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ABSTRACT. Let V I(A, H) be the set of all solutions of the following variational inequality
problem:

find u ∈ H such that 〈v − u, Au〉 ≥ 0, for all v ∈ H.

Where H is a Hilbert space, A : H → H is a Lipschitz continuous and monotone operator.
Assume that F : H → H is a Lipschitz continuous and strongly monotone operator. Let
f : H → H be a Lipschitz continuous mapping. In this paper, we consider a demiclosed,
demicontractive mapping T on H such that Fix(T ) ∩ V I(A, H) 6= ∅.

For finding an element x∗ which solves the following variational inequality problem: find
an x∗ ∈ Fix(T ) ∩ V I(A, H) such that

〈v − x∗, µFx∗ − γfx∗〉 ≥ 0, for all v ∈ Fix(T ) ∩ V I(A, H),

when µ and γ are positive real numbers which satisfy appropriate conditions, we introduce
a new general iterative algorithm and obtain strong convergence results.

KEYWORDS : Demicontractive mapping; Viscosity method; Monotone operator; Variational
inequality, Fixed point.
AMS Subject Classification: 58E35 47H09 47H05 47H10.

1. INTRODUCTION

Many problems arising in engineering sciences and structural analysis, are re-
duced to variational inequalities and fixed point problems, and iterative algorithms
to solve these problems have been proposed.

Let H be a real Hilbert space whose inner product and norm are denoted by
〈., .〉 and ‖.‖, respectively. Recall that a mapping F : H → H is called η−strongly
monotone operator if there is a positive real number η such that

〈Fx− Fy, x− y〉 ≥ η‖x− y‖2, for all x, y ∈ H.
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Assume that f : H → H is a α-contraction: that is, there is a constant α ∈ [0, 1)
such that ‖f(x) − f(y)‖ ≤ α‖x − y‖ for all x, y ∈ H. Let T be a nonexpansive
mapping on H. i.e. |T (x)− T (y)‖ ≤ ‖x− y‖ for x, y ∈ H. We use Fix(T ) to denote
the set of all fixed points of T.

The viscosity approximation method of selecting a particular fixed point of given
nonexpansive mapping was proposed by Moudafi [9]. Particularly, he introduced
the following process: Let x1 ∈ H be arbitrary and

xn+1 =
εn

1 + εn
f(xn) +

1
1 + εn

T (xn) n ≥ 0, (1.1)

where f is a contraction with the coefficient α ∈ [0, 1), T is a nonexpansive mapping
on H and {εn} is a sequence in (0, 1) such that

lim
n→∞

εn = 0, Σ∞n=0εn = ∞, and lim
n→∞

(
1
εn
− 1

εn+1
) = 0.

It is showed that the sequence {xn} generated by (1.1) converges strongly to the
unique solution x∗ ∈ Fix(T ) of the variational inequality:

〈(f − I)x∗, x− x∗〉 ≤ 0, for all x ∈ Fix(T ).
A typical problem is to minimize a quadratic function over the set of fixed points of
a nonexpansive mapping on a real Hilbert space H :

min{1
2
〈Bx, x〉 − 〈x, b〉 : x ∈ C}, (1.2)

where C is the set of all fixed points of a nonexpansive mapping T on H and b is a
given point in H, B is a strongly positive bounded linear map on H : That is, there
is a constant γ ≥ 0 with the following property

〈Bx, x〉 ≥ γ‖x‖2, for all x ∈ H. (1.3)

In [17], Xu proved that the sequence {xn} generated by the recursive relation

xn+1 = αnb + (1− αnB)Txn, n ≥ 0, (1.4)

converges strongly to the unique solution of the the quadratic minimization problem
(1.2) under suitable hypotheses on {αn}. In 2006, Marino and Xu combined the
iterative method (1.4) with the viscosity approximation method (1.1) and consider
the following iterative method:

xn+1 = αnγf(xn) + (1− αnB)Txn, n ≥ 0. (1.5)

They showed that if the sequence {αn} of parameters satisfies appropriate condi-
tions, then the sequence {xn} generated by (1.5) converges strongly to the unique
solution x̃ of the variational inequality

〈(γf −B)x̃, x− x̃〉 ≤ 0 for all x ∈ C, (1.6)

which is an optimal condition for the minimization problem

min{1
2
〈Bx, x〉 − h(x) : x ∈ C},

where h is a potential function for γf.
In 2009, Mainge [6] generalized the moudafi’s scheme (1.1), and proved strong

convergence results for quasi-nonexpansive mapping in Hilbert spaces.
In 2010, Tian defined the following iterative scheme

xn+1 = αnγf(xn) + (1− αnµF )T (xn) (1.7)
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where f : H → H is a contraction and F : H → H is a κ-Lipschitzian continuous
and η−strongly monotone operator with κ > 0, η > 0. He offered some strong
convergence results for the case that T is a nonexpansive mapping on H.

In [14], Tian extended the algorithm (1.7) and acquired a more general result:
suppose that T is a nonexpansive mapping on H, f is a L−Lipschitzian continuous
operator with L > 0 and F : H → H is a κ-Lipschitzian continuous and η−strongly
monotone operator with κ > 0, η > 0. Assume that 0 < µ < 2η/κ2, 0 < γ <

µ(η − µκ2

2 )/L = τ/L, and the sequence {αn} satisfies the following conditions,

lim
n→∞

αn = 0, Σ∞n=0αn = ∞ and Σ∞n=0|αn+1 − αn| < ∞,

then, the sequence {xn} defined by the recursive relation

xn+1 = αnγf(xn) + (1− αnµF )T (xn), for all n ≥ 0, (1.8)

converges strongly to the unique solution x∗ ∈ Fix(T ) of the following variational
inequality:

〈(γf − µF )x∗, x− x∗〉 ≤ 0, for all x ∈ Fix(T ). (1.9)

Currently, Tian and Jin [15] considered the following iterative algorithm. Let x0 = x
be an arbitrary element in H,

xn+1 = αnγf(xn) + (1− αnµF )Tw(xn), for all n ≥ 0, (1.10)

where w ∈ (0, 1
2 ), Tw := (1− w)I + wT, T is a quasi-nonexpansive mapping on H

and the sequence {αn} satisfies the following two conditions:

(i) limαn = 0.
(ii) Σ∞n=0αn = ∞.

They obtained strong convergence results over the class of quasi-nonexpansive
mappings in Hilbert spaces.

Before introducing our work in this paper, we need to offer a few background
on the Korpelevich extragradient method. Note that in this paper, we denote by
V I(A,C) the set of solutions of the following variational inequality problem:

find u ∈ C such that 〈v − u, Au〉 ≥ 0, for all v ∈ C, (1.11)

where C is a nonempty closed convex set in H and A : H → H is a monotone
mapping on C : that is,

〈Ax−Ay, x− y〉 ≥ 0, for all x, y ∈ C.

It should be noted that V I(A,C) is closed and convex (see [4] and [1]).
In 1976, Korpelevich [3] introduced the following so-called extragradient method:

x0 = x ∈ C,

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn),
(1.12)

for all n ≥ 0, where λ ∈ (0, 1
θ ), C is a closed convex subset of Rn and A is

a monotone and θ−Lipschitzian continuous mapping of C into Rn. Korpelevich
proved that if V I(A,C) is nonempty, then both sequences {xn} and {yn}, gener-
ated by (1.12), converge strongly to a point z ∈ V I(A,C).

The following iterative algorithm which is based on Korpelevich’s extragradient
method [3] and Mann’s iteration [7] was introduced by Nadezhkina and Takahashi
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[10], when T is a nonexpansive and A is monotone and θ−Lipschitz continuous:

x0 ∈ H,

yn = PC(xn − λnAxn),

xn+1 = αnxn + (1− αn)TPC(xn − λnAyn) n ≥ 0,

(1.13)

where λn ⊂ [a, b] for some a, b ∈ (0, 1
θ ) and αn ⊂ [c, d] for some c, d ∈ (0, 1). They

proved that both sequences {xn} and {yn} given by (1.13) converge weakly to the
same point in Fix(T ) ∩ V I(A,C).

The next algorithm in this direction was introduced by Zeng and Yao [20]. They
proved the following Theorem:

Theorem 1.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let A : C → H be a monotone, θ−Lipschitz continuous mapping and T : C → C be
a nonexpansive mapping such that Fix(T ) ∩ V I(A,C) 6= ∅. Let {xn} and {yn} be
two sequences generated by

x0 ∈ H,
yn = PC(xn − λnAxn),
xn+1 = αnx0 + (1− αn)TPC(xn − λnAyn) n ≥ 0,

.

where {λn} and {αn} satisfy the conditions

(H1) {αn} ⊂ [0, 1),
∑

n≥0 αn = ∞, αn → 0;
(H2) {θλn} ⊂ [a, b] (where 0 < a ≤ b < 1).

Then the sequences {xn} and {yn} converge strongly to the same point PFix(T )∩V I(A,C)x0

provided that ‖xn+1 − xn‖ → 0.

Suppose that T : H → H is a demicontractive mapping. In [4], for finding a
solution of the following variational inequality problem:

find x∗ ∈ Fix(T ) ∩ V I(A,H) such that
〈v − x∗, Fx∗〉 ≥ 0, for all v ∈ Fix(T ) ∩ V I(A,H), (1.14)

Mainge suggested a new iterative algorithm. Particularly, he proved the following
excellent criterion:

Theorem 1.2. ([4]) Assume that A : H → H is monotone on C and θ−Lipschitz
continuous on H. Suppose T : H → H is β−demicontractive, demiclosed with
Fix(T )∩V I(A,C) 6= ∅. Let F : H → H be a L−Lipschitzian, η−strongly monotone
operator with L > 0, η > 0, and assume that the following conditions hold:

(H1) w ∈ (0, 1−β
2 ];

(H2) {αn} ⊂ [0, 1), αn → 0;
(H3) {θλn} ⊂ [δ1, δ2] (where 0 < δ1 ≤ δ2 < 1);
(H4)

∑
n≥0 αn = ∞.

Then the sequences {xn}, {yn} and {tn} generated by following algorithm

x0 ∈ H,

yn = PC(xn − λnAxn),

tn = PC(xn − λnAyn),

xn+1 = [(1− w)I + wT ]υn, υn := tn − αnF (tn),

(1.15)

converge strongly to x∗, the unique solution of (1.14).
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In this paper, motivated by the above-mentioned works, we consider a demicon-
tractive mapping T on H such that Fix(T )∩V I(A,H) 6= ∅. For finding an element
x∗ which solves the following variational inequality problem:

find x∗ ∈ Fix(T ) ∩ V I(A,H) such that

〈v − x∗, µFx∗ − γfx∗〉 ≥ 0, for all v ∈ Fix(T ) ∩ V I(A,H),
(1.16)

we introduce the following iterative algorithm

x0 ∈ H,
yn = xn − λnAxn,
tn = xn − λnAyn,
xn+1 = αnγf(tn) + (1− αnµF )[(1− w)I + wT ](tn),

.

and prove that under appropriate assumptions, the sequences {tn}, {yn} and {xn}
converge strongly to the same point x∗ which is the unique solution of (1.16)

We note that the class of demicontractive mappings includes important oper-
ators such as quasi-nonexpansive mappings and the strictly pseudocontractive
mappings with fixed points. Hence, our algorithm, which deals with demicon-
tractive mappings and is based on the extragradient, visosity and Hybrid steepest
descent method, enables us to obtain more extended results.

2. PRELIMINARIES

Throughout this paper, we denote xn → x (respectively, xn ⇀ x) the strong
(respectively, weak) convergence of the sequence {xn} to x. Let C be a closed
convex subset of a Hilbert space H. Let us recall that a mapping T : H → H is
called

(i) quasi-nonexpansive if ‖Tx− q‖ ≤ ‖x− q‖ for all (x, q) ∈ H × Fix(T ).
(ii) demicontractive if there is β ∈ [0, 1) such that ‖Tx − q‖2 ≤ ‖x − q‖2 +

β‖x− Tx‖2 for all (x, q) ∈ H × Fix(T ).
Also recall that T : H → H is demiclosed at the origin if, for any sequence {xn} ⊂ H
with xn ⇀ x and (I − T )xn → 0, we have x ∈ Fix(T ).

Lemma 2.1. ([4]) Let T : H → H be a β−demicontractive mapping and let Tw :=
(1 − w)I + wT. Then Tw is a quasi-nonexpansive mapping on H if w ∈ [0, 1 − β].
Besides we have

‖Twx− q‖2 ≤ ‖x− q‖2 − w(1− β − w)‖x− Tx‖2.

Recall that the projection PC from H onto C assigns to each x ∈ H the unique
point PCx ∈ C satisfying the property

‖x− PCx‖ = min{‖x− y‖ : y ∈ C}.

The following lemma characterizes the projection PC .

Lemma 2.2. ([12]) Let C be a closed convex subset of a real Hilbert space H, x ∈ H
and y ∈ C. Then PCx = y if and only if

〈x− y, y − z〉 ≥ 0, for all z ∈ C. (2.1)

Lemma 2.3. Let H be a real Hilbert space. Then, the following simple well-known
result holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 x, y ∈ H.
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Lemma 2.4. ([17]) Let {an}∞n=1 be a sequence of non-negative real numbers satis-
fying the condition

an+1 ≤ (1− αn)an + αnδn n ≥ 1

where {αn} is a sequence in (0, 1) and {δn} is a real sequence such that

(i) Σ∞n=1αn = ∞.
(ii) lim supn→∞ δn ≤ 0.

Then limn→∞ an = 0.

Lemma 2.5. Let f : H → H be a L-Lipschitzian continuous operator with the
coefficient L > 0, F : H → H be a κ-Lipschitzian continuous and η−strongly
monotone operator with κ > 0, η > 0. Then, for 0 < γ ≤ µη

L ,

〈x− y, (µF − γf)x− (µF − γf)y〉 ≥ (µη − γL)‖x− y‖2.
That is, µF − γf is strongly monotone with coefficient µη − γL.

Lemma 2.6. Let F : H → H be a κ−Lipschitzian, η − strongly monotone operator
with κ > 0, η > 0, and f : H → H be a L−Lipschitzian mapping and assume that

0 < µ < 2η/κ2, 0 < γ < µ(η − µκ2

2 )/L = τ/L. Then we have

‖(1− αnµF )x− (1− αnµF )y‖ ≤ (1− αnτ)‖x− y‖ for all x, y ∈ H.

Lemma 2.7. ([6]) Let {Γn} be a sequence of nonnegative real numbers which is
not decreasing at infinity, in the sense that there exists a subsequence {Γnj

}j≥0 of
{Γn}n≥0 such that Γnj

< Γnj+1 for all j ≥ 0. Also, let {τ(n)}n≥0 be a sequence of
integers defined by

τ(n) = max{k ≤ n : Γk < Γk+1}.
Then {τ(n)}n≥0 is a nondecreasing sequence, limn→∞ τ(n) = ∞, and for all n ≥ 0,
Γτ(n) < Γτ(n)+1 and Γn < Γτ(n)+1.

The following lemma helps us to prove the main result of this paper in the next
section.

Lemma 2.8. ([4, Lemma 4.2]) Let A be a θ−Lipschitzian continuous and monotone
mapping on a real Hilbert space H. Assume that V I(A,C) 6= ∅. Let {tn}, {yn} and
{xn} be sequences in H such that

yn = PC(xn − λnAxn), tn = PC(xn − λnAyn).

Then, we have the following inequalities

‖yn− tn‖ ≤ θλn‖xn−yn‖ and ‖tn−u‖2 ≤ ‖xn−u‖2− (1−θ2λ2
n)‖xn−yn‖2,

where u is any element in V I(A,C).

Let C be a closed convex subset of a real Hilbert space H and let A : C → H be
a monotone mapping. Let NCv be the normal cone to C at v ∈ C, i.e., NCv = {w ∈
H : 〈v − u, w〉 ≥ 0 for all u ∈ C}, and define B : H → 2H by

Bv =
{

Av + NCv if v ∈ C,
∅ otherwise ,

(2.2)

then, B is maximal monotone: that is, the graph of B defined by G(B) = {(x, y) ∈
H ×H; y ∈ B(x)} is not contained in the graph of any other monotone mapping.
Furthermore, we have the well-known result that 0 ∈ Bv if and only if v ∈ V I(A,C)
(see, for instance, [20] and [11]). Thus,

〈u− v,−w〉 ≥ 0, for all (v, w) ∈ G(B) ⇒ u ∈ V I(A,C). (2.3)
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The following lemma gives us sufficient conditions ensuring that the weak cluster
points of the sequence {tn}, defined in the Lemma, belong to V I(A,C). The lemma
was proven implicitly in [20] and in [4], but, we bring the proof for the sake of
completeness.

Lemma 2.9. Let C be a closed convex subset of a real Hilbert space H and let A :
C → H be a θ−Lipschitzian continuous and monotone mapping. Let {λn} ⊂ [δ,∞)
(for some δ > 0 ) and let {tn}, {yn} and {xn} be sequences in C such that

yn = PC(xn − λnAxn), tn = PC(xn − λnAyn).

Assume that

(i) {tnk
} converges weakly to some u in C;

(ii) ‖xnk
− ynk

‖ → 0 and ‖tnk
− ynk

‖ → 0.

Then, u belongs to the set V I(A,C).

Proof. Assume that B is the mapping defined as in the (2.2). By the above com-
ments, since A is monotone and Lipschitz continuous on C, it follows that B is
maximal monotone. Hence, we can use the property (2.3). Suppose that {tnk

} con-
verges weakly to some u in C. We show that 〈u− v,−w〉 ≥ 0 for all (v, w) ∈ G(B).
For this purpose, let (v, w) be an arbitrary element of G(B). It follows from the
definition that w ∈ Av + NCv. Hence, w − Av ∈ NCv and 〈v − z, w − Av〉 ≥ 0 for
all z ∈ C. Since {tn} ⊂ C, we deduce that

〈v − tnk
, w〉 ≥ 〈v − tnk

, Av〉. (2.4)

Using (2.1) we have 〈xnk
− λnk

Aynk
− tnk

, tnk
− v〉 ≥ 0. Hence, we have

〈v − tnk
, w〉 ≥ 〈v − tnk

, Av〉 − 1
λnk

〈tnk
− v, xnk

− λnk
Aynk

− tnk
〉

= 〈v − tnk
, Av −Atnk

〉+ 〈v − tnk
, Atnk

−Aynk
〉

−〈v − tnk
,

tnk
−xnk

λnk
〉,

Now, since A is monotone, we deduce that

〈v − tnk
, w〉 ≥ 〈v − tnk

, Atnk
−Aynk

〉 − 〈v − tnk
,
tnk

− xnk

λnk

〉. (2.5)

Using (ii) and the fact that A is Lipschitz continuous it follows that ‖Atnk
−

Aynk
‖ → 0. On the other hand, since {tnk

} converges weakly to u, it follows that
{tnk

} is bounded. Let k →∞ in (2.5) and note that λnk
≥ δ > 0, hence, we deduce

that 〈v − u, w〉 ≥ 0 . Now (2.3) implies that u ∈ V I(A,C). �

3. MAIN RESULTS

In this section, we assume that H is a real Hilbert space. Let F be a κ-
Lipschitzian continuous and η− strongly monotone operator with κ > 0, η > 0, let
A be a monotone and θ−Lipschizian operator on H, let T be a β−demicontractive
mapping on H, and let f : H → H be a L-Lipschitzian continuous operator. As-
sume that Fix(T ) 6= ∅. Suppose that w ∈ (0, 1 − β). We note that Fix(T ) =
Fix(Tw). It follows from the Lemma 2.1 that Fix(T ) is closed and convex.

Lemma 3.1. Let A be a θ−Lipschitzian continuous and monotone mapping on H.
Assume that V I(A,H) 6= ∅. Let {tn}, {yn} and {xn} be sequences in H such that

yn = xn − λnAxn, tn = xn − λnAyn.

Let x∗ be the solution of the variational inequality (1.16). Assume that T : H → H
is demiclosed on H and Fix(T ) 6= ∅. Suppose that {tn} is a bounded sequence in
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H and ‖Ttn − tn‖ → 0. Suppose that ‖yn − tn‖ → 0 and ‖xn − yn‖ → 0. Then, we
have

. lim inf
n→∞

(µF − γf)x∗, tn − x∗〉 ≥ 0.

Proof. Since {tn} is bounded, we can take a subsequence {tnj} of {tn} such that

. lim inf
n→∞

〈(µF − γf)x∗, tn − x∗〉 = lim
j→∞

〈(µF − γf)x∗, tnj
− x∗〉,

and that tnj
⇀ t̃. Since T is demiclosed on H, we have t̃ ∈ Fix(T ). Now, since

‖yn − tn‖ → 0 and ‖xn − yn‖ → 0 it follows from the Lemma 2.9 that t̃ belongs to
V I(A,H). Thus, t̃ ∈ Fix(T )∩ V I(A,H). Since x∗ is the solution of the variational
inequality (1.16), we obtain that

lim inf
n→∞

(µF − γf)x∗, tn − x∗〉 = 〈(µF − γf)x∗, t̃− x∗〉 ≥ 0.

�

Now, we are ready to prove the main result of this paper:

Theorem 3.1. Assume that A : H → H is a monotone and θ−Lipschitz continuous
mapping. Suppose T : H → H is β−demicontractive, demiclosed with Fix(T ) ∩
V I(A,H) 6= ∅. Let F : H → H be a κ−Lipschitzian, η−strongly monotone operator
with κ > 0, η > 0, and f : H → H be a L−Lipschitzian mapping and assume that
the following conditions hold:

(H1) 0 < µ < 2η/κ2, 0 < γ < µ(η − µκ2

2 )/L = τ/L;
(H2) w ∈ (0, 1− β);
(H3) {αn} ⊂ (0, 1), αn → 0;
(H4) {θλn} ⊂ [δ1, δ2] (where 0 < δ1 ≤ δ2 < 1);
(H5)

∑
n≥0 αn = ∞.

Then, the sequences {xn}, {yn} and {tn} generated by following algorithm

x0 ∈ H,

yn = xn − λnAxn,

tn = xn − λnAyn,

xn+1 = αnγf(tn) + (1− αnµF )[(1− w)I + wT ](tn),

(3.1)

converge strongly to x∗, the unique solution of (1.16).

Proof. First, we show that {xn} is bounded.
Indeed, if p ∈ Fix(T ) ∩ V I(A,H), by Lemmas 2.1, 2.6 and 2.8, we have

‖xn+1 − p‖ = ‖αnγf(tn) + (1− αnµF )Tw(tn)− p‖
= ‖αnγ(f(tn)− f(p)) + αn(γf(p)− µFp)

+ (1− αnµF )Tw(tn)− (1− αnµF )p‖
≤ αnγL‖tn − p‖+ αn‖γf(p)− µFp‖+ (1− αnτ)‖tn − p‖
≤ (1− αn(τ − γL))‖tn − p‖+ αn‖γf(p)− µFp‖
≤ (1− αn(τ − γL))‖xn − p‖+ αn‖γf(p)− µFp‖

(3.2)

By induction, we have

‖xn − p‖ ≤ max{‖x0 − p‖, ‖γf(p)− µFp‖
τ − γL

}, for all n ≥ 0.
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Thus, {xn} is bounded. Lemma 2.8 implies the boundedness of the sequences {tn}
and {f(tn)}. Also from the definition, we deduce the boundedness of the sequence
{yn}.

Since x∗ ∈ Fix(T ) ∩ V I(A,H), we can use the Lemmas 2.3 and 2.1 to deduce
that

‖xn+1 − x∗‖2 = ‖(1− αnµF )Tw(tn)− (1− αnµF )x∗ − αn(µFx∗ − γf(tn))‖2

= ‖((1− αnµF )Tw(tn)− (1− αnµF )x∗)

− αn(µFx∗ − γf(x∗) + γf(x∗)− γf(tn))‖2

≤ ‖((1− αnµF )Tw(tn)− (1− αnµF )x∗)‖2

− 2αn〈µFx∗ − γf(x∗) + γf(x∗)− γf(tn), xn+1 − x∗〉
≤ (1− αnτ)2‖(Tw(tn)− x∗)‖2

− 2αn〈µFx∗ − γf(x∗) + γf(x∗)− γf(tn), xn+1 − x∗〉
≤ (1− αnτ)2‖tn − x∗‖2 − (1− αnτ)2(w(1− β − w)‖tn − Ttn‖2)
− 2αn〈µFx∗ − γf(x∗), xn+1 − x∗〉
− 2αn〈γf(x∗)− γf(tn), xn+1 − x∗〉

≤ (1− αnτ)2(‖xn − x∗‖2 − (1− θ2λ2
n))‖xn − yn‖2)

− (1− αnτ)2(w(1− β − w)‖tn − Ttn‖2)
− 2αn〈µFx∗ − γf(x∗), xn+1 − x∗〉 − 2αn〈γf(x∗)

− γf(tn), xn+1 − x∗〉.
(3.3)

Let Γn := ‖xn − x∗‖2. Now, we consider two cases to prove that xn → x∗.
Case 1. There is n0 such that Γn+1 ≤ Γn for all n ≥ n0. It follows that limn→∞ Γn

exists and hence limn→∞ Γn − Γn+1 = 0.
The inequality (3.3) implies that

(1− αnτ)2(w(1− β − w)‖tn − Ttn‖2 + (1− θ2λ2
n))‖xn − yn‖2)

≤ (1− αnτ)2‖xn − x∗‖2 − ‖xn+1 − x∗‖2

− 2αn〈µFx∗ − γf(x∗), xn+1 − x∗〉
− 2αn〈γf(x∗)− γf(tn), xn+1 − x∗〉

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

− 2αn〈µFx∗ − γf(x∗), xn+1 − x∗〉
− 2αn〈γf(x∗)− γf(tn), xn+1 − x∗〉.

(3.4)

Since {xn} and {f(tn)} are bounded and αn → 0 and limn→∞ Γn−Γn+1 = 0, from
the inequality (3.4) it follows that ‖tn−Ttn‖ → 0 and ‖xn−yn‖ → 0. By considering
the Lemma 2.8 and the assumption H(4), we also obtain that ‖yn − tn‖ → 0.

Notice that, since ‖tn − Ttn‖ → 0 and T is demiclosed on H, every weak cluster
point of {tn} belongs to Fix(T ). On the other hand, we have

‖xn+1 − tn‖ = ‖αnγf(tn) + (1− αnµF )Tw(tn)− tn‖
= ‖αn(γf(tn)− µFTw(tn)) + w(Ttn − tn)‖
≤ αn‖γf(tn)− µF (Twtn)‖+ w‖Ttn − tn‖ → 0.

(3.5)
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Hence we deduce that

‖xn+1 − xn‖ ≤ ‖xn+1 − tn‖+ ‖tn − yn‖+ ‖yn − xn‖ → 0.

From (3.5) we have

lim inf
n→∞

〈µFx∗ − γf(x∗), tn − x∗〉 = lim inf
n→∞

〈µFx∗ − γf(x∗), xn+1 − x∗〉.

It can be checked that all of conditions of the Lemma 3.1 are satisfied, thus we may
deduce that

lim inf
n→∞

〈µFx∗ − γf(x∗), tn − x∗〉 ≥ 0.

Hence it follows that

lim inf
n→∞

〈µFx∗ − γf(x∗), xn+1 − x∗〉 ≥ 0. (3.6)

Now, (3.3) implies that for all n > n0 :

‖xn+1 − x∗‖2 ≤ (1− αnτ)2(‖xn − x∗‖2 − (1− θ2λ2
n))‖xn − yn‖2)

−(1− αnτ)2w(1− β − w)‖tn − Ttn‖2
−2αn〈µFx∗ − γf(x∗), xn+1 − x∗〉
−2αn〈γf(x∗)− γf(tn), xn+1 − x∗〉

≤ (1− αnτ)2‖xn − x∗‖2 + 2αnγL‖tn − x∗‖‖xn+1 − x∗‖
−2αn〈µFx∗ − γf(x∗), xn+1 − x∗〉

≤ (1− αnτ)2‖xn − x∗‖2 + 2αnγL‖xn − x∗‖‖xn+1 − x∗‖
−2αn〈µFx∗ − γf(x∗), xn+1 − x∗〉

≤ (1− 2αnτ + (αnτ)2))‖xn − x∗‖2 + 2αnγL‖xn − x∗‖‖xn+1 − x∗‖
−2αn〈µFx∗ − γf(x∗), xn+1 − x∗〉

≤ (1− 2αnτ + (αnτ)2))‖xn − x∗‖2 + 2αnγL‖xn − x∗‖2
−2αn〈µFx∗ − γf(x∗), xn+1 − x∗〉

≤ (1− 2αn(τ − γL))‖xn − x∗‖2 + 2αn(τ − γL)(αnτ2‖xn−x∗‖2
2(τ−γL)

− 〈µFx∗−γf(x∗),xn+1−x∗〉
τ−γL )

.

Recall that by the the assumption 0 < γ < τ/L. Since {xn}, {f(xn)} and {f(xn)}
are bounded and αn → 0, we deduce from (3.6) that

lim sup
n→∞

(
αnτ2‖xn − x∗‖2

2(τ − γL)
− 〈µFx∗ − γf(x∗), xn+1 − x∗〉

τ − γL
)) ≤ 0,

Now, we can apply the Lemma 2.4 to conclude xn → x∗. Also, since ‖yn − xn‖ → 0
and ‖tn − yn‖ → 0, we have yn → x∗ and tn → x∗.

Case 2. Assume that there is a subsequence {Γnj}j≥0 of {Γn}n≥0 such that
Γnj

< Γnj+1 for all j > 0. In this case, it follows from Lemma 2.7 that there is
a subsequence {Γτ(n)}n≥0 of {Γn}n≥0 such that Γτ(n) < Γτ(n)+1 and {τ(n)} is
defined as in Lemma 2.7. In this case, first, we show that ‖tτ(n) − Ttτ(n)‖ → 0. It
follows from inequality (3.3) that

(1− αnτ)2(w(1− β − w)‖tτ(n) − Ttτ(n)‖2 + (1− θ2λ2
n)‖xτ(n) − yτ(n)‖2)

≤ (1− ατ(n)τ)2‖xτ(n) − x∗‖2 − ‖xτ(n)+1 − x∗‖2

− 2ατ(n)〈µFx∗ − γf(x∗), xτ(n)+1 − x∗〉
− 2ατ(n)〈γf(x∗)− γf(tτ(n)), xτ(n)+1 − x∗〉

≤ ‖xτ(n) − x∗‖2 − ‖xτ(n)+1 − x∗‖2

− 2ατ(n)〈µFx∗ − γf(x∗), xτ(n)+1 − x∗〉
− 2ατ(n)〈γf(x∗)− γf(tτ(n)), xτ(n)+1 − x∗〉.

(3.7)
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Since {xn}, and {tn}, {f(tn)} are bounded and Γτ(n) < Γτ(n)+1, it follows from the
above inequality that

‖tτ(n) − Ttτ(n)‖ → 0 and ‖xτ(n) − yτ(n)‖ → 0. (3.8)

Now, we can apply the Lemma 2.8 to conclude that ‖yτ(n) − tτ(n)‖ → 0. Also we
have

‖xτ(n)+1 − tτ(n)‖ = ‖ατ(n)γf(tτ(n)) + (1− ατ(n)µF )Tw(tτ(n))− tτ(n)‖
= ‖ατ(n)(γf(tτ(n))− µFTw(tτ(n))) + w(Ttτ(n) − tτ(n))‖
≤ ατ(n)‖γf(tτ(n))− µF (Twtτ(n))‖+ w‖Ttτ(n) − tτ(n)‖ → 0.

Hence, we deduce that

‖xτ(n)+1−xτ(n)‖ ≤ ‖xτ(n)+1− tτ(n)‖+‖tτ(n)−yτ(n)‖+‖yτ(n)−xτ(n)‖ → 0.) (3.9)

Since ‖xτ(n)+1 − tτ(n)‖ → 0, it follows that

lim inf
n→∞

〈µFx∗ − γf(x∗), tτ(n) − x∗〉 = lim inf
n→∞

〈µFx∗ − γf(x∗), xτ(n)+1 − x∗〉. (3.10)

On the other hand, as ‖tτ(n) − Ttτ(n)‖ → 0 and T is demiclosed on H, we can use
Lemma 3.1 to deduce that

lim inf
n→∞

〈µFx∗ − γf(x∗), tτ(n) − x∗〉 ≥ 0. (3.11)

From (3.10) and (3.11), we deduce that

lim inf
n→∞

〈µFx∗ − γf(x∗), xτ(n)+1 − x∗〉 ≥ 0. (3.12)

Now, we use the inequality (3.3) to conclude that

‖xτ(n)+1 − x∗‖2 ≤ (1− ατ(n)τ)2‖xτ(n) − x∗‖2

− (1− ατ(n)τ)2(1− θ2λ2
τ(n))‖xτ(n) − yτ(n)‖2

− (1− ατ(n)τ)2w(1− β − w)‖xτ(n) − Txτ(n)‖2

− 2ατ(n)〈µFx∗ − γf(x∗), xτ(n)+1 − x∗〉
− 2ατ(n)〈γf(x∗)− γf(tτ(n)), xτ(n)+1 − x∗〉

≤ (1− 2ατ(n)τ + α2
τ(n)τ

2)‖xτ(n) − x∗‖2

− 2ατ(n)〈µFx∗ − γf(x∗), xτ(n)+1 − x∗〉
− 2ατ(n)〈γf(x∗)− γf(tτ(n)), xτ(n) − x∗〉
− 2ατ(n)〈γf(x∗)− γf(tτ(n)), xτ(n)+1 − xτ(n)〉

≤ (1− 2ατ(n)τ + α2
τ(n)τ

2)‖xτ(n) − x∗‖2

− 2ατ(n)〈µFx∗ − γf(x∗), xτ(n)+1 − x∗〉
+ 2ατ(n)γL‖tτ(n) − x∗‖‖xτ(n) − x∗‖
− 2ατ(n)〈γf(x∗)− γf(tτ(n)), xτ(n)+1 − xτ(n)〉

≤ (1− 2ατ(n)τ + α2
τ(n)τ

2)‖xτ(n) − x∗‖2

− 2ατ(n)〈µFx∗ − γf(x∗), xτ(n)+1 − x∗〉
+ 2ατ(n)γL‖xτ(n) − x∗‖2

− 2ατ(n)〈γf(x∗)− γf(tτ(n)), xτ(n)+1 − xτ(n)〉.

(3.13)



290 A.R. MEDGHALCHI AND H. MIRZAEE/JNAO : VOL. 3, NO. 2, (2012), 279-292

Recall Γτ(n) < Γτ(n)+1 for all n ≥ 0. From the inequality (3.13) we have

0 ≤ ‖xτ(n)+1 − x∗‖2 − ‖xτ(n) − x∗‖2

≤ 2ατ(n)(−τ‖xτ(n) − x∗‖2 + γL‖xτ(n) − x∗‖2

+
ατ(n)

2
τ2‖xτ(n) − x∗‖2 − 〈µFx∗ − γf(x∗), xτ(n)+1 − x∗〉

+ ‖γf(x∗)− γf(tτ(n))‖‖xτ(n)+1 − xτ(n)‖).

(3.14)

Since 0 < αn < 1, inequality (3.14) implies that

(τ − γL)‖xτ(n) − x∗‖2 ≤ (
ατ(n)

2
τ2‖xτ(n) − x∗‖2 − 〈µFx∗ − γf(x∗), xτ(n)+1 − x∗〉

+ ‖γf(x∗)− γf(tτ(n))‖‖xτ(n)+1 − xτ(n)‖).
(3.15)

Since {xn} and {f(tn)} are bounded, it follows from (3.9) and (3.12) that

lim sup
n→∞

(
ατ(n)

2
τ2‖xτ(n) − x∗‖2 − 〈µFx∗ − γf(x∗), xτ(n)+1 − x∗〉

+ ‖γf(x∗)− γf(tτ(n))‖‖xτ(n)+1 − xτ(n)‖) ≤ 0.
(3.16)

From (3.15) and (3.16) we deduce that

lim
n→∞

Γτ(n) = lim
n→∞

‖xτ(n) − x∗‖2 = 0.

Since ‖xτ(n)+1 − xτ(n)‖ → 0, it follows that

lim
n→∞

‖xτ(n)+1 − x∗‖2 = 0.

On the other hand, from Lemma 2.7 we have Γn < Γτ(n)+1 for all n ≥ 0, and
therefore, xn → x∗. Since ‖yn − xn‖ → 0 and ‖tn − yn‖ → 0, we have yn → x∗ and
tn → x∗. �

If we take f ≡ 0 in the above Theorem, we have the following Theorem:

Theorem 3.2. Assume that A : H → H is a monotone and θ−Lipschitz continuous
mapping. Suppose T : H → H is β−demicontractive, demiclosed with Fix(T ) ∩
V I(A,H) 6= ∅. Let F : H → H be a κ−Lipschitzian, η−strongly monotone operator
with κ > 0, η > 0, and assume that the following conditions hold:

(H1) 0 < µ < 2η/κ2;
(H2) w ∈ (0, 1− β);
(H3) {αn} ⊂ (0, 1), αn → 0;
(H4) {θλn} ⊂ [δ1, δ2] (where 0 < δ1 ≤ δ2 < 1);
(H5)

∑
n≥0 αn = ∞.

Then the sequences {xn}, {yn} and {tn} generated by following algorithm

x0 ∈ H,
yn = xn − λnAxn,
tn = xn − λnAyn,
xn+1 = (1− αnµF )[(1− w)I + wT ](tn),

.

converge strongly to x∗ which is the unique solution of the following variational
inequality problem

find x∗ ∈ Fix(T ) ∩ V I(A,H) such that

〈v − x∗, µFx∗〉 ≥ 0, for all v ∈ Fix(T ) ∩ V I(A,H).
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Corollary 3.2. Assume that A : H → H is a monotone and θ−Lipschitz con-
tinuous mapping. Suppose T : H → H is β−demicontractive, demiclosed with
Fix(T )∩V I(A,H) 6= ∅. Let u ∈ H be arbitrary chosen and assume that the follow-
ing conditions hold:

(H1) w ∈ (0, 1− β);
(H2) {αn} ⊂ (0, 1), αn → 0;
(H3) {θλn} ⊂ [δ1, δ2] (where 0 < δ1 ≤ δ2 < 1);
(H4)

∑
n≥0 αn = ∞.

Then the sequences {xn}, {yn} and {tn} generated by following algorithm

x0 ∈ H,
yn = xn − λnAxn,
tn = xn − λnAyn,
xn+1 = αnu + (1− αn)[(1− w)I + wT ](tn),

.

converge strongly to x∗, which satisfies x∗ = PFix(T )∩V I(A,H)(u).

Proof. In Theorem 3.1 set F := I − u. Note that F is 1-Lipschizian and 1-strongly
monotone operator and the result follows. �

We can also drive the following corollary from the Theorem 3.1:

Corollary 3.3. Assume that A : H → H is a monotone and θ−Lipschitz continuous
mapping. Suppose T : H → H is β−demicontractive, demiclosed with Fix(T ) ∩
V I(A,C) 6= ∅. Let u ∈ H be arbitrary chosen and f : H → H be a L−Lipschitzian
mapping and assume that the following conditions hold:

(H1) 0 < µ < 2, 0 < γ < µ(1− µ
2 )/L = τ/L;

(H2) w ∈ (0, 1− β);
(H3) {αn} ⊂ (0, 1), αn → 0;
(H4) {θλn} ⊂ [δ1, δ2] (where 0 < δ1 ≤ δ2 < 1);
(H5)

∑
n≥0 αn = ∞.

Then the sequences {xn}, {yn} and {tn} generated by following algorithm

x0 ∈ H,
yn = xn − λnAxn,
tn = xn − λnAyn,
xn+1 = αnγf(tn) + αnµu + (1− αnµ)[(1− w)I + wT ](tn),

.

converge strongly to x∗, which satisfies x∗ = PFix(T )∩V I(A,H)(u + γ
µf(x∗)).

In the next Corollary, we show that Theorem 3.1 can be applied to approximating
common zeroes of monotone operators:

Corollary 3.4. Assume that A : H → H is a monotone and θ−Lipschitz continuous
mapping. Let D : H → 2H be a maximal monotone mapping such that A−1(0) ∩
D−1(0) 6= ∅. Let JD

r be the resolvent of D for each r > 0. Let u ∈ H be arbitrary
chosen and let f : H → H be a L−Lipschitzian mapping and assume that the
following conditions hold:

(H1) 0 < µ < 2, 0 < γ < µ(1− µ
2 )/L = τ/L;

(H2) w ∈ (0, 1);
(H3) {αn} ⊂ (0, 1), αn → 0;
(H4) {θλn} ⊂ [δ1, δ2] (where 0 < δ1 ≤ δ2 < 1);
(H5)

∑
n≥0 αn = ∞.
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Then the sequences {xn}, {yn} and {tn} generated by following algorithm

x0 ∈ H,

yn = xn − λnAxn,

tn = xn − λnAyn,

xn+1 = αnγf(tn) + αnµu + (1− αnµ)[(1− w)I + wJD
r ](tn),

(3.17)

converge strongly to x∗, which satisfies x∗ = PA−1(0)∩D−1(0)(u + γ
µf(x∗)).

Proof. Recall that JD
r is a nonexpansive mapping ( hence demiclosed and

0−demicontractive). On the other hand, we have A−1(0) = V I(A,H) and
Fix(JD

r ) = D−1(0). So we can apply Corollary 3.3 to conclude that the sequences
{xn}, {yn} and {tn} generated by the iterative method (3.17) converge strongly to
x∗, which satisfies x∗ = PA−1(0)∩D−1(0)(u + γ

µf(x∗)). �
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