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ABSTRACT. In this paper, we consider a new system of generalized implicit nonconvex
variational inequality problems in the setting of two different Hilbert spaces. Using projection
method, we establish the equivalence between the system of generalized implicit nonconvex
variational inequality problems and a system of nonconvex variational inequality inclusions.
Using this equivalence formulation, we suggest an iterative algorithm and show that the
sequences generated by this iterative algorithm converge strongly to a solution of the system
of generalized implicit nonconvex variational inequality problems. The results presented in
this paper can be viewed as an improvement and refinement of previously known results for
nonconvex (convex) variational inequality problems.
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1. INTRODUCTION

In 1985, Pang [1] showed that a variety of equilibrium models, for example,
the traffic equilibrium problem, the spatial equilibrium problem, the Nash equi-
librium problem and the general equilibrium programming problem can be uni-
formly modelled as a variational inequality defined on the product sets. He decom-
posed the original variational inequality into a system of variational inequalities
and discussed the convergence of method of decomposition for system of varia-
tional inequalities. Later, it was noticed that variational inequality over product
sets and the system of variational inequalities both are equivalent, see for appli-
cations [1, 2, 3, 4]. Since then many authors, see for example [3, 4, 5, 6, 7, 8]
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studied the existence theory of various classes of system of variational inequalities
by exploiting fixed-point theorems and minimax theorems. Recently, a number of
iterative algorithms based on projection method and its variant forms have been
developed for solving various systems of variational inequalities, see for instance
[9, 10, 11, 12].

It is well known that the projection method and its variant forms based on
projection operator over convex set are important tools for studying of existence
and iterative approximation of solutions of various classes (systems) of variational
inequality problems in the convexity settings, but these may not be applicable in
general, when the sets are nonconvex. To overcome the difficulties that rise from
the nonconvexity of underlying sets, the properties of projection operators over
uniformly prox-regular sets are used.

In recent years, Bounkhel et al. [13], Moudafi [14], Wen [15], Kazmi et al. [16],
Noor [17, 18, 19], and the relevant references cited therein], Alimohammady et al.
[20], Balooee et al. [21] suggested and analyzed iterative algorithms for solving
some classes (systems) of nonconvex variational inequality problems in the setting
of uniformly prox-regular sets.

On the other hand, to the best of our knowledge, the study of iterative algorithms
for solving the systems of variational inequality problems considered in [9, 11] in
nonconvex setting has not been done so far.

Motivated and inspired by research going on in this area, we introduce a system
of generalized implicit nonconvex variational inequality problems (in short, SGIN-
VIP) defined on the uniformly prox-regular sets in different two Hilbert spaces.
SGINVIP is different from those considered in [13, 14, 15, 16, 17, 18, 19, 20, 21]
and includes the new and known systems of nonconvex (convex) variational in-
equality problems as special cases. Using the properties of projection operator
over uniformly prox-regular sets, we suggest an iterative algorithm for finding the
approximate solution of SGINVIP. Further, we prove that SGINVIP has a solution
and the approximate solution obtained by iterative algorithm converges strongly
to the solution of SGINVIP. The method presented in this paper extend, unify and
improves the methods presented in [13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

2. PRELIMINARIES

Let H be a real Hilbert space whose norm and inner product are denoted by
‖ · ‖ and 〈·, ·〉, respectively. Let K be a nonempty closed set in H, not necessarily
convex.

First, we recall the following well-known concepts from nonlinear convex analy-
sis and nonsmooth analysis, see [23, 24, 25, 26].

Definition 2.1. The proximal normal cone of K at u ∈ K is given by

NP
K(u) := {ξ ∈ H : u ∈ PK(u + αξ)},

where α > 0 is a constant and PK is projection operator of H onto K, that is,

PK(u) = {u∗ ∈ K : dK(u) = ‖u− u∗‖},
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where dK(u) is the usual distance function to the subset K, that is,

dK(u) = inf
v∈K

‖v − u‖.

The proximal normal cone NP
K(u) has the following characterization.

Lemma 2.1. Let K be a nonempty closed subset of H. Then ξ ∈ NP
K(u) if and only

if there exists a constant α > 0 such that

〈ξ, v − u〉 ≤ α‖v − u‖2, ∀v ∈ K.

Definition 2.2. The Clarke normal cone, denoted by NC
K(u), is defined as

NC
K(u) = c̄o[NP

K(u)],

where c̄oA means the closure of the convex hull of A.

Poliquin et al. [24] and Clarke et al. [25] have introduced and studied a class
of nonconvex sets, which are called uniformly prox-regular sets. This class of
uniformly prox-regular sets has played an important role in many nonconvex ap-
plications such as optimization, dynamic systems and differential inclusions. In
particular, we have

Definition 2.3. For a given r ∈ (0,∞], a subset K of H is said to be normalized
uniformly r-prox-regular if and only if every nonzero proximal normal to K can be
realized by any r-ball, that is, ∀u ∈ K and 0 6= ξ ∈ NP

K(u) with ‖ξ‖ = 1, one has

〈ξ, v − u〉 ≤ 1
2r

‖v − u‖2, ∀v ∈ K.

It is clear that the class of normalized uniformly prox-regular sets is sufficiently
large to include the class of convex sets, p-convex sets, C1,1 submanifolds (possibly
with boundary) of H, the images under a C1,1 diffeomorphism of convex sets and
many other nonconvex sets, see [23, 25]. It is clear that if r = ∞, then uniformly
r-prox-regularity of K reduces to its convexity.

It is known that if K is a uniformly r-prox-regular set, the proximal normal cone
NP

K(u) is closed as a set-valued mapping. Thus, we have NC
K(u) = NP

K(u).

Now, let us state the following proposition which summarizes some important
consequences of the uniformly prox-regularities:

Proposition 2.1. Let r > 0 and let Kr be a nonempty closed and uniformly r-prox-
regular subset of H. Set Ur = {x ∈ H : d(x,Kr) < r}.

(i) For all x ∈ Ur, PKr (x) 6= ∅;
(ii) For all r′ ∈ (0, r), PKr

is Lipschitz continuous with constant
r

r − r′
on

Ur′ = {x ∈ H : d(x,Kr) < r′}.

3. System of generalized implicit nonconvex variational inequality
problems

Throughout the rest part of the paper, we assume that, for each i ∈ {1, 2}, Hi is
a real Hilbert space whose norm and inner product are denoted by ‖ · ‖i and 〈·, ·〉i,
respectively, and Ki,ri is uniformly ri-prox-regular subset of Hi.

For i ∈ {1, 2} and j ∈ {1, 2} \ {i}, assume that Ai, Ci : Hi −→ Hj , Bi :
Hj −→ Hi, Ni : Hj ×Hi ×Hj −→ Hi, gi : Hi −→ Hi are single-valued mappings.
For any constant ρi > 0 (i = 1, 2), we consider the system of generalized implicit
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nonconvex variational inequality problems (SGINVIP): Find (x1, x2) ∈ H1×H2 such
that (g1(x1), g2(x2)) ∈ K1,r1 ×K2,r2 and

〈ρiNi(Aixi, Bixj , Cixi) + ρixi, yi − gi(xi)〉i +
1

2ri
‖yi − gi(xi)‖2

i ≥ 0, ∀yi ∈ Ki,ri
.

(3.1)

Some special cases of SGINVIP (3.1)

Case 1. For each i ∈ {1, 2}, if gi = Ii, the identity operator, N1(A1x1, B1x2, C1x1) =
G1(x1, x2) − x1, N2(A2x2, B2x1, C2x2) = G2(x1, x2) − x2 for all xi ∈ Hi, where
Gi : H1 × H2 −→ Hi is a nonlinear mapping then SGINVIP (3.1) reduces to the
system of problems of finding (x1, x2) ∈ K1,r1 ×K2,r2 such that

〈ρiGi(x1, x2), yi − xi〉i +
1

2ri
‖yi − xi‖2

i ≥ 0, ∀yi ∈ Ki,ri
, (3.2)

which appears to be new.

Case 2. In Case 1, if H1 = H2,K2,r2 = K1,r1 then SGINVIP (3.1) reduces to the
nonconvex variational inequality problem of finding x ∈ K1,r1 such that

〈ρ1G1(x, x), y − x〉1 +
1

2r1
‖y − x‖2

1 ≥ 0, ∀y ∈ K1,r1 ,

which appears to be new.

Case 3. In Case 1, for each i ∈ {1, 2}, if ri = ∞, i.e., Ki,ri
= Ki, the convex set in

Hi, then SGINVIP (3.1) reduces to the system of variational inequality problems of
finding (x1, x2) ∈ K1 ×K2 such that

〈Gi(x1, x2), yi − xi〉i ≥ 0, ∀yi ∈ Ki (3.3)

which has been studied by Ansari et al. [5] and Verma [9].

The following definitions are needed in the proof of main result.

Definition 3.1. A nonlinear mapping g1 : H1 −→ H1 is said to be k1-strongly
monotone if there exists a constant k1 > 0 such that

〈g1(x1)− g1(y1), x1 − y1〉1 ≥ k1‖x1 − y1‖2
1, ∀x1, y1 ∈ H1.

Definition 3.2. Let N1 : H2×H1×H2 −→ H1, A1, C1 : H1 −→ H2, B1 : H2 −→ H1

be nonlinear mappings. Then N1 is said to be
(i) δ1-strongly monotone with respect to A1 in the first argument if there exists

a constant δ1 > 0 such that

〈N1(A1u, x1, x2)−N1(A1v, x1, x2), u− v〉1 ≥ δ1‖u− v‖2
1,

∀u, v, x1 ∈ H1, x2 ∈ H2;
(ii) σ1-relaxed Lipschitz continuous with respect to C1 in the third argument if

there exists a constant σ1 > 0 such that

〈N1(x2, x1, C1u)−N1(x2, x1, C1v), u− v〉1 ≤ −σ1‖u− v‖2
1,

∀u, v, x1 ∈ H1, x2 ∈ H2;
(iii) L(N1,1)-Lipschitz continuous in the first argument if there exists a constant

L(N1,1) > 0 such that

‖N1(u, x1, x2)−N1(v, x1, x2)‖1 ≤ L(N1,1)‖u− v‖1,

∀x1 ∈ H1, u, v, x2 ∈ H2.
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Similarly, we can define the Lipschitz continuity of N1 in the second and third
arguments. First, we prove the following technical lemmas.

Lemma 3.1. SGINVIP (3.1) is equivalent to the following system of generalized
implicit nonconvex variational inclusions: Find (x1, x2) ∈ H1 × H2 such that
(g1(x1), g2(x2)) ∈ K1,r1 ×K2,r2 and

0i ∈ xi + Ni(Aixi, Bixj , Cixi) + ρ−1
i NP

Ki,ri
(gi(xi)), (3.4)

for i = 1, 2, where NP
Ki,ri

(u) denotes the proximal normal cone of Ki,ri at u in the
sense of nonconvex analysis (See Definition 2.1), and 0i is the zero vector of Hi.

Proof. Let (x1, x2) ∈ H1 × H2 with (g1(x1), g2(x2)) ∈ K1,r1 × K2,r2 be a so-
lution of SGINVIP (3.1). If Ni(Aixi, Bixj , Cixi) + xi = 0i, then evidently the
inclusuion (3.4) follows. If Ni(Aixi, Bixj , Cixi) + xi 6= 0i, then from (3.1) and
Lemma 2.1, we get the inclusion (3.4). Conversely, let (x1, x2) ∈ H1 × H2 with
(g1(x1), g2(x2)) ∈ K1,r1 × K2,r2 be a solution of system (3.4) then it follows from
Definition 2.3 that (x1, x2) ∈ H1 × H2 with (g1(x1), g2(x2)) ∈ K1,r1 × K2,r2 is a
solution of SGINVIP (3.1).

Lemma 3.2. (x1, x2) ∈ H1×H2 with (g1(x1), g2(x2)) ∈ K1,r1×K2,r2 is a solution of
SGINVIP (3.1) if and only if (x1, x2) ∈ H1×H2 with (g1(x1), g2(x2)) ∈ K1,r1 ×K2,r2

satisfies the system of relations

gi(xi) = PKi,ri
[gi(xi)− ρi(xi + Ni(Aixi, Bixj , Cixi))], (3.5)

for i = 1, 2, where PKi,ri
is the projection operator of Hi onto the uniformly ri-prox-

regular set Ki,ri
.

Proof. The result follows immediately from Lemma 3.1 and from the fact that
PKi,ri

= (Ii + NP
Ki,ri

)−1.

We can rewrite the equations (3.5) as follows:

gi(xi) = PKi,ri
(wi), wi = gi(xi)− ρi(xi + Ni(Aixi, Bixj , Cixi)). (3.6)

The alternative formulation (3.6) enables us to suggest the following iterative
algorithm for solving SGINVIP (3.1).

Iterative algorithm 3.1. For given (w0
1, w

0
2) ∈ H1 × H2, compute the iterative

sequences {wn
1 }, {wn

2 }, {xn
1} and {xn

2} defined by the iterative schemes:

gi(xn
i ) = PKi,ri

(wn
i ), (3.7)

wn+1
i = (1− αn)wn

i + αn[gi(xn
i )− ρi(xn

i + Ni(Aix
n
i , Bix

n
j , Cix

n
i ))], (3.8)

for all n = 0, 1, 2, ..., and for each i ∈ {1, 2} with j ∈ {1, 2} \ {i}, where αn ∈ (0, 1)

for n > 0 and α0 = 1 and
∞∑

n=1
αn = ∞ and ρ1, ρ2 > 0 are constants.

In Case I, Iterative algorithm 3.1 reduces to the following iterative algorithm for
solving the system (3.2).

Iterative algorithm 3.2. For given (w0
1, w

0
2) ∈ H1 × H2, compute the iterative

sequences {wn
1 }, {wn

2 }, {xn
1} and {xn

2} defined by the iterative schemes:

xn
i = PKi,ri

(wn
i ),

wn+1
i = (1− αn)wn

i + αn[xn
i − ρiGi(xn

1 , xn
2 )], (3.9)



70 K.R. KAZMI, M.I. BHAT AND NAEEM AHMAD /JNAO : VOL. 4, NO. 1, (2013), 65-74

for all n = 0, 1, 2, ... and for each i ∈ {1, 2} and j ∈ {1, 2} \ {i}, where αn ∈ (0, 1)

for n > 0 and α0 = 1 and
∞∑

n=1
αn = ∞ and ρ1, ρ2 > 0 are constants.

Now, we prove the existence and iterative approximation of solutions for SGINVIP
(3.1).

Theorem 3.1. For each i ∈ {1, 2} and j ∈ {1, 2} \ {i}, let the projection operator
PKi,ri

be ( ri

ri−r′i
)-Lipschitz continuous; let Ai, Ci : Hi −→ Hj and Bi : Hj −→ Hi

be LAi
-Lipschitz continuous, LCi

-Lipschitz continuous and LBi
-Lipschitz contin-

uous, respectively. Let gi : Hi −→ Hi be ki-strongly monotone and continuous;
let Ni : Hj × Hi × Hj −→ Hi be δi-strongly monotone with respect to Ai in the
first argument, τi-relaxed Lipschitz continuous with respect to Ci in the third ar-
gument, and L(Ni,p)-Lipschitz continuous in the pth argument, where p = 1, 2, 3. If
the constant ρi satisfy the following conditions:

Mi −4i < ρi < min{Mi +4i,Ψi}, (3.10)

where

Mi =
biki − aiei

bi(1− e2
i )

; 4i =

√
(biki − aiei)2 − b2

i (1− e2
i )(1− a2

i )
b2
i (1− e2

i )
;

Ψi <
1

bjdi
; ai =

1
µi
− φi; φi = biρjdj ;

biki > aiei + bi

√
(1− e2

i )(1− a2
i ); di = L(Ni,2)LBi

;

µi =
ri

ri − r′i
; bi =

1√
2ki + 3

;

ei =
√

(1− 2δi + L2
(Ni,1)

L2
Ai

) +
√

(1− 2σi + L2
(Ni,3)

L2
Ci

);

ρ2
i − 2ρiki

2ki + 3
∈ [−1, 0); r′i ∈ (0, ri); ri ∈ (0,∞].

Then the sequences {xn
i } and {wn

i } generated by Iterative algorithm 3.1 con-
verge strongly to xi and wi, respectively, where (x1, x2) with (g1(x1), g2(x2)) ∈
K1,r1 ×K2,r2 is a solution of SGINVIP (3.1).

Proof. From Iterative algorithm 3.1, we have

‖wn+1
i − wn

i ‖i ≤ (1− αn)‖wn+1
i − wn

i ‖i + αn‖gi(xn+1
i )− gi(xn

i )− ρi(xn+1
i − xn

i )‖i

+αnρi‖Ni(Aix
n+1
i , Bix

n+1
j , Cix

n+1
i )−Ni(Aix

n
i , Bix

n
j , Cix

n
i )‖i

≤ (1− αn)‖wn+1
i − wn

i ‖i + αn‖gi(xn+1
i )− gi(xn

i ))− ρi(xn+1
i − xn

i )‖i

+αnρi

[
‖[Ni(Aix

n+1
i , Bix

n+1
j , Cix

n+1
i )−Ni(Aix

n
i , Bix

n+1
j , Cix

n+1
i )

−(xn+1
i − xn

i )‖i

+‖Ni(Aix
n
i , Bix

n+1
j , Cix

n+1
i )−Ni(Aix

n
i , Bix

n+1
j , Cix

n
i ) + (xn+1

i − xn
i )‖i

+ ‖Ni(Aix
n
i , Bix

n+1
j , Cix

n
i )]−Ni(Aix

n
i , Bix

n
j , Cix

n
i )‖i

]
. (3.11)

Since Ai, Bi, Ci are LAi
-, LBi

-, LCi
-Lipschitz continuous, Ni is δi-strongly

monotone with respect to Ai in the first argument, σi-relaxed Lipschitz contin-
uous with respect to Ci, and is L(Ni,1)-, L(Ni,2)-, L(Ni,3)-Lipschitz continuous in
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the first, second and third arguments, respectively, one can obtain:

‖Ni(Aix
n+1
i , Bix

n+1
j , Cix

n+1
i )−Ni(Aix

n
i , Bix

n+1
j , Cix

n+1
i )− (xn+1

i − xn
i )‖i

≤
√

(1− 2δi + L2
(Ni,1)

LAi
‖xn+1

i − xn
i ‖i, (3.12)

‖Ni(Aix
n
i , Bix

n+1
j , Cix

n+1
i )−Ni(Aix

n
i , Bix

n+1
j , Cix

n
i ) + (xn+1

i − xn
i )‖i

≤
√

(1− 2σi + L2
(Ni,3)

LCi ‖xn+1
i − xn

i ‖i, (3.13)

and

‖Ni(Aix
n
i , Bix

n+1
j , Cix

n
i )]−Ni(Aix

n
i , Bix

n
j , Cix

n
i )‖i ≤ L(Ni,2)LBi

‖xn+1
i − xn

i ‖i.

(3.14)
Since gi is ki-strongly monotone and PKi,ri

be ( ri

ri−r′i
)-Lipschitz continuous,

then using (3.7), we have

‖xn+1
i − xn

i ‖2
i = ‖xn+1

i − xn
i − (gi(xn+1

i )− gi(xn
i )) + (gi(xn+1

i )− gi(xn
i ))‖2

i

≤ ‖gi(xn+1
i )− gi(xn

i )‖2
i

−2〈gi(xn+1
i )− gi(xn

i ) + xn+1
i − xn

i , xn+1
i − xn

i 〉i

= ‖gi(xn+1
i )− gi(xn

i )‖2
i − 2〈gi(xn+1

i )− gi(xn
i ), xn+1

i − xn
i 〉i

−2〈xn+1
i − xn

i , xn+1
i − xn

i 〉i

≤
(

ri

ri − r′i

)2

‖wn+1
i − wn

i ‖2
i − (2ki + 2)‖xn+1

i − xn
i ‖2

i ,

or

‖xn+1
i − xn

i ‖i ≤
(

µi√
2ki + 3

)
‖wn+1

i − wn
i ‖i, (3.15)

where µi =
(

ri

ri − r′i

)
.

Next, we estimate

‖gi(xn+1
i )− gi(xn

i )− ρ(xn+1
i − xn

i )‖2
i

≤ ‖gi(xn+1
i )− gi(xn

i )‖2
i

−2〈gi(xn+1
i )− gi(xn

i ), xn+1
i − xn

i 〉i + ρ2
i ‖x

n+1
i − xn

i ‖2
i

≤ µ2
i ‖w

n+1
i − wn

i ‖2
i + (ρ2

i − 2ρiki)‖xn+1
i − xn

i ‖2
i .

(3.16)

From (3.15) and (3.16), we have

‖gi(xn+1
i )− gi(xn

i )− ρi(xn+1
i − xn

i )‖i ≤ µi

√
1 +

ρ2
i − 2ρiki

2ki + 3
‖wn+1

i − wn
i ‖i. (3.17)

Further, from (3.11)-(3.15) and (3.17), we have

‖wn+2
i −wn+1

i ‖i ≤ (1−αn)‖wn+1
i −wn

i ‖i+αnµi

√
1 +

ρ2
i − 2ρiki

2ki + 3
‖wn+1

i −wn
i ‖i

+αnρi

[
µi√

2ki + 3

{√
(1− 2δi + L2

(Ni,1)
LAi

+
√

1− 2σi + L2
(Ni,3)

LCi

}
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×‖wn+1
i − wn

i ‖i +
µj√

2kj + 3
(L(Ni,2)LBi

)

]
‖wn+1

j − wn
j ‖j . (3.18)

Define ‖.‖? on H1 ×H2 by ‖(y1, y2)‖? =
2∑

i=1

‖yi‖i for any (y1, y2) ∈ H1 ×H2. We

note that H1 ×H2 is a Hilbert space with induced norm ‖.‖?. It follows from (3.18)
that

‖(wn+2
1 , wn+2

2 )− (wn+1
1 , wn+1

2 )‖? =
2∑

i=1

‖wn+2
i − wn+1

i ‖i,

≤ [1− αn(1− θ)]‖(wn+1
1 , wn+1

2 )− (wn
1 , wn

2 )‖?,
(3.19)

where θ = max{θ1, θ2}; θi = µi[pi + bi(ρiei + ρjdj)];

pi =

√
1 +

ρ2
i − 2ρiki

2ki + 3
; bi =

1√
2ki + 3

;

di = L(Ni,2)LAi ; ei =
√

(1− 2δi + L2
(Ni,1)

LAi +
√

(1− 2σi + L2
(Ni,3)

LCi .

From conditions (3.10), we have 0 < θ < 1, and hence, using the similar lines of
proof of Theorem 4.3 [22], there exists an integer n0 > 0 and a number α ∈ (0, 1)
such that (1−αn(1− θ)) ≤ (1−α(1− θ)) for all n > n0. Therefore, from (3.19), we
have

‖(wn+1
1 , wn+1

2 )− (wn
1 , wn

2 )‖? ≤ (1− α(1− θ))n−n0
‖(wn0+1

1 , wn0+1
2 )− (wn0

1 , wn0

2 )‖?.

Hence for any m ≥ n ≥ n0, it follows that

‖(wm
1 , wm

2 )− (wn
1 , wn

2 )‖? ≤
m−1∑
i=n

‖(wi+1
1 , wi+1

2 )− (wn0

1 , wn0

2 )‖?

≤
m−1∑
i=1

(1− α(1− θ))i−n0
‖(wn0+1

1 , wn0+1
2 )− (wn0

1 , wn0

2 )‖?. (3.20)

Since 0 < (1−α(1−θ)) < 1, it follows from (3.20) that ‖(wm
1 , wm

2 )−(wn
1 , wn

2 )‖? ≤
m−1∑
i=n

‖wm
i −wn

i ‖ −→ 0 as n −→∞, and hence for each i ∈ {1, 2}, {wn
i } is a Cauchy

sequence in Hi. Assume wn
i −→ wi in Hi as n −→ ∞. We observe from (3.15)

that {xn
i } is a Cauchy sequence and hence assume that xn

i −→ xi in Hi as n −→∞.

Further, from the continuity of Ni, Ai, Bi, Ci, gi, PKi,ri and Iterative algorithm
3.1, we observe that

gi(xi) = PKi,ri
[gi(xi)− ρi(xi + Ni(Aixi, Bixj , Cixi))].

Hence it follows from Lemma 3.2 that (x1, x2) ∈ H1 × H2 with (g1(x1), g2(x2)) ∈
K1,r1 ×K2,r2 is a solution of SGINVIP (3.1). This completes the proof.

Remark 3.1.

(i) The method presented in this paper unifies the methods considered in
[13, 14, 15, 16, 17, 18, 19, 20, 21] to the system of nonconvex variational
inequality problems defined on the product of two different Hilbert spaces.
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(ii) The method presented in this paper improves the methods considered in
[19, 20, 21] in the sense that the continuity of g is required instead of the
Lipschitz continuity.

(iii) One needs further research effort to extend the method presented for solv-
ing the system of nonconvex variational inequality problems involving set-
valued mappings.
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