${f J}$ ournal of ${f N}$ onlinear ${f A}$ nalysis and ${f O}$ ptimization

Vol. 4, No. 1, (2013), 1-11

ISSN: 1906-9685

http://www.math.sci.nu.ac.th

SOME DOUBLE SEQUENCE SPACES IN n-NORMED SPACES USING IDEAL CONVERGENCE AND A SEQUENCE OF ORLICZ FUNCTIONS

SUNIL K. SHARMA*, KULDIP RAJ AND AJAY K. SHARMA

School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, J&K, India

ABSTRACT. In the present paper we introduce some double sequence spaces using ideal convergence and a sequence of Orlicz functions $\mathcal{M} = (M_{k,l})$ in *n*-normed spaces and examine some topological properties of the resulting sequence spaces.

KEYWORDS: Paranorm space; I-convergence; Difference sequence spaces; Orlicz function; Musielak-Orlicz function; n-normed spaces.

AMS Subject Classification: 40A05 46A45 46B70.

1. INTRODUCTION AND PRELIMINARIES

The initial works on double sequences is found in Bromwich [4]. Later on, it was studied by Hardy [13], Moricz [20], Moricz and Rhoades [21], Tripathy ([38, 39]), Başarır and Sonalcan [2] and many others. Hardy [13] introduced the notion of regular convergence for double sequences. Quite recently, Zeltser [41] in her Ph.D thesis has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [25] have recently introduced the statistical convergence and Cauchy convergence for double sequences and given the relation between statistical convergent and strongly Cesaro summable double sequences. Nextly, Mursaleen [23] and Mursaleen and Edely [26] have defined the almost strong regularity of matrices for double sequences and applied these matrices to establish a core theorem and introduced the M-core for double sequences and determined those four dimensional matrices transforming every bounded double sequences $x = (x_{k,l})$ into one whose core is a subset of the M-core of x. More recently, Altay and Başar [1] have defined the spaces \mathcal{BS} , $\mathcal{BS}(t)$, \mathcal{CS}_p , \mathcal{CS}_{bp} , \mathcal{CS}_r and \mathcal{BV} of double sequences consisting of all double series whose sequence of partial sums are in the spaces \mathcal{M}_u , $\mathcal{M}_u(t)$, \mathcal{C}_p , $\mathcal{C}_{bp},\,\mathcal{C}_r$ and \mathcal{L}_u , respectively and also examined some properties of these sequence spaces and determined the α -duals of the spaces \mathcal{BS} , \mathcal{BV} , \mathcal{CS}_{bp} and the $\beta(v)$ -duals

Article history: Received 20 April 2012 Accepted 20 March 2013.

^{*} Corresponding author

 $[\]label{lem:email$

of the spaces \mathcal{CS}_{bp} and \mathcal{CS}_r of double series. Recently Başar and Sever [3] have introduced the Banach space \mathcal{L}_q of double sequences corresponding to the well known space ℓ_q of single sequences and examined some properties of the space \mathcal{L}_q . Now, recently Raj and Sharma [33] have introduced double sequence spaces of entire functions. By the convergence of a double sequence we mean the convergence in the Pringsheim sense i.e. a double sequence $x=(x_{k,l})$ has Pringsheim limit L (denoted by $P-\lim x=L$) provided that given $\epsilon>0$ there exists $n\in N$ such that $|x_{k,l}-L|<\epsilon$ whenever k,l>n see [28]. We shall write more briefly as P-convergent. The double sequence $x=(x_{k,l})$ is bounded if there exists a positive number M such that $|x_{k,l}|< M$ for all k and l.

The concept of 2-normed spaces was initially developed by Gähler [8] in the mid of 1960's, while that of n-normed spaces one can see in Misiak [22]. Since then, many others have studied this concept and obtained various results, see Gunawan ([10, 11]) and Gunawan and Mashadi [12] and references therein. Let $n \in \mathbb{N}$ and X be a linear space over the field \mathbb{K} , where \mathbb{K} is field of real or complex numbers of dimension d, where $d \geq n \geq 2$. A real valued function $\|\cdot, \cdots, \cdot\|$ on X^n satisfying the following four conditions:

- (i) $\|x_1,x_2,\cdots,x_n\|=0$ if and only if x_1,x_2,\cdots,x_n are linearly dependent in X
- (ii) $||x_1, x_2, \dots, x_n||$ is invariant under permutation;
- (iii) $\|\alpha x_1, x_2, \cdots, x_n\| = |\alpha| \ \|x_1, x_2, \cdots, x_n\|$ for any $\alpha \in \mathbb{K}$, and
- (iv) $||x+x', x_2, \cdots, x_n|| \le ||x, x_2, \cdots, x_n|| + ||x', x_2, \cdots, x_n||$

is called a n-norm on X, and the pair $(X,\|\cdot,\cdots,\cdot\|)$ is called a n-normed space over the field \mathbb{K} .

For example, we may take $X=\mathbb{R}^n$ being equipped with the Euclidean n-norm $\|x_1,x_2,\cdots,x_n\|_E$ = the volume of the n-dimensional parallelopiped spanned by the vectors x_1,x_2,\cdots,x_n which may be given explicitly by the formula

$$||x_1, x_2, \cdots, x_n||_E = |\det(x_{ij})|,$$

where $x_i = (x_{i1}, x_{i2}, \cdots, x_{in}) \in \mathbb{R}^n$ for each $i = 1, 2, \cdots, n$. Let $(X, \|\cdot, \cdots, \cdot\|)$ be a n-normed space of dimension $d \geq n \geq 2$ and $\{a_1, a_2, \cdots, a_n\}$ be linearly independent set in X. Then the following function $\|\cdot, \cdots, \cdot\|_{\infty}$ on X^{n-1} defined by

$$||x_1, x_2, \cdots, x_{n-1}||_{\infty} = \max\{||x_1, x_2, \cdots, x_{n-1}, a_i|| : i = 1, 2, \cdots, n\}$$

defines an (n-1)-norm on X with respect to $\{a_1, a_2, \cdots, a_n\}$.

A sequence (x_k) in a n-normed space $(X, \|\cdot, \cdots, \cdot\|)$ is said to converge to some $L \in X$ if

$$\lim_{k \to \infty} ||x_k - L, z_1, \cdots, z_{n-1}|| = 0 \text{ for every } z_1, \cdots, z_{n-1} \in X.$$

A sequence (x_k) in a *n*-normed space $(X, \|\cdot, \cdots, \cdot\|)$ is said to be Cauchy if

$$\lim_{\substack{k\to\infty\\p\to\infty}} \|x_k-x_p,z_1,\cdots,z_{n-1}\| = 0 \text{ for every } z_1,\cdots,z_{n-1} \in X.$$

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.

The notion of difference sequence spaces was introduced by Kızmaz [14], who studied the difference sequence spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. The notion was further generalized by Et and Çolak [7] by introducing the spaces $l_{\infty}(\Delta^n)$, $c(\Delta^n)$ and

 $c_0(\Delta^n)$. Let w be the space of all complex or real sequences $x=(x_k)$ and let r be non-negative integers, then for $Z=l_\infty,\ c,\ c_0$ we have sequence spaces

$$Z(\Delta^r) = \{ x = (x_k) \in w : (\Delta^r x_k) \in Z \},$$

where $\Delta^r x = (\Delta^r x_k) = (\Delta^{r-1} x_k - \Delta^{r-1} x_{k+1})$ and $\Delta^0 x_k = x_k$ for all $k \in \mathbb{N}$, which is equivalent to the following binomial representation

$$\Delta^r x_k = \sum_{v=0}^r (-1)^v \begin{pmatrix} r \\ v \end{pmatrix} x_{k+v}.$$

Taking r=1, we get the spaces which were introduced and studied by Kızmaz [14]. An Orlicz function $M:[0,\infty)\to [0,\infty)$ is a continuous, non-decreasing and convex function such that M(0)=0, M(x)>0 for x>0 and $M(x)\longrightarrow \infty$ as $x\longrightarrow \infty$. Lindenstrauss and Tzafriri [17] used the idea of Orlicz function to define the following sequence space,

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \right\}$$

which is called as an Orlicz sequence space. Also ℓ_M is a Banach space with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

Also, it was shown in [17] that every Orlicz sequence space ℓ_M contains a subspace isomorphic to $\ell_p(p\geq 1)$. The Δ_2 - condition is equivalent to $M(Lx)\leq LM(x)$, for all L with 0< L<1. An Orlicz function M can always be represented in the following integral form

$$M(x) = \int_0^x \eta(t)dt$$

where η is known as the kernel of M, is right differentiable for $t \geq 0, \eta(0) = 0, \eta(t) > 0$, η is non-decreasing and $\eta(t) \to \infty$ as $t \to \infty$.

Let $\lambda = (\lambda_r)$ be a non-decreasing sequence of positive numbers tending to infinity and $\lambda_{r+1} \leq \lambda_r + 1$, $\lambda_1 = 1$. The generalized de la Vallee-Poussin mean is defined by

$$t_r(x) = \frac{1}{\lambda_r} \sum_{k \in I_r} x_k, \ I_r = [r - \lambda_r + 1, r].$$

A single sequence $x=(x_k)$ is said to be (V,λ) -summable to a number L if $t_r(x)\to L$ as $r\to\infty$ see [16]. If $\lambda_r=r$, then the (V,λ) -summability is reduced to (C,1)-summability see ([36, 37]).

The double sequence $\lambda_2=(\lambda_{m,n})$ of positive real numbers tending to infinity such that

$$\lambda_{m+1,n} < \lambda_{m,n} + 1, \quad \lambda_{m,n+1} < \lambda_{m,n} + 1,$$

$$\lambda_{m,n} - \lambda_{m+1,n} < \lambda_{m,n+1} - \lambda_{m+1,n+1}, \quad \lambda_{1,1} = 1,$$

and

$$I_{m,n} = \{(k,l) : m - \lambda_{m,n} + 1 \le k \le m, \ n - \lambda_{m,n} + 1 \le l \le n \}.$$

Let X be a linear metric space. A function $p: X \to \mathbb{R}$ is called paranorm, if

- (i) $p(x) \ge 0$ for all $x \in X$,
- (ii) p(-x) = p(x) for all $x \in X$,
- (iii) $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$,
- (iv) if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n \lambda x) \to 0$ as $n \to \infty$.

A paranorm p for which p(x)=0 implies x=0 is called total paranorm and the pair (X,p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [40], Theorem 10.4.2, pp. 183). For more details about sequence spaces (see [18, 19, 24, 27, 29-31, 34]) and reference therein.

A sequence space E is said to be solid(or normal) if $(x_k) \in E$ implies $(\alpha_k x_k) \in E$ for all sequences of scalars (α_k) with $|\alpha_k| \le 1$ and for all $k \in \mathbb{N}$.

The notion of ideal convergence was introduced first by P. Kostyrko [15] as a generalization of statistical convergence which was further studied in topological spaces (see [5]). More applications of ideals can be seen in ([5, 6]).

Recently a lot of activities have started to study sumability, sequence spaces and related topics in these non linear spaces (see [9, 35]). In particular Sahiner [35] combined these two concepts and investigated ideal sumability in these spaces and introduced certain sequence spaces using 2-norm. Raj and Sharma [32] have introduced some sequence spaces of ideal convergence in 2-normed spaces.

We continue in this direction and by using a sequence of Orlicz functions, generalized sequences and also ideals we introduce I-convergence of generalized sequences with respect to a sequence of Orlicz functions in n-normed spaces.

Let $(X, \|\cdot, \cdots, \cdot\|)$ be a normed space. Recall that a sequence $(x_n)_{n \in \mathbb{N}}$ of elements of X is called statistically convergent to $x \in X$ if the set $A(\epsilon) = \left\{n \in \mathbb{N} : \|x_n - x\| \ge \epsilon\right\}$ has natural density zero for each $\epsilon > 0$.

A family $\mathcal{I} \subset 2^Y$ of subsets of a non empty set Y is said to be an ideal in Y if

- (i) $\phi \in \mathcal{I}$:
- (ii) $A, B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$;
- (iii) $A \in \mathcal{I}$, $B \subset A$ imply $B \in \mathcal{I}$, while an admissible ideal \mathcal{I} of Y further satisfies $\{x\} \in \mathcal{I}$ for each $x \in Y$ (see [9]).

Given $\mathcal{I} \subset 2^{\mathbb{N}}$ be a non trivial ideal in \mathbb{N} . A sequence $(x_n)_{n \in \mathbb{N}}$ in X is said to be I-convergent to $x \in X$, if for each $\epsilon > 0$ the set $A(\epsilon) = \left\{ n \in \mathbb{N} : \|x_n - x\| \ge \epsilon \right\}$ belongs to \mathcal{I} (see [15]).

Let $\Lambda=(\lambda_{m,n})$ be non-decreasing sequence of positive numbers tending to ∞ such that $\lambda_{n+1}\geq \lambda_n+1$, $\lambda_1=0$ and let I be an admissible ideal of \mathbb{N} , $\mathcal{M}=(M_{k,l})$ be a sequence of Orlicz functions, $(X,\|\cdot,\cdots,\cdot\|)$ is a n-normed space. Let $p=(p_{k,l})$ be a bounded sequence of positive real numbers. By S''(n-X) we denote the space of all sequences defined over $(X,\|\cdot,\cdots,\cdot\|)$. Now we define the following sequence spaces in this paper :

$$(W^I)_2(\lambda, \mathcal{M}, \Delta^r, p, ||\cdot, \cdots, \cdot||) =$$

$$\left\{x \in S''(n-X): \forall \, \epsilon > 0 \, \left\{m,n \in \mathbb{N}: \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \left[M_{k,l} \left(\left\|\frac{\Delta^r x_{k,l} - L}{\rho}, z_1, \cdots, z_{n-1}\right\|\right)\right]^{p_{k,l}} \geq \epsilon \right\} \in I$$

for some
$$L, \rho > 0$$
 and $z_1, \dots, z_{n-1} \in X$,

$$\begin{split} &(W_0^I)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdot\cdot\cdot,\cdot\|) = \\ &\Big\{x\in S''(n-X): \forall \; \epsilon>0 \; \Big\{m,n\in\mathbb{N}: \frac{1}{\lambda_{m,n}} \sum_{k,l\in I_{m,n}} \Big[M_{k,l}\Big(\|\frac{\Delta^r x_{k,l}}{\rho},z_1,\cdot\cdot\cdot,z_{n-1}\|\Big)\Big]^{p_k,l} \geq \epsilon\Big\} \in I_{k,n} \end{split}$$

for some
$$\rho > 0$$
 and $z_1, \dots, z_{n-1} \in X$,

$$(W_{\infty})_2 (\lambda, \mathcal{M}, \Delta^r, p, \|\cdot, \cdots, \cdot\|) =$$

$$\Big\{x\in S''(n-X): \exists\; K>0 \;\; \text{such that} \;\; \sup_{m,n}\frac{1}{\lambda_{m,n}}\sum_{k,l\in I_{m,n}}\Big[M_{k,l}\Big(\|\frac{\Delta^rx_{k,l}}{\rho},z_1,\cdots,z_{n-1}\|\Big)\Big]^{p_{k,l}}$$

$$\leq K$$
 for some $\rho > 0$ and $z_1, \dots, z_{n-1} \in X$,

$$(W_{\infty}^{I})_{2}(\lambda, \mathcal{M}, \Delta^{r}, p, \|\cdot, \cdots, \cdot\|) =$$

$$\left\{x \in S''(n-X): \exists \ K>0 \ \text{ such that } \left\{m,n \in \mathbb{N}: \frac{1}{\lambda_{m,n}} \sum_{k,l \in I} \quad \left[M_{k,l} \Big(\|\frac{\Delta^r x_{k,l}}{\rho},z_1,\cdots,z_{n-1}\|\Big)\right]^{p_{k,l}} \right\} \right\}$$

$$\geq K \Big\} \in I \ \text{ for some } \ \rho > 0 \ \text{ and } \ z_1, \cdots, z_{n-1} \in X \Big\}.$$

The following inequality will be used throughout the paper. If $0 \le p_{k,l} \le \sup p_{k,l} = H$, $D = \max(1, 2^{H-1})$ then

$$|a_{k,l} + b_{k,l}|^{p_{k,l}} \le D\{|a_{k,l}|^{p_{k,l}} + |b_{k,l}|^{p_{k,l}}\}$$
(1.1)

for all k, l and $a_{k,l}, b_{k,l} \in \mathbb{C}$. Also $|a|^{p_{k,l}} \leq \max(1, |a|^H)$ for all $a \in \mathbb{C}$.

The main aim of this paper is to study some topological properties and some inclusion relation between above defined sequence spaces.

2. MAIN RESULTS

Theorem 2.1. Let $\mathcal{M}=(M_{k,l})$ be a sequence of Orlicz functions, $p=(p_{k,l})$ be a bounded sequence of positive real numbers and I be an admissible ideal of \mathbb{N} . Then $(W^I)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\Big),(W^I_0)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\Big),(W_\infty)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\Big)$ and $(W^I_\infty)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|)$ are linear spaces.

$$\begin{aligned} &\textit{Proof. Let } x = (x_{k,l}), y = (y_{k,l}) \in (W^I)_2\Big(\lambda, \mathcal{M}, \Delta^r, p, \|\cdot, \cdots, \cdot\|\Big) \text{ and } \alpha, \beta \in \mathbb{R}. \text{ So} \\ &\left\{m, n \in \mathbb{N} : \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \left[M_{k,l}\Big(\|\frac{\Delta^r x_{k,l} - L}{\rho_1}, z_1, \cdots, z_{n-1}\|\Big)\right]^{p_{k,l}} \geq \epsilon\right\} \in I \end{aligned}$$

$$\text{for some } L,\; \rho_1>0,\; \text{and}\;\; z_1,\cdots,z_{n-1}\in X \bigg\}$$

and

$$\left\{m, n \in \mathbb{N} : \frac{1}{\lambda_{m,n}} \sum_{k,l \in I} \left[M_{k,l} \left(\left\| \frac{\Delta^r y_{k,l} - L}{\rho_2}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_{k,l}} \ge \epsilon \right\} \in I$$

for some
$$L, \rho_2 > 0$$
 and $z_1, \dots, z_{n-1} \in X$.

Since $\|\cdot, \cdots, \cdot\|$ is a n-norm and $\mathcal{M} = (M_{k,l})$ be a sequence of Orlicz functions the following inequality holds:

$$\begin{split} &\frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \left[M_{k,l} \Big(\| \frac{\Delta^r(\alpha x_{k,l} + \beta y_{k,l}) - L}{|\alpha|\rho_1 + |\beta|\rho_2}, z_1, \cdots, z_{n-1} \| \Big) \right]^{p_{k,l}} \\ & \leq & D \frac{1}{\lambda_{m,n}} \sum_{k,l \in I} & \left[\frac{|\alpha|}{(|\alpha|\rho_1 + |\beta|\rho_2)} M_{k,l} \Big(\| \frac{\Delta^r x_{k,l} - L}{\rho_1}, z_1, \cdots, z_{n-1} \| \Big) \right]^{p_{k,l}} \end{split}$$

$$+ D \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \left[\frac{|\beta|}{(|\alpha|\rho_{1} + |\beta|\rho_{2})} M_{k,l} \left(\| \frac{\Delta^{r} y_{k,l} - L}{\rho_{2}}, z_{1}, \cdots, z_{n-1} \| \right) \right]^{p_{k,l}}$$

$$\leq DF \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \left[M_{k,l} \left(\| \frac{\Delta^{r} x_{k,l} - L}{\rho_{1}}, z_{1}, \cdots, z_{n-1} \| \right) \right]^{p_{k,l}}$$

$$+ DF \frac{1}{\lambda_{m,n}} \sum_{k,l \in I} \left[M_{k,l} \left(\| \frac{\Delta^{r} y_{k,l} - L}{\rho_{2}}, z_{1}, \cdots, z_{n-1} \| \right) \right]^{p_{k,l}},$$

where
$$F = \max\left[1, \left(\frac{|\alpha|}{(|\alpha|\rho_1+|\beta|\rho_2)}\right)^H, \left(\frac{|\beta|}{(|\alpha|\rho_1+|\beta|\rho_2)}\right)^H\right]$$
. From the above inequality, we get $\left\{m,n\in\mathbb{N}: \frac{1}{\lambda_{m,n}}\sum_{k,l\in I_{m,n}}\left[M_{k,l}\left(\|\frac{\Delta^r(\alpha x_{k,l}+\beta y_{k,l})-L}{|\alpha|\rho_1+|\beta|\rho_2},z_1,\cdots,z_{n-1}\|\right)\right]^{p_{k,l}}\geq \epsilon\right\}$

$$\subseteq \left\{m,n\in\mathbb{N}: DF\frac{1}{\lambda_{m,n}}\sum_{k,l\in I_{m,n}}\left[M_{k,l}\left(\|\frac{\Delta^r x_{k,l}-L}{\rho_1},z_1,\cdots,z_{n-1}\|\right)\right]^{p_{k,l}}\geq \frac{\epsilon}{2}\right\}$$

$$\cup \left\{m,n\in\mathbb{N}: DF\frac{1}{\lambda_{m,n}}\sum_{k,l\in I_{m,n}}\left[M_{k,l}\left(\|\frac{\Delta^r y_{k,l}-L}{\rho_1},z_1,\cdots,z_{n-1}\|\right)\right]^{p_{k,l}}\geq \frac{\epsilon}{2}\right\}.$$

Two sets on the right hand side belong to I and this completes the proof. Similarly, we can prove that $(W_0^I)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\Big),\ (W_\infty)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\Big)$ and $(W_\infty^I)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|)$ are linear spaces. \square

Theorem 2.2. Let $\mathcal{M}=(M_{k,l})$ be a sequence of Orlicz functions and $p=(p_{k,l})$ be a bounded sequence of positive real numbers. For any fixed $m,n\in\mathbb{N}$, $(W_{\infty})_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\Big)$ is a paranormed space with the paranorm defined by

$$\begin{split} g_{m,n}(x) &= \inf \Big\{ \rho^{\frac{p_{m,n}}{H}} : \rho > 0 \quad \text{is such that} \quad \sup_{k,l} \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \Big[M_{k,l} \Big(\| \frac{\Delta^r x_{k,l}}{\rho}, z_1, \cdots, z_{n-1} \| \Big) \Big]^{p_{k,l}} \\ &\leq 1, \forall z_1, \cdots, z_{n-1} \in X \Big\}. \end{split}$$

Proof. It is clear that $g_{m,n}(x)=g_{m,n}(-x)$. Since $M_{k,l}(0)=0$, we get $\inf\{\rho^{\frac{p_{m,n}}{H}}\}=0$ for x=0 therefore, $g_{m,n}(0)=0$. Let us take $x=(x_{k,l})$ and $y=(y_{k,l})$ in $(W_{\infty})_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\Big)$. Let

$$B(x) = \Big\{\rho > 0 : \sup_{k,l} \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \Big[M_{k,l} \Big(\| \frac{\Delta^r x_{k,l}}{\rho}, z_1, \cdots, z_{n-1} \| \Big) \Big]^{p_{k,l}} \leq 1, \forall z_1, \cdots, z_{n-1} \in X \Big\},$$

$$B(y) = \Big\{\rho > 0 : \sup_{k,l} \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \Big[M_{k,l} \Big(\| \frac{\Delta^r y_{k,l}}{\rho}, z_1, \cdots, z_{n-1} \| \Big) \Big]^{p_{k,l}} \leq 1, \forall z_1, \cdots, z_{n-1} \in X \Big\}.$$

Let $\rho_1 \in B(x)$ and $\rho_2 \in B(y)$. Then if $\rho = \rho_1 + \rho_2$, we have $\sup_{k,l} \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} M_{k,l} \Big(\| \frac{\Delta^r(x_{k,l} + y_{k,l})}{\rho}, z_1, \cdots, z_{n-1} \| \Big)$

$$\leq \frac{\rho_1}{\rho_1 + \rho_2} \sup_{k,l} \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} M_{k,l} \left(\| \frac{\Delta^r x_{k,l}}{\rho_1}, z_1, \cdots, z_{n-1} \| \right)$$

+
$$\frac{\rho_2}{\rho_1 + \rho_2} \sup_{k,l} \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} M_{k,l} \Big(\| \frac{\Delta^r y_{k,l}}{\rho_2}, z_1, \cdots, z_{n-1} \| \Big).$$

Thus
$$\sup_{k,l} \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} M_{k,l} \Big(\| \frac{\Delta^r(x_{k,l} + y_{k,l})}{\rho_1 + \rho_2}, z_1, \cdots, z_{n-1} \| \Big)^{p_{k,l}} \le 1$$
 and

$$g_{m,n}(x+y) \leq \inf \left\{ (\rho_1 + \rho_2)^{\frac{p_{m,n}}{H}} : \rho_1 \in B(x), \ \rho_2 \in B(y) \right\}$$

$$\leq \inf \left\{ \rho_1^{\frac{p_{m,n}}{H}} : \rho_1 \in B(x) \right\} + \inf \left\{ \rho_2^{\frac{p_{m,n}}{H}} : \rho_2 \in B(y) \right\}$$

$$= g_{m,n}(x) + g_{m,n}(y).$$

Let $\sigma^s \to \sigma$ where $\sigma, \sigma^s \in \mathbb{C}$ and let $g_{m,n}(x_{k,l}^s - x) \to 0$ as $s \to \infty$. We have to show that $g_{m,n}(\sigma^s x_{k,l}^s - \sigma x) \to 0$ as $s \to \infty$. Let

$$B(x^s) = \Big\{ \rho_s > 0 : \sup_{k,l} \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \Big[M_{k,l} \Big(\| \frac{\Delta^r x_{k,l}^s}{\rho_s}, z_1, \cdots, z_{n-1} \| \Big) \Big]^{p_{k,l}} \le 1, \forall z_1, \cdots, z_{n-1} \in X \Big\},$$

$$B(x^{s}-x) = \left\{ \rho'_{s} > 0 : \sup_{k,l} \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \left[M_{k,l} \left(\left\| \frac{\Delta^{r} x_{k,l}^{s} - x_{k,l}}{\rho'_{s}}, z_{1}, \cdots, z_{n-1} \right\| \right) \right]^{p_{k,l}} \le 1,$$

$$\forall z_1, \cdots, z_{n-1} \in X$$
 $\}.$

If $\rho_s \in B(x^s)$ and $\rho_s' \in B(x^s-x)$ then we observe that $\frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} M_{k,l} \| \frac{\Delta^r(\sigma^s x_{k,l}^s - \sigma x_{k,l})}{\rho_s |\sigma^s - \sigma| + \rho_s' |\sigma|}, z_1, \cdots, z_{n-1} \|$

$$\lambda_{m,n} \sum_{k,l \in I_{m,n}} A_{k,l} | \rho_{s} | \sigma^{s} - \sigma | + \rho'_{s} | \sigma |^{s+1} + \gamma^{s+1} + \gamma^{s+1}$$

$$\leq \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} M_{k,l} \Big(\| \frac{\Delta^{r} (\sigma^{s} x_{k,l}^{s} - \sigma x_{k,l}^{s})}{\rho_{s} | \sigma^{s} - \sigma | + \rho'_{s} | \sigma |}, z_{1}, \cdots, z_{n-1} \|$$

$$+ \| \frac{\Delta^{r} (\sigma x_{k,l}^{s} - \sigma x_{k,l})}{\rho_{s} | \sigma^{s} - \sigma | + \rho'_{s} | \sigma |}, z_{1}, \cdots, z_{n-1} \| \Big)$$

$$\leq \frac{|\sigma^{s} - \sigma| \rho_{s}}{\rho_{s} | \sigma^{s} - \sigma | + \rho'_{s} | \sigma |} \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} M_{k,l} \Big(\| \frac{\Delta^{r} (x_{k,l}^{s})}{\rho_{s}}, z_{1}, \cdots, z_{n-1} \| \Big)$$

$$+ \frac{|\sigma|\rho_{s}^{'}}{\rho_{s}|\sigma^{s} - \sigma| + \rho_{s}^{'}|\sigma|} \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m-n}} M_{k,l} \Big(\| \frac{\Delta^{r}(x_{k,l}^{s} - x_{k,l})}{\rho_{s}^{'}}, z_{1}, \cdots, z_{n-1} \| \Big).$$

From the above inequality, it follows that

$$\frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \left(M_{k,l} \left(\left\| \frac{\Delta^r (\sigma^s x_{k,l}^s - \sigma x_{k,l})}{\rho_s |\sigma^s - \sigma| + \rho_s' |\sigma|}, z_1, \cdots, z_{n-1} \right\| \right) \right)^{p_{k,l}} \le 1$$

and consequently,

$$\begin{split} g_{m,n}(\sigma^s x^s - \sigma x) & \leq & \inf \left\{ \left(\rho_s | \sigma^s - \sigma| + \rho_s^{'} | \sigma| \right)^{\frac{p_{m,n}}{H}} : \rho_s \in B(x^s), \rho_s^{'} \in B(x^s - x) \right\} \\ & \leq & \left(|\sigma^s - \sigma| \right)^{\frac{p_{m,n}}{H}} \inf \left\{ \rho^{\frac{p_{m,n}}{H}} : \rho_s \in B(x^s) \right\} \\ & + & \left(|\sigma| \right)^{\frac{p_{m,n}}{H}} \inf \left\{ \left(\rho_s^{'} \right)^{\frac{p_{m,n}}{H}} : \rho_s^{'} \in B(x^s - x) \right\} \\ & \longrightarrow 0 \quad \text{as} \quad m \longrightarrow \infty. \end{split}$$

This completes the proof.

Theorem 2.3. Let $\mathcal{M}=(M_{k,l})$ be a sequence of Orlicz functions which satisfies Δ_2 -condition. Then $(W_0^I)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\Big)\subset (W^I)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\Big)\subset (W_\infty^I)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\Big)$ and the inclusions are strict.

Proof. The inclusion $(W_0^I)_2\left(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\right)\subset (W^I)_2\left(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\right)$ is obvious. We have only show that $(W^I)_2\left(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\right)\subset (W_\infty^I)_2\left(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\right)$. Let $(x_{k,l})\in (W^I)_2\left(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\right)$. Then $\frac{1}{\lambda_{m,n}}\sum_{k,l\in I_{m,n}}\left[M_{k,l}\left(\|\frac{\Delta^r x_{k,l}+L-L}{2\rho},z_1,\cdots,z_{n-1}\|\right)\right]^{p_{k,l}}$ $=\frac{1}{\lambda_{m,n}}\sum_{k,l\in I_{m,n}}\left[M_{k,l}\left(\|\frac{\Delta^r x_{k,l}+L-L}{2\rho},z_1,\cdots,z_{n-1}\|\right)\right]^{p_{k,l}}$ $\leq\frac{1}{\lambda_{m,n}}\sum_{k,l\in I_{m,n}}\left[M_{k,l}\left(\|\frac{\Delta^r x_{k,l}-L}{2\rho},z_1,\cdots,z_{n-1}\|+\|\frac{L}{2\rho},z_1,\cdots,z_{n-1}\|\right)\right]^{p_{k,l}}$ $\leq DG\frac{1}{\lambda_{m,n}}\sum_{k,l\in I_{m,n}}\left[M_{k,l}\left(\|\frac{\Delta^r x_{k,l}-L}{\rho},z_1,\cdots,z_{n-1}\|\right)\right]^{p_{k,l}}$ $+DG\frac{1}{\lambda_{m,n}}\sum_{k,l\in I_{m,n}}\left[M_{k,l}\left(\|\frac{L}{\rho},z_1,\cdots,z_{n-1}\|\right)\right]^{p_{k,l}},$

where $G = \max\left\{1, \left(\frac{1}{2}\right)^H\right\}$. Thus from Δ_2 -condition, we have $x \in (W^I_\infty)_2\left(\lambda, \mathcal{M}, \Delta^r, p, \|\cdot, \cdots, \cdot\|\right)$ and this completes the proof of the theorem.

Theorem 2.4. Let $\mathcal{M}, \mathcal{M}', \mathcal{M}''$ are sequences of Orlicz functions. Then we have (i) $(W_0^I)_2 \Big(\lambda, \mathcal{M}', \Delta^r, p, \| \cdot, \cdots, \cdot \| \Big) \subseteq (W_0^I)_2 \Big(\lambda, \mathcal{M} \circ \mathcal{M}', \Delta^r, p, \| \cdot, \cdots, \cdot \| \Big)$ provided $(p_{k,l})$ is such that $H_0 = \inf p_{k,l} > 0$. (ii) $(W_0^I)_2 \Big(\lambda, \mathcal{M}', \Delta^r, p, \| \cdot, \cdots, \cdot \| \Big) \cap (W_0^I)_2 \Big(\lambda, \mathcal{M}'', \Delta^r, p, \| \cdot, \cdots, \cdot \| \Big) \subseteq (W_0^I)_2 \Big(\lambda, \mathcal{M}'', \Delta^r, p, \| \cdot, \cdots, \cdot \| \Big)$.

Proof. (i) For given $\epsilon>0$, first choose $\epsilon_0>0$ such that $\max\{\epsilon_0^H,\epsilon_0^{H_0}\}<\epsilon$. Now using the continuity of $M_{k,l}$. Choose $0<\delta<1$ such that $0< t<\delta$, this implies that $M_{k,l}(t)<\epsilon_0$. Let $(x_{k,l})\in (W_0^I)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\Big)$. Now from the definition

$$B(\delta) = \left\{ m, n \in \mathbb{N} : \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \left[M'_{k,l} \left(\left\| \frac{\Delta^r x_{k,l}}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_{k,l}} \ge \delta^H \right\} \in I.$$

Thus if $m, n \notin B(\delta)$ then

$$\begin{split} &\frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \left[M'_{k,l} \Big(\| \frac{\Delta^r x_{k,l}}{\rho}, z_1, \cdots, z_{n-1} \| \Big) \right]^{p_{k,l}} < \delta^H \\ &\Longrightarrow \sum_{k,l \in I_{m,n}} \left[M'_{k,l} \Big(\| \frac{\Delta^r x_{k,l}}{\rho}, z_1, \cdots, z_{n-1} \| \Big) \right]^{p_{k,l}} < \lambda_{m,n} \delta^H \\ &\Longrightarrow \left[M'_{k,l} \Big(\| \frac{\Delta^r x_{k,l}}{\rho}, z_1, \cdots, z_{n-1} \| \Big) \right]^{p_{k,l}} < \delta^H \quad \text{for all} \quad k,l \in I_{m,n} \\ &\Longrightarrow \left[M'_{k,l} \Big(\| \frac{\Delta^r x_{k,l}}{\rho}, z_1, \cdots, z_{n-1} \| \Big) \right] < \delta \quad \text{for all} \quad k,l \in I_{m,n}. \end{split}$$

Hence from above using the continuity of $\mathcal{M} = (M_{k,l})$ we must have

$$M_{k,l}\left(M'_{k,l}\left(\left\|\frac{\Delta^r x_{k,l}}{\rho}, z_1, \cdots, z_{n-1}\right\|\right)\right) < \epsilon_0 \ \forall \ k, l \in I_{m,n}$$

which consequently implies that

$$\sum_{k,l \in I_{m,n}} \left[M_{k,l} \left(\| \frac{\Delta^r x_{k,l}}{\rho}, z_1, \cdots, z_{n-1} \| \right) \right) \right]^{p_{k,l}} < \lambda_{m,n} \max\{\epsilon_0^H, \epsilon_0^{H_0}\}$$

$$< \lambda_{m,n} \epsilon$$

$$\Longrightarrow \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \left[M_{k,l} \left(\| \frac{\Delta^r x_{k,l}}{\rho}, z_1, \cdots, z_{n-1} \| \right) \right) \right]^{p_{k,l}} < \epsilon.$$

This shows that

$$\left\{m, n \in \mathbb{N} : \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \left[M_{k,l} \left(M'_{k,l} \left(\left\| \frac{\Delta^r x_{k,l}}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right) \right]^{p_{k,l}} \ge \epsilon \right\} \subset B(\delta)$$

and so belongs to I. This proves the result.

(ii) Let $(x_{k,l}) \in (W_0^I)_2 \Big(\lambda, \mathcal{M}', \Delta^r, p, \|\cdot, \cdots, \cdot\|\Big) \cap (W_0^I)_2 \Big(\lambda, \mathcal{M}''_{k,l}, \Delta^r, p, \|\cdot, \cdots, \cdot\|\Big)$. Then the fact

$$\begin{split} \frac{1}{\lambda_{m,n}} \Big[(M'_{k,l} + M''_{k,l}) \Big(\| \frac{\Delta^r x_{k,l}}{\rho}, z_1, \cdots, z_{n-1} \| \Big) \Big]^{p_{k,l}} \\ & \leq D \frac{1}{\lambda_{m,n}} \Big[M'_{k,l} \Big(\| \frac{\Delta^r x_{k,l}}{\rho}, z_1, \cdots, z_{n-1} \| \Big) \Big]^{p_{k,l}} \\ & + D \frac{1}{\lambda_{m,n}} \Big[M''_{k,l} \Big(\| \frac{\Delta^r x_{k,l}}{\rho}, z_1, \cdots, z_{n-1} \| \Big) \Big]^{p_{k,l}} \end{split}$$

gives the result.

Theorem 2.5. The sequence spaces $(W_0^I)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\Big)$ and $(W_\infty^I)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\Big)$ are solid.

Proof. Let $(x_k) \in (W_0^I)_2(\lambda, \mathcal{M}, \Delta^r, p, \|\cdot, \cdots, \cdot\|)$, let $(\alpha_{k,l})$ be a sequence of scalars such that $|\alpha_{k,l}| \leq 1$ for all $k, l \in \mathbb{N}$. Then we have

such that
$$|\alpha_{k,l}| \leq 1$$
 for all $k,l \in \mathbb{N}$. Then we have
$$\left\{m,n \in \mathbb{N}: \frac{1}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \left[M_{k,l} \left(\|\frac{(\Delta^r \alpha_{k,l} x_{k,l})}{\rho}, z_1, \cdots, z_{n-1}\|\right)\right]^{p_{k,l}}\right\} \subset \mathbb{N}$$

$$\left\{m, n \in \mathbb{N} : \frac{C}{\lambda_{m,n}} \sum_{k,l \in I_{m,n}} \left[M_{k,l} \left(\left\| \frac{\Delta^r x_{k,l}}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_{k,l}} \ge \epsilon \right\} \in I,$$

where $C = \max\{1, |\alpha_{k,l}|^H\}$. Hence $(\alpha_{k,l}x_{k,l}) \in (W_0^I)_2(\lambda, \mathcal{M}, \Delta^r, p, \|\cdot, \cdots, \cdot\|)$ for all sequences of scalars $\alpha_{k,l}$ with $|\alpha_{k,l}| \leq 1$ for all $k,l \in \mathbb{N}$ whenever $(x_{k,l}) \in (W_0^I)_2(\lambda, \mathcal{M}, \Delta^r, p, \|\cdot, \cdots, \cdot\|)$.

Similarly, we can prove that $(W^I_\infty)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\Big)$ is also solid.

Theorem 2.6. The sequence spaces $(W_0^I)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\Big)$ and $(W_\infty^I)_2\Big(\lambda,\mathcal{M},\Delta^r,p,\|\cdot,\cdots,\cdot\|\Big)$ are monotone.

Proof. It is easy to prove so we omit the details.

References

- 1. B. Altay and F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl., 309 (2005), 70-90.
- 2. M. Başarır and O. Sonalcan, On some double sequence spaces, J. Indian Acad. Math., 21 (1999), 193-200.
- 3. F. Başar and Y. Sever, The space \mathcal{L}_q of double sequences, Math. J. Okayama Univ., 51 (2009), 149-157.
- 4. T. J. Bromwich, An introduction to the theory of infinite series, Macmillan and co. Ltd., New York (1965).
- 5. P. Das, P. Kostyrko, W. Wilczynski and P. Malik, I and I* convergence of double sequences, Math. Slovaca, 58 (2008), 605-620.
- 6. P. Das and P.Malik, On the statistical and I- variation of double sequences, Real Anal. Exchange, 33 (2)(2007-2008), 351-364.
- 7. M. Et and R. Çolak, On generalized difference sequence spaces, Soochow J. Math. 21 (1995), 377-386.
- 8. S. Gähler, Linear 2-normietre Rume, Math. Nachr., 28 (1965), 1-43.
- 9. M. Gurdal and S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bull. Math., 33 (2) (2009), 257-264.
- 10. H. Gunawan, On *n*-inner product, *n*-norms, and the Cauchy-Schwartz inequality, Sci. Math. Jap., 5 (2001), 47-54.
- 11. H. Gunawan, The space of p-summable sequence and its natural n-norm, Bull. Aust. Math. Soc., 64 (2001), 137-147.
- 12. H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (2001), 631-639.
- 13. G. H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil., Soc., 19 (1917), 86-95.
- 14. H. Kızmaz, On certain sequence spaces, Canad. Math-Bull., 24 (1981), 169-176.
- 15. P. Kostyrko, T. Salat and W. Wilczynski, I-Convergence, Real Anal. Exchange, 26 (2) (2000), 669-686.
- 16. L. Leinder, Über die la Vallee-Pousinche summierbarkeit allgemeiner orthogonalreihen, Acta Math. Hung., 16 (1965), 375-378.
- 17. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10(1971), 345-355.
- 18. L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
- 19. E. Malkowsky, M. Mursaleen and S. Suantai, The dual spaces of sets of difference sequences of order m and matrix transformations, Acta. Math. Sinica, 23(3) (2007), 521-532.
- 20. F. Moricz, Extension of the spaces c and c_0 from single to double sequences, Acta Math. Hungarica, 57 (1991), 129-136.
- 21. F. Moricz and B. E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104 (1988), 283-294.
- 22. A. Misiak, *n*-inner product spaces, Math. Nachr., 140 (1989), 299-319.
- 23. M. Mursaleen, Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293 (2004), 523-531.
- 24. M. Mursaleen, Generalized spaces of difference sequences, J. Math. Anal. Appl., 203 (1996), 738-745.

- 25. M. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), 223-231.
- 26. M. Mursaleen and O. H. H. Edely, Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293 (2004), 532-540.
- 27. J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034 (1983).
- 28. A. Pringsheim, Zur Theori der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289-321.
- 29. K. Raj, A. K. Sharma and S. K. Sharma, A Sequence space defined by Musielak-Orlicz function, Int. J. Pure Appl. Math., 67 (2011), 475-484.
- 30. K. Raj , S. K. Sharma and A. K. Sharma, Some difference sequence spaces in n-normed spaces defined by Musielak-Orlicz function, Armenian J. Math., 3 (2010), 127-141.
- 31. K. Raj and S. K. Sharma, Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz functions, Acta Univ. Sapientiae Math., 3 (2011), 97-109.
- 32. K. Raj and S. K. Sharma, Some difference sequence spaces in a 2-normed spaces using ideal convergence and Musielak Orlicz function, Far East J. Math. Sci., 52 (2011), 149-161.
- 33. K. Raj and S. K. Sharma, Some multiplier Double sequence spaces, Acta Math. Viet., 37 (2012), 391-495.
- 34. W. Raymond, Y. Freese and J. Cho, Geometry of linear 2-normed spaces, N. Y. Nova Science Publishers, Huntington, 2001.
- 35. A. Sahiner, M. Gurdal, S. Saltan and H. Gunawan, Ideal Convergence in 2-normed spaces, Taiwanese J. Math., 11 (2007), 1477-1484.
- 36. L. L. Silverman, On the definition of the sum of a divergent series, Ph. D. Thesis, University of Missouri Studies, Mathematics Series, (1913).
- 37. O. Toeplitz, Über allegenmeine linear Mittelbrildungen, Prace Mat.-Fiz (Warzaw) 22 (1913), 113-119.
- 38. B. C. Tripathy, Generalized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex spaces, Soochow J. Math., 30 (2004), 431-446.
- 39. B. C. Tripathy, Statistically convergent double sequences, Tamkang J. Math., 34 (2003), 231-237.
- 40. A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stud. 85 (1984).
- 41. M. Zeltser, Investigation of double sequence spaces by soft and hard analytical methods, Diss. Math. Univ. Tartu., 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu (2001).