

2

+
) ≤ ψ(

ε

2

+
)− lim inf

i→∞
β(M(xm(k(i))−1, xn(k(i))−1)).

But by a property of β, the last inequality implies that

lim inf
i→∞

β(M(xm(k(i))−1, xn(k(i))−1)) > 0.
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Then the above inequality gives a contradiction. Thus for sufficiently large k,

p(xm(k), xn(k)) ≤
ε

2
. (2.26)

Again from (1.1) we have

dp(xm(k), xn(k)) = 2p(xm(k), xn(k))− p(xm(k), xm(k))− p(xn(k), xn(k)).

Taking k → ∞ and using (2.14) and (2.10), we have p(xm(k), xn(k)) ≥
ε

2
. Then the

above observation along with (2.26) implies that, there exists a positive integer k1

such that for all k ≥ k1,
p(xm(k), xn(k)) =

ε

2
. (2.27)

Substituting x = xm(k) and y = yn(k) in (2.1), (2.2), using (2.3), (2.4), we obtain

ψ(p(xm(k)+1, xn(k)+1)) = ψ(p(fxm(k), fxn(k)))
≤ ψ(M(xm(k), xn(k)))− β(M(xm(k), xn(k))) (2.28)

where,

M(xm(k), xn(k)) = max{p(xm(k), xn(k)), p(xm(k), xm(k)+1), p(xn(k), xn(k)+1),
1
2
(p(xm(k), xn(k)+1) + p(xm(k)+1, xn(k)))} (2.29)

Then, for all k ≥ k1, M(xm(k), xn(k)) =
ε

2
and (2.28) becomes

ψ(p(xm(k)+1, xn(k)+1)) ≤ ψ(
ε

2
)− β(

ε

2
) < ψ(

ε

2
). (2.30)

Thus, by (2.30), using the monotone property of ψ, for all k ≥ k1, we have

p(xm(k)+1, xn(k)+1) <
ε

2
. (2.31)

Taking the limit as k → ∞ in (2.28), using (2.29) and (2.31), we obtain ψ(
ε

2

−
) ≤

ψ(
ε

2
)− β(

ε

2
), which contradicts condition (iii).

Therefore the sequence {xn} is a Cauchy sequence in (X, dp). Since (X, p) is
complete, by lemma 1.3, (X, dp) is complete and consequently the sequence {xn}
is convergent to z in X, that is,

lim
n→∞

xn = z. (2.32)

Thus, by lemma 1.3,

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm). (2.33)

Again by (1.1), for all m,n ≥ 0

dp(xn, xm) = 2p(xn, xm)− p(xn, xn)− p(xm, xm).
Taking limit m,n→∞, using (2.10) and the fact that {xn} is a Cauchy sequence
in (X, dp), we have

lim
n,m→∞

p(xn, xm) = 0.

Then, from (2.33), it follows that

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm) = 0. (2.34)

Next we prove that fz = z. Suppose that

p(z, fz) > 0. (2.35)
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By virtue of (2.32), the continuity of f implies that fxn → fz as n → ∞. Then,
by lemma 1.3, we have

p(fz, fz) = lim
n→∞

p(fxn, fz) = lim
n→∞

p(xn+1, fz). (2.36)

Now,

p(z, fz) ≤ p(z, xn+1) + p(xn+1, fz)− p(xn+1, xn+1)
≤ p(z, xn+1) + p(xn+1, fz).

Taking n→∞ in the above inequality, using (2.32), (2.34) and (2.36), we obtain

p(z, fz) ≤ lim
n→∞

p(z, xn+1) + lim
n→∞

p(xn+1, fz)

= p(fz, fz).

M(z, z) = max{p(z, z), p(z, fz), p(z, fz), 1
2 (p(z, fz) + p(z, fz))} = p(z, fz) [by

(2.34)]
Using the last inequality and the monotone property of ψ, from (2.36) we obtain,

ψ(p(z, fz)) ≤ ψ(p(fz, fz)) ≤ ψ(M(z, z))− β(M(z, z)) (by (2.1) and (2.4)).
≤ ψ(p(z, fz))− β(p(z, fz)) (2.37)

In view of (i), (ii) and (2.35) we obtain p(z, fz) = 0. Then from (P1) and (P2) of the
definition 1.1, it follows that z = fz. �

Our next theorem is obtained by replacing the continuity of f by an ordered
theoretic condition.

Theorem 2.2. Let (X,�) be a partially ordered set and suppose that there exists a
partial metric p on X such that (X, p) is a complete partial metric space. We assume
that if any nondecreasing sequence {xn} in X converges to z, then

xn � z for all n ≥ 0. (2.38)

Let f : X → X be a non-decreasing mapping such that

ψ(p(fx, fy)) ≤ ψ(M(x, y))− β(M(x, y)) for all x, y ∈ X and x ≺ y (x 6= y),
(2.39)

where ψ and β satisfies all the condition of theorem 2.3. If there exists x0 ∈ X such
that x0 � fx0, then f has a fixed point.

Proof. Following the steps identically as in the proof of the theorem 2.1 we obtain
(2.32) and (2.34). In view of (2.4) we claim that {xn} is a non-decreasing sequence
converges to z in (X, p) such that for all n ≥ 1, xn � z. If xn = z, for some n,
then, from (2.29) and (2.54), it follows that xn = xn+1, in which case we have a
fixed point. So we assume that xn 6= z for all n ≥ 0. From (2.34) it is observed that
p(z, z) = 0. Suppose ε = p(z, fz) > 0.

Thus for each k0 there exists k0 ∈ N such that for n ≥ k0,

p(xn+1, z) <
ε

2
, p(xn, z) <

ε

2
and in view of (2.9) p(xn+1, xn) <

ε

2
.

p(z, fz) ≤ p(z, xn+1) + p(xn+1, fz)− p(xn+1, xn+1)
≤ p(z, xn+1) + p(fxn, fz)

Taking n→∞, and using (2.34), we have

p(z, fz) ≤ lim
n→∞

p(fxn, fz) (2.40)



FIXED POINT THEOREMS IN ORDERED PARTIAL METRIC SPACES 155

Since xn � z , putting x = xn and y = z in (2.39), using (2.40), and the property of
ψ, we get

ψ(p(z, fz)) ≤ lim
n→∞

ψ(p(fxn, fz))

≤ lim
n→∞

ψ(M(xn, z))− lim
n→∞

β(M(xn, z)) (2.41)

where

ε = p(z, fz) ≤M(xn, z)

= max{p(xn, z), p(z, fz), p(fxn, xn),
1
2
(p(xn, fz) + p(z, fxn))}

= max{p(xn, z), p(xn+1, xn), p(fz, z),
1
2
(p(xn, z) + p(z, fz) + p(z, xn+1))}

≤ max{ε
2
,
ε

2
, ε, ε} = ε.

Then by (2.41),
ψ(ε−) ≤ ψ(ε)− β(ε) (2.42)

In view of the properties of (i)-(iii) we arrive at a contradiction, unless p(fz, z) = 0.
Since p(z, z) = 0 and p(z, fz) = 0, from (P1) and (P2) of definition 1.1, it follows
that z = fz. �

Remark 2.3. Under the assumption when partial metric is a metric we have the
result of Popescu [32].

Example 2.4. Let X = [0, 1]∪{2, 3, 4, ...}. p(x, y) = max{x, y} for x, y ∈ X. We
define a partial order as follows

1) 0 � x for all x ∈ [0, 1] and 0 � 2, 1 � 3.

2) for all x, y ∈ {2, 3, 4, ...} x � y iff x ≤ y and (y − x) is divisible by 2.

That is we have the following two chains 0 ≤ 2 ≤ 4... and 0 ≤ 1 ≤ 3... Then
“ � ” satisfies all the conditions of a partially ordered set.

Also, (X, p) is a complete partial metric space.
Let ψ : [0,∞)→ [0,∞) be defined as:

ψ(t) =
{
t if 0 ≤ t ≤ 1
t2, if t > 1.

and

β : [0,∞)→ [0,∞) be defined as:

β(t) =
{

t2

2 if 0 ≤ t ≤ 1
2t− 1, if t > 1.

Let f : X → X be defined as:

ψ(t) =
{
x− x2

2 if 0 ≤ x ≤ 1
x− 1, if x ∈ {2, 3, 4, ...}.

without loss of generality, we assume that x > y.
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p(x, y) = max{x, y} = x, p(x, fx) = max{x, fx} = x,
p(y, fy) = max{y, fy} = y.

p(y, fx) =
{

max{y, x− x2

2 }, if 0 ≤ x ≤ 1
max{y, x− 1}, if x ∈ {2, 3, 4, ...}.

or

p(x, fy) =
{

max{x, y − y2

2 } = x, if 0 ≤ y ≤ 1
max{x, y − 1} = x, if y ∈ {2, 3, 4, ...}.

Then

M(x, y) = max{p(x, y), p(fx, x), p(y, fy), 1
2 (p(y, fx) + p(x, fy))} = x

Therefore, we discuss the following cases.

Case-1: x, y ∈ [0, 1]. Then

ψ(p(fx, fy)) = ψ
(
max

(
x− x2

2 , y −
y2

2

))
= ψ

(
x− x2

2

)
[since x+ y < 2]

= x− x2

2

= ψ (M (x, y))− β (M (x, y)) .

Case-2: x ∈ {3, 4, ...} and y ∈ [0, 1]. Then

ψ(p(fx, fy)) = ψ
(
max

(
x− 1, y − y2

2

))
= ψ (x− 1)

= (x− 1)2 = x2 − 2x+ 1

= ψ (M (x, y))− β (M (x, y)) .

Case-3: x = 2 and y ∈ [0, 1] , fx = 1. Then

ψ(p(fx, fy)) = ψ
(
max

(
1, y − y2

2

))
= ψ (1) =1

= ψ (2)− β (2)

= ψ (M (x, y))− β (M (x, y)) .

Hence the required conditions of theorem 2.1 are satisfied and it is seen that “0”
is the fixed point of f in X.
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21. D. Ilić, V. Pavlović , V. Rakočević, Some new extensions of Banach’s contraction
principle to partial metric space, Appl. Math. Lett., 24 (2011) pp. 1326–1330.

22. E. Karapınar, I.M. Erhan, Fixed point theorems for operators on partial metric
spaces, Appl. Math. Lett., 24 (2011) pp. 1894-1899.



158 B.S.CHOUDHURY, A KUNDU /JNAO : VOL. 4, NO. 1, (2013), 147-158

23. S. G. Matthews, Partial metric topology, in Proceedings of the 8th Summer
Conference on General Topology and Applications (Flushing, NY, 1992), vol.
728 of Annals of the New York Academy of Sciences, pp. 183–197, The New
York Academy of Sciences, New York, NY, USA, 1994.

24. S. G. Matthews, Partial Metric spaces, 8th British Colloquium for Theoreti-
cal Computer Science, 1992, Research report 212, Dept. of computer Science,
University of Warwick.

25. J. Merryfield, B. Rothschild, and J. D. Stein Jr., An application of Ramsey’s
theorem to the Banach contraction principle, Proc. Amer. Math. Soc., 130 (2002)
pp. 927-933.

26. Z.Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear
Conv. Anal., 7 (2006) pp. 289-297.

27. J.J. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems in partially or-
dered sets and applications to ordinary differential equations, Order, 22 (2005)
pp. 223-239.

28. H. K. Nashine, I. Altun, Fixed point theorems for generalized weakly contractive
condition in ordered metric spaces, Fixed point Theory Appl., 2011 (2011) Article
ID 132367, 20 pages.

29. H. K. Nashine, B. Samet, Fixed point results for mappings satisfying (ψ, φ)-
weakly contractive condition in partially ordered metric spaces, Nonlinear Anal.,
74 (2011) pp. 2201-2209.

30. H. K. Nashine, B. Samet and C. Vetro, Monotone generalized nonlinear con-
tractions and fixed point theorems in ordered metric spaces, Math. Comput.
Modelling, (2011), doi:10.1016/j.mcm.2011.03.014.

31. S. Oltra, O. Valero, Banach’s fixed point theorem for partial metric spaces,
Rend. Istid. Math. Univ. Trieste, 36 (2004) pp. 17-26.

32. O. Popescu, Fixed points for (ψ, φ)- weak contractions, Appl. Math. Lett., 24
(2011) 1-4.

33. A.I.Rus, Fixed point theory in partial metric spaces, Anale Uninerstatti de Vest,
Timisoara Seria Matematica- Informatica XLVI (2) (2008) pp. 149-160.

35. B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal.
TMA, 47 (4) (200l) pp. 2683-2693.

35. S. Romaguera, Fixed point theorems for generelized contractions on partial
metric spaces, Topology and its Applications, doi 10.1016/j.topol. 2011.08.026.

36. B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier, North-
Holland, 1983.

37. K. Slonneger, B. L. Kurtz, Formal Syntax and Semantics of Programming Lan-
guages, Addison-Wesley Publishing Company, 1995.

38. J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory, MIT Press, Cambridge, Mass., 1977.

39. T. Suzuki, A generalized Banach contraction principle that characterizes metric
completeness, Proc. Amer. Math. Soc. 136 (5) (2008) pp. 1861-1869.

40. O. Valero, On Banach fixed point theorems for partial metric spaces, Appl.
General Topology, 6(2) (2005) pp. 229-240.

41. Q. Zhang, Y. Song, Fixed point theory for generalized φ−weak contractions,
Appl. Math. Lett., 22 (1) (2009), pp. 75-78.


	1.  INTRODUCTION 
	2. MAIN RESULTS
	References

