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ABSTRACT. Let VI(A, H) be the set of all solutions of the following variational inequality
problem:

find v € H such that (v—u, Au) >0, forallv e H.

Where H is a Hilbert space, A : H — H is a Lipschitz continuous and monotone operator.
Assume that F' : H — H is a Lipschitz continuous and strongly monotone operator. Let
f : H — H be a Lipschitz continuous mapping. In this paper, we consider a demiclosed,
demicontractive mapping 7' on H such that Fiz(T)NVI(A, H) # @.

For finding an element x* which solves the following variational inequality problem: find
an z* € Fiz(T) N VI(A, H) such that

(v—a*, uFx* —~fz") >0, forallve Fiz(T)NVI(A, H),

when g and 7y are positive real numbers which satisfy appropriate conditions, we introduce
a new general iterative algorithm and obtain strong convergence results.

KEYWORDS : Demicontractive mapping; Viscosity method; Monotone operator; Variational
inequality, Fixed point.
AMS Subject Classification: 58E35 47H09 47H05 47H10.

1. INTRODUCTION

Many problems arising in engineering sciences and structural analysis, are re-
duced to variational inequalities and fixed point problems, and iterative algorithms
to solve these problems have been proposed.

Let H be a real Hilbert space whose inner product and norm are denoted by
(.,.) and |.||, respectively. Recall that a mapping F' : H — H is called n—strongly
monotone operator if there is a positive real number 7 such that

(Fz — Fy,x —y) > |z —y||?, forallz,yec H.
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Assume that f : H — H is a a-contraction: that is, there is a constant « € [0,1)
such that ||f(z) — f(y)|| < allz — y| for all z,y € H. Let T be a nonexpansive
mapping on H.i.e. |T(z) —T(y)| < ||z —y| for z,y € H. We use Fiz(T) to denote
the set of all fixed points of 7"

The viscosity approximation method of selecting a particular fixed point of given

nonexpansive mapping was proposed by Moudafi [9]. Particularly, he introduced
the following process: Let z; € H be arbitrary and
En
= — —7T >0 1.1
Tn41 1t €nf($n) + 1+e, (rn) n >0, (1.1)

where f is a contraction with the coefficient @ € [0, 1), T is a nonexpansive mapping
on H and {e,} is a sequence in (0, 1) such that
1 1

lim ¢, =0, X7, =00, and lim (— —
n—oo n—oo &p En+1

) =0.

It is showed that the sequence {z,} generated by (1.1) converges strongly to the
unique solution z* € Fiz(T') of the variational inequality:

(f = Dz*,x—2*) <0, forallz e Fix(T).

A typical problem is to minimize a quadratic function over the set of fixed points of
a nonexpansive mapping on a real Hilbert space H :

min{%(mec) —{x,by: x € C}, (1.2)

where C' is the set of all fixed points of a nonexpansive mapping 7' on H and b is a
given point in H, B is a strongly positive bounded linear map on H : That is, there
is a constant v > 0 with the following property

(Bx,x) > 7||z||?, forallz € H. (1.3
In [17], Xu proved that the sequence {xn} generated by the recursive relation
Tpt1 = b+ (1 —a,B)Tx,, n>0, (1.4)

converges strongly to the unique solution of the the quadratic minimization problem
(1.2) under suitable hypotheses on {«,}. In 2006, Marino and Xu combined the
iterative method (1.4) with the viscosity approximation method (1.1) and consider
the following iterative method:

Tnt1 = anYf(zn) + (1 —a,B)Tx,, n>0. (1.5)

They showed that if the sequence {a,,} of parameters satisfies appropriate condi-
tions, then the sequence {xz, } generated by (1.5) converges strongly to the unique
solution z of the variational inequality

(wf—-B)z,z—z) <0 forallz e C, (1.6)

which is an optimal condition for the minimization problem
1
min{i(Bx,@ —h(x):x € CY,

where h is a potential function for - f.

In 2009, Mainge [6] generalized the moudafi’s scheme (1.1), and proved strong
convergence results for quasi-nonexpansive mapping in Hilbert spaces.

In 2010, Tian defined the following iterative scheme
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where f : H — H isacontractionand F' : H — H is a k-Lipschitzian continuous
and 7n—strongly monotone operator with x > 0, > 0. He offered some strong
convergence results for the case that 7" is a nonexpansive mapping on .

In [14], Tian extended the algorithm (1.7) and acquired a more general result:
suppose that T' is a nonexpansive mapping on H, f is a L—Lipschitzian continuous
operator with L > O and F' : H — H is a x-Lipschitzian continuous and n—strongly
monotone operator with x > 0, n > 0. Assume that 0 < p < 277//@2, 0<vy<

w(n — ”T’{Z) /L = 7/L, and the sequence {«, } satisfies the following conditions,

3 o0 oo
nlLH;o an =0, X0 o, =00 and X7 |lant1 — an| < 00,

then, the sequence {x,,} defined by the recursive relation
Tnt1 = Y f(2n) + (1 — anuF)T(z,), for allm > 0, (1.8)

converges strongly to the unique solution z* € Fix(T') of the following variational
inequality:

(vf —pF)x*,x—x*) <0, forallz € Fix(T). (1.9)

Currently, Tian and Jin [15] considered the following iterative algorithm. Let o = =
be an arbitrary element in H,

Tnt1 = Y f(xn) + (1 — anpuF) Ty (x,), foralln >0, (1.10)

where w € (0, %), Ty := (1 —w)l + wT, T is a quasi-nonexpansive mapping on H

and the sequence {«, } satisfies the following two conditions:

@) lima,, = 0.

(i) X7 gay, = 00.
They obtained strong convergence results over the class of quasi-nonexpansive
mappings in Hilbert spaces.

Before introducing our work in this paper, we need to offer a few background

on the Korpelevich extragradient method. Note that in this paper, we denote by
VI(A,C) the set of solutions of the following variational inequality problem:

find u € C such that (v —u, Au) > 0, forallv € C, (1.11)

where C' is a nonempty closed convex set in H and A : H — H is a monotone
mapping on C : that is,

(Azx — Ay, z —y) >0, for all z,y € C.

It should be noted that VI (A, C) is closed and convex (see [4] and [ ]).
In 1976, Korpelevich [3] introduced the following so-called extragradient method:

ro=x € C,
Yn = PC(mn - )\A$n), (1.12)
Tnt+1 = PC(:L'n - )‘Ayn)a

for all n > 0, where A € (0, %)7 C is a closed convex subset of R” and A is
a monotone and #—Lipschitzian continuous mapping of C' into R™. Korpelevich
proved that if VI(A, C) is nonempty, then both sequences {xz,} and {y,}, gener-
ated by (1.12), converge strongly to a point z € VI(A, C).

The following iterative algorithm which is based on Korpelevich’s extragradient
method [3] and Mann’s iteration [7] was introduced by Nadezhkina and Takahashi
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[10], when T is a nonexpansive and A is monotone and §—Lipschitz continuous:
Tg € H,
Yn = PC(xn _)\nAxn>7 (113)
xn—i—l = 0pTp + (1 - an)TPC(xn - A'rLAyn) n Z 07
where \,, C [a,b] for some a,b € (0, %) and «, C [c,d] for some ¢,d € (0, 1). They
proved that both sequences {z,} and {y,} given by (1.13) converge weakly to the
same point in Fiz(T)NVI(A,C).
The next algorithm in this direction was introduced by Zeng and Yao [20]. They
proved the following Theorem:

Theorem 1.1. Let C' be a nonempty closed convex subset of a real Hilbert space H.
Let A : C — H be a monotone, §—Lipschitz continuous mapping and T : C' — C be
a nonexpansive mapping such that Fiz(T) N VI(A,C) # @. Let {z,,} and {y,} be
two sequences generated by
xo € H,
Yn = PC(xn - )\nAxn)7
Tpt1 = anZo + (1 — an)TPe(xn — MAyn) n >0,
where {\,} and {a,} satisfy the conditions
H1) {an} C [07 1), ano ap =00, an — 0;
H2) {0\, } C [a,b] (where 0 <a<b<1).
Then the sequences {,, } and {y, } converge strongly to the same point Pr;,(T)nv1(A,c)T0
provided that ||z ,+1 — @ || — 0.

Suppose that T' : H — H is a demicontractive mapping. In [4], for finding a
solution of the following variational inequality problem:

find z* € Fiz(T)NVI(A, H) such that
(v—2a*, Fa*) >0, forallv € Fiz(T)NVI(A, H), (1.14)

Mainge suggested a new iterative algorithm. Particularly, he proved the following
excellent criterion:

Theorem 1.2. ([4]) Assume that A : H — H is monotone on C' and 6—Lipschitz
continuous on H. Suppose T' : H — H is —demicontractive, demiclosed with
Fix(T)NVI(A,C) # @. Let F : H — H be a L—Lipschitzian, n— strongly monotone
operator with L > 0,1 > 0, and assume that the following conditions hold:
(HD) w € (0, 357];
H2) {a,} C[0,1), a — O;
(H3) {9/\n} - [51,(52] (where 0<d << 1);
(H4) ano Q) = OQO.
Then the sequences {z, }, {y»} and {t,,} generated by following algorithm
xg € H,
Yn = PC(l'n - )\nAl'n)v
th = PC(ln - AnAyn)v
Tpy1 = [(1 — w) +wT v, Up =ty — an F(tn),

(1.15)

converge strongly to x*, the unique solution of (1.14).
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In this paper, motivated by the above-mentioned works, we consider a demicon-
tractive mapping T on H such that Fiz(T)NVI(A, H) # &. For finding an element
x* which solves the following variational inequality problem:

find z* € Fix(T) N VI(A, H) such that

1.16
(v—a*, uFa* —~yfa*) >0, forallv € Fiz(T)NVI(A, H), ( )

we introduce the following iterative algorithm

xo € H,

Yn = Tp — )\nAxna

tn = Tn — A AYn,

Tpy1 = apYf(tn) + (1 — anpF)[(1 —w)l +wT](t,),

and prove that under appropriate assumptions, the sequences {t,}, {y,} and {z,}
converge strongly to the same point 2* which is the unique solution of (1.16)

We note that the class of demicontractive mappings includes important oper-
ators such as quasi-nonexpansive mappings and the strictly pseudocontractive
mappings with fixed points. Hence, our algorithm, which deals with demicon-
tractive mappings and is based on the extragradient, visosity and Hybrid steepest
descent method, enables us to obtain more extended results.

2. PRELIMINARIES

Throughout this paper, we denote z,, — x (respectively, z,, — z) the strong
(respectively, weak) convergence of the sequence {xn} to z. Let C be a closed
convex subset of a Hilbert space H. Let us recall that a mapping 7' : H — H is
called

(i) quasi-nonexpansive if || Tz — q|| < ||z — ¢|| for all (x,q) € H x Fiz(T).
(i) demicontractive if there is 3 € [0,1) such that ||[Tz — ¢||* < ||z — q||* +
Bllz — Tx|]? for all (z,q) € H x Fix(T).

Alsorecallthat T : H — H is demiclosed at the origin if, for any sequence {z,,} C H
with z,, = z and (I — T)z,, — 0, we have z € Fiz(T).

Lemma 2.1. ([4]) Let T : H — H be a §—demicontractive mapping and let T,, :=
(1 —w)I +wT. Then T, is a quasi-nonexpansive mapping on H ifw € [0,1 — f].
Besides we have

ITwe = all* < |z = ql* — w1 = 8 - w)||lz — Tz

Recall that the projection Px from H onto C' assigns to each x € H the unique
point Pox € C satisfying the property

l& = Poz|| = min{||lz —y[| : y € C}.
The following lemma characterizes the projection FPc.

Lemma 2.2. ([ ]) Let C be a closed convex subset of a real Hilbert space H, x € H
andy € C. Then Pox = y if and only if

(rt—y,y—2)>0, forallzeC. 2.1)

Lemma 2.3. Let H be a real Hilbert space. Then, the following simple well-known
result holds:

lz+yl* < |lz|® +2(y,x+y) x,y€H.
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Lemma 2.4. ([17]) Let {a, }5°; be a sequence of non-negative real numbers satis-
Jying the condition
ant1 < (1 —ap)an +and, n>1

where {ay, } is a sequence in (0,1) and {d,,} is a real sequence such that

D X520y = 00.

(i) limsup,, . 0n < 0.
Thenlim, o a, = 0.
Lemma 2.5. Let f : H — H be a L-Lipschitzian continuous operator with the

coefficient L > 0, F' : H — H be a k-Lipschitzian continuous and 7—strongly
monotone operator with k > 0, n > 0. Then, for 0 < v < %,

(@ =y, (WF —vf)z — (uF = 7f)y) = (un —L)l|lz —y|*.
That is, uF' — v f is strongly monotone with coefficient un — L.

Lemma 2.6. Let F': H — H be a k—Lipschitzian, n — strongly monotone operator
with k > 0,7 > 0, and f : H — H be a L—Lipschitzian mapping and assume that
2

0<p<2n/k? 0<~<pln—*1-)/L =7/L. Then we have

1= anpF)e — (1 — anpF)y| < (1 - a7z — | Jorallz,y ¢ H.
Lemma 2.7. ([6]) Let {I',,} be a sequence of nonnegative real numbers which is
not decreasing at infinity, in the sense that there exists a subsequence {I‘nj } >0 of
{I'}n>o0 such that Ty, < Ty, 11 forall j > 0. Also, let {T(n)},>0 be a sequence of
integers defined by

T(n) =max{k <n: Tk <Tiy1}.

Then {7(n)},>0 is a nondecreasing sequence, lim,,_,~, 7(n) = oo, and for alln > 0,
Fr(n) < F‘r(n)+1 andI'y, < 1—“r(n)—‘,-l'

The following lemma helps us to prove the main result of this paper in the next
section.

Lemma 2.8. ([ , Lemma 4.2]) Let A be a §— Lipschitzian continuous and monotone
mapping on a real Hilbert space H. Assume that VI(A,C) # @. Let {t,}, {yn} and
{zn} be sequences in H such that

Yn = PC(xn - )\nAxn>7 tn = PC(xn - AnAyn)
Then, we have the following inequalities
[yn —tall < ONullzn —yull — and  |ta —ul® < [lzn —ull® = (1= 0°A7) 20 —ya?,
where u is any element in VI(A, C).

Let C be a closed convex subset of a real Hilbert space H and let A : C' — H be
a monotone mapping. Let Nov be the normal cone to C at v € C, i.e., Nov = {w €
H : (v —u,w) >0forallu € C}, and define B : H — 2 by

Bo — { Av + Ncow if ved, 2.2)

%] otherwise ,
then, B is maximal monotone: that is, the graph of B defined by G(B) = {(z,y) €
H x H; y € B(x)} is not contained in the graph of any other monotone mapping.
Furthermore, we have the well-known result that 0 € Bv ifand only ifv € VI(A4,C)
(see, for instance, [20] and [ ]). Thus,

(u—wv,—w) >0, forall (v,w) e G(B)=uecVIA,C). (2.3)
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The following lemma gives us sufficient conditions ensuring that the weak cluster
points of the sequence {t, }, defined in the Lemma, belong to VI(A, C). The lemma
was proven implicitly in [20] and in [4], but, we bring the proof for the sake of
completeness.

Lemma 2.9. Let C be a closed convex subset of a real Hilbert space H and let A :
C — H be a §—Lipschitzian continuous and monotone mapping. Let {\,} C [§, c0)
(for some § > 0 ) and let {t,, }, {yn} and {z,} be sequences in C such that

Yn = Po(xn — MAxy),  tn = Po(xn — MAyn).
Assume that
() {tn,} converges weakly to some u in C;
@) [[2n, = yn, | = 0 and [[tn, —yn, || — 0.
Then, u belongs to the set VI(A,C).

Proof. Assume that B is the mapping defined as in the (2.2). By the above com-
ments, since A is monotone and Lipschitz continuous on C)| it follows that B is
maximal monotone. Hence, we can use the property (2.3). Suppose that {t,, } con-
verges weakly to some v in C. We show that (u — v, —w) > 0 for all (v, w) € G(B).
For this purpose, let (v, w) be an arbitrary element of G(B). It follows from the
definition that w € Av + N¢v. Hence, w — Av € Ngv and (v — z,w — Av) > 0 for
all z € C. Since {t,} C C, we deduce that

(v =tp,,w) > (v—ty,, Av). (2.4)
Using (2.1) we have (z,,, — A, AYn, — tn,,tn, —v) > 0. Hence, we have
<U - tnkaw> > <U - tnkaAv> - ﬁ@m — U, Tn, — )\nkAynk - tnk>
= (v —tn,, Av— Atp, ) + (v —tn,, Atn, — AYn,.)

tn, —Tn
_</U_tnk7nijnk>7

Now, since A is monotone, we deduce that
tp, — T
(U —tn, W) > (v —t,,, Atn, — Ayn,) — (v —t,,, %y (2.5)
nk
Using (i7) and the fact that A is Lipschitz continuous it follows that ||At,, —
Ayn, || — 0. On the other hand, since {t,,} converges weakly to u, it follows that

{tn, } is bounded. Let k — oo in (2.5) and note that A,, > § > 0, hence, we deduce
that (v — u,w) > 0. Now (2.3) implies that u € VI(A4,C). O

3. MAIN RESULTS

In this section, we assume that H is a real Hilbert space. Let F' be a k-
Lipschitzian continuous and n— strongly monotone operator with x > 0, n > 0, let
A be a monotone and 6—Lipschizian operator on H, let T be a §—demicontractive
mapping on H, and let f : H — H be a L-Lipschitzian continuous operator. As-
sume that Fiz(T) # @. Suppose that w € (0,1 — ). We note that Fiz(T) =
Fix(Ty). It follows from the Lemma 2.1 that Fiz(T) is closed and convex.

Lemma 3.1. Let A be a §—Lipschitzian continuous and monotone mapping on H.
Assume that VI(A, H) # &. Let {t, }, {yn} and {z,,} be sequences in H such that

Yn = Ty — )\nAl'na tp = Tn — )\nAyn

Let z* be the solution of the variational inequality (1.16). Assume thatT : H — H
is demiclosed on H and Fixz(T) # &. Suppose that {t,} is a bounded sequence in
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H and ||Tt,, — t,|| — 0. Suppose that ||y, — t,|| — 0 and ||z, — yn|| — 0. Then, we

have
liminf(puF — v f)z*, t, —z*) > 0.

n—oo

Proof. Since {t,} is bounded, we can take a subsequence {t,,} of {t,} such that

lminf((uF —vf)a*, t, —2") = lim ((uF =y f)a" tn, —2"),
n— o0 Jj—o0

and that ¢,,, — ¢. Since T is demiclosed on H, we have ¢ € Fiz(T). Now, since
lYn — tn|l — 0 and |z, — y,|| — O it follows from the Lemma 2.9 that ¢ belongs to
VI(A, H). Thus, t € Fiz(T)NVI(A, H). Since x* is the solution of the variational
inequality (1.16), we obtain that

liminf(uF —yf)a*, t, — ") = (uF —yf)a*,t —2") > 0.

Now, we are ready to prove the main result of this paper:

Theorem 3.1. Assume that A : H — H is a monotone and 6—Lipschitz continuous
mapping. Suppose T : H — H is f—demicontractive, demiclosed with Fiz(T) N
VI(A,H) # @. Let F : H — H be a k—Lipschitzian, n — strongly monotone operator
with k > 0,7 > 0, and f : H — H be a L—Lipschitzian mapping and assume that
the following conditions hold:

H1) 0<p<2n/k?, 0<~vy<pln-— “T"Q)/L =71/L;
H2) we (0,1 - 0);

H3) {an} C (0,1), oy — 0;

(H4) {9)\n} C [(51,52} (where 0<d <d< 1),

(H5) ano 0y, = 00.

Then, the sequences {x, }, {y,} and {t,,} generated by following algorithm

xg € H,
Yn = Ty — AnAxna
(3.1)
tn = Tn — ApAyn,
xn—‘—l - an")/f(tn) + (1 - O‘n:U'F)[(l - 'LU)I + U)T](tn)7
converge strongly to x*, the unique solution of (1.16).
Proof. First, we show that {z,} is bounded.
Indeed, if p € Fiz(T)N VI(A, H), by Lemmas 2.1, 2.6 and 2.8, we have
|Znt1 = pll = llanyf(tn) + (1 — anpF) Ty (tn) — pll
= llany(f(tn) = f(p)) + an(vf(p) — nFp)
+ (1 — anuF )Ty (tn) — (1 — apuF)p
(1= QnptF) T (tn) — (1 = anpF)pl .

< anyLllty = pll + anllvf(p) — pFpll + (1 — anT)|tn — pll
< (1= an(r = vD)lltn — pll + anllvf(p) — nFpl|
< (1= an(r —yL)|[zn — pl| + anllvf(p) — nFp||

By induction, we have

| Ivf(p) — uEpl|

_pll < _
[n — pll < max{||zo — p| p——5

1 for all n > 0.
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Thus, {z,} is bounded. Lemma 2.8 implies the boundedness of the sequences {¢,,}
and {f(t,)}. Also from the definition, we deduce the boundedness of the sequence

{yn}-

Since z* € Fiz(T)NVI(A, H), we can use the Lemmas 2.3 and 2.1 to deduce
that
lzns1 =2 ? = (1 = @upF)Tw(tn) — (1 = anpF)z”™ — an(pFa* = vf(ta))|?
= [I((1 = anpF) Ty (tn) = (1 = anpuk)a™)
— an(uFa* =y f(2*) + 7 f (@) = 7f ()|
<A = anpF) Ty (tn) — (1 = cnpF)z")||?
— 20 (pFa” =y f(2") + 7S (&) = 7f (tn), Tnga — @)
< (1= onm)?[[(Tow(tn) — 2|
= 20 (pFa” — yf(a") + 7 f(27) = v (tn), Tnsr — 27)
< (1= anm)?[ltn = 2| = (1 = cn7)*(w(l = B = w)[tn — Tta)
= 2ap(pF” —vf(@"), xpi1 — x7)
— 20 (7f(z") = 7f (tn), Tn1 — 27)
< (1= anm)* (o = a™[* = (1 = 6°22))llzn = yull)
— (1= anm) (w1l = B —w)|tn — Tta]|*)
—2an(pFz" =y f(2"), tn1 — ") = 200 (7 f (27)
=7 f(tn), Tnga — 27).
(3.3)

Let '), := ||z, — 2*||%>. Now, we consider two cases to prove that z,, — z*.

Case 1. There is ng such thatI';, ;1 <T'), foralln > ng. It follows that lim,, o, I',
exists and hence lim,, ., I';, —I';,41 = 0.

The inequality (3.3) implies that

(1= ) (w1 = B = w)lltn = Tta]|* + (1 = *A7)) |20 — ynll*)
< (1= anm)?[lzn — 2 ))* = s — 2|2
— 20 (UFE" — (@), Tng1 — o)
= 20, (1 () = 1 (b, Fnss — 2
< llan — 2| = llzns1 — 2*)?
=20, (uF2” —yf(2%), Tpg1 — 2%)
20 (1 £ (") = 1f () T — 5.
(3.4)

Since {z,} and {f(t,)} are bounded and «,, — 0 and lim,,_,oc I';, —T',41 = 0, from
the inequality (3.4) it follows that ||t,—T't,|| — 0 and ||z, —y»|| — 0. By considering
the Lemma 2.8 and the assumption H (4), we also obtain that ||y, — ¢,| — 0.

Notice that, since ||¢, — Tt,|| — 0 and T is demiclosed on H, every weak cluster
point of {¢,,} belongs to Fiz(T). On the other hand, we have

[Zn+1 = tull = [lanyf(tn) + (1 — anpF) Ty (tn) — tal
= |lan(vf(tn) — pEFTyw(tn)) +w(Tty, —t,)|| (3.5)
< an|vf(tn) = pF (Twtn)|| + w|| Tty — tn]] — 0.
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Hence we deduce that
[#nt1 = @nll < lZnss = tull + [t = ynll + lyn — 2]l — 0.
From (3.5) we have
liminf(uFa* —yf(x*),t, — ™) = liminf(uFz* — vf(z¥), xpe1 — 7).
n—oo n—oo

It can be checked that all of conditions of the Lemma 3.1 are satisfied, thus we may
deduce that
liminf(uFz* — v f(z*), t, —a™) > 0.
n—oo

Hence it follows that

liminf(uFz* — vy f(z*), xpy1 — ) > 0. (3.6)

Now, (3.3) implies that for all n > ny :

Jonss — 2P < (1= ant)2 (o — 27| = (1 — 02X2)) 0 — )

—(1 = apm)?w(l — B —w)||t, — Tta|?
=20, (pF'x* — 7 f(2%), Tpir — 27)
—2an (v f(2*) =7 f(tn), Tpi1 — 27)

< (1= anr)2lzn — 22 + 20y Lltn — 2 [2ns1 — 2°]
—2an(pFr* —vf(@"), xpi1 — 27)

< (1= an7)?[lag — 2*)1? + 200 YLz — 2* ||| 204 — 2]
20 (uF 2 — Af(@"), Tmgr — )

< (1= 2007 + (0n7)?)) |20 — 2*||* + 200y Lllwn — 2% || 241 — 27
—2an(pFr* —yf(2"), pt1 — ")

< (1 =20, + (n™)®)) |20 — 2*||? + 20n YL || —
20 (WFa* — 1 f(@"), Tns1 — 7% o

< (1= 200 (7 = 7L)) 2 — 22 + 20 (r — yL) (22 lza" 12

_wFz"—f(2") znp1—z") )
T—~L

*“2

Recall that by the the assumption 0 < v < 7/L. Since {z,}, {f(z,)} and {f(z,)}
are bounded and «,, — 0, we deduce from (3.6) that

limsup(am—Q”xn B x*HQ _ <MF$* B ’Yf(x*)amn-‘rl — l‘*>)) < 07
n—00 2(T‘AJ7L) T“’VL
Now, we can apply the Lemma 2.4 to conclude x,, — z*. Also, since ||y, — x| — 0
and ||t, — yn|| — 0, we have y,, — z* and t,, — z*.
Case 2. Assume that there is a subsequence {I';,};>0 of {I'n},>0 such that
Iy, < Ty,,, for all j > 0. In this case, it follows from Lemma 2.7 that there is

a subsequence {I';(,)}n>0 of {I'n}n>0 such that I';(,,) < T'r(n)41 and {7(n)} is
defined as in Lemma 2.7. In this case, first, we show that ||t.(,,) — Tt ([ — 0. It
follows from inequality (3.3) that
(1= ant)*(w(l = B = w)ltr(ny = Ttrim)l” + (1 = X227 (n) = Yr(m)lI°)
< (1= armyT)?|2rm) — 2*I1° = |27 (ny11 — 2|2
— 20 () (pFx™ — v f(2"), Tr ()41 — T7)
=20, () (VF (@) =V (tr(n))s Tr(ny41 — T7) (3.7)
< Nzrmy = 217 = ll@r@y+1 — «*|1?
— 20 () (pF™ — v f(27), T r ()41 — T7)
= 200 () (Y (@) = 7 f (tr(n))s Tr(my+1 — @)
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Since {z,}, and {t,}, { f(t,)} are bounded and I';(,,y < I'7()1, it follows from the
above inequality that

||tr(n) - Ttr(n) || — 0 and ||.T7.(n) —Yr(n) || — 0. (3.8)

Now, we can apply the Lemma 2.8 to conclude that |y.(,) — t-(n)|| — 0. Also we
have

Hmr(n)-&-l - tT(n) ” = ||O‘T(n)’7f(t7—(n)) + (1 - O‘T(n)/ij)Tw(tT(n)) - tT(n) ”
< Qr(n) ”’Vf(tr(n)) - :uF(th'r(n))H + w”TtT(n) —tr(n) | — 0.

Hence, we deduce that

Hx’r(n)+1 —ZLr(n) || < ||x‘r(n)+1 - t-r(n) H + ||t7-(n) —Yr(n) || + HyT(n) — L7 (n) H - 0) (3.9)
Since [|27(n)4+1 — trm)ll — 0, it follows that

liminf(uFz* —vf(2"),tr ) — %) = liminf(uFr* —vf(2"), 2 (n)41 — 7). (3.10)

On the other hand, as ||t (,) — T't-(n)|| — 0 and 7" is demiclosed on H, we can use
Lemma 3.1 to deduce that

liminf(uFz* —yf(x*),t;n) — ) > 0. (3.11)

From (3.10) and (3.11), we deduce that

liminf(uFa* —vf(2"), )41 —2") > 0. (3.12)
n—o0
Now, we use the inequality (3.3) to conclude that

Hx‘r(n)—&-l - x*HQ < (1 - O‘T(n)T)2Hx‘r(n) - x*HQ
— (1= armym)? (1 = X2 () |7 (m) = Yy
— (1= armm)?w(l = 8= w) |2y — T2r() |1?
=20, () (pFT" =V f(27), Tr(ny 11 — 27)
=20, () (VF (@) = 7 f (tr () Tr(n)+1 — @)
< (1= 2077 + &2 () T |27 () — 2|2
=20 () (UE'T" =7 f(2"), Tr(n) 11 — T7)
=207y (Vf (@) = 7 f (tr(n))s Tr(n) — 27)
=207y (Vf(@7) = 7 f (tr () Tr(n)+1 — Tr(n)) (3.13)
< (1= 20,37 + ai(n)72)||x7(n) — 2|2
=20 () (F ™ — 7 f(2"), Zr(ny 41 — 27)
+ 200 ()Y Ltr () — 27|27 () — 27|
= 20,(n) (Y (@) = 7 (tr(n))s Tr(m) 41 — Tr(n))
< (1 =200y + 2 (T2 ) [T () — 2|2
=20 () (F ™ — v f(2"), Zr(ny 41 — T7)
+ 207 (m) VL || 7 () — 27|
=20 () (VF (@) =V f (tr(n))s Tr(n)+1 — Tr(n))-
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Recall I';(,,) < I';()41 for all n > 0. From the inequality (3. 13) we have
0 < Nzr(nyr1 = @)1 = |27y — 2|

< 2a7(n)(_THxT(n) - ‘T*HZ + ’yL”x‘r(n) - m*”Q

Qr(n * * * *
%TQHJCT(M —2"|* = (uF2" =y f(@"), Tr(nyp1 — 27)

+ ||’Yf(x*) - 'Vf(t‘r(n))HHxT(n)+1 - x‘r(n)ll)'
Since 0 < a;, < 1, inequality (3.14) implies that

(3.14)
4

* Oé.,-( ) * * * *
(1 = YD)l = 2" < (=572 2e ) = 27|17 = (pF2™ = 4 (27), @2 ()1 = 27)

+ H'Yf(l'*) - f)/f(tf(n))”HxT(n)-&-l - z‘r(n)”)'
(3.15)

Since {z,} and {f(¢,)} are bounded, it follows from (3.9) and (3.12) that

Qr(n)

lim sup(

n—oo

7—2”3:7'(71) - JZ*H2 - <,qu* - ’Yf(x*)ax‘r(n)Jrl - $*>

+ v f @) =7 Er) s+ = 2r@ml) < 0.
(3.16)

From (3.15) and (3.16) we deduce that
lim Ty = Hm 2y —27* = 0.
n— oo n—oo

Since [|2;(n)+1 — Trn)|| — 0, it follows that
lim ([ 1 — o2 = 0.
n—oo

On the other hand, from Lemma 2.7 we have I';, < I';(;,)41 for all n > 0, and
therefore, x,, — x*. Since ||y, — x,,|| — 0 and ||t, — y»|| — 0, we have y,, — z* and
t, — x*. O

If we take f = 0 in the above Theorem, we have the following Theorem:

Theorem 3.2. Assume that A : H — H is a monotone and 6—Lipschitz continuous
mapping. Suppose T : H — H is f—demicontractive, demiclosed with Fiz(T") N
VI(A,H) # @. Let F : H — H be a k—Lipschitzian, ) — strongly monotone operator
with k > 0,1 > 0, and assume that the following conditions hold:

(H1) 0 < p < 2n/K?%

(H2) w e (0,1 - 3);

H3) {a,} C (0,1), ay, — 0;

(H4) {9>\n} C [61,52} (where 0<d <da< 1),

(H5) ano Oy, = 00.
Then the sequences {z, }, {y»} and {t,,} generated by following algorithm

xo € H,

Yn = Tp — AnAxna

tp = xp — )\nAyna

Tar = (1= anpF)[(1 = w) + wT)(t,),

converge strongly to x* which is the unique solution of the following variational
inequality problem
findz* € Fix(T)NVI(A, H) such that
(v—a*, uFx*) >0, forallv € Fiz(T)NVI(A H).
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Corollary 3.2. Assume that A : H — H is a monotone and 0—Lipschitz con-
tinuous mapping. Suppose T : H — H is f—demicontractive, demiclosed with
Fix(T)NVI(A,H) # @. Letu € H be arbitrary chosen and assume that the_follow-
ing conditions hold:

(H1) w e (0,1 —0);

H2) {an} C (0,1), a, — O

(H3) {9)\,1} C [61,(52] (where 0<d <d < 1);

(H4) ano Qy = 00.

Then the sequences {z,}, {y,} and {t,} generated by following algorithm

xo € H,

Yn = Tp — )\nAx'ru

tn = Tn — ApAyn,

Tnt1 = apt+ (1 — o) [(1 — w)I + wT)(tn),

converge strongly to x*, which satisfies ** = Ppiy(T)nv1(A,m) (u).

Proof. In Theorem 3.1 set I’ := I — u. Note that F' is 1-Lipschizian and 1-strongly
monotone operator and the result follows. O

We can also drive the following corollary from the Theorem 3.1:

Corollary 3.3. Assume that A : H — H is a monotone and 6— Lipschitz continuous
mapping. Suppose T : H — H is —demicontractive, demiclosed with Fixz(T) N
VI(A,C) # @. Letu € H be arbitrary chosen and f : H — H be a L—Lipschitzian
mapping and assume that the following conditions hold:

HD) 0<p<2, O0<~vy<wp(l-%5)/L=r1/L;

(H2) we (0,1 — 0);

H3) {an} C(0,1), ay — 0;

(H4) {9)\71} C [(51,(52] (where 0<d < < 1);

(H5) ano oy = 00.

Then the sequences {z, }, {y,} and {t,} generated by following algorithm

xo € H,

Yn = Tp — )\nAx'ru

th = xpn — A'rLAyrm

Tnt1 = anYf(tn) + anpu+ (1 — anp)[(1 — w)I +wT(tn),

converge strongly to x*, which satisfies ©* = Ppiy(rynvia,m)(u + %f(x*))

In the next Corollary, we show that Theorem 3.1 can be applied to approximating
common zeroes of monotone operators:

Corollary 3.4. Assume that A : H — H is a monotone and 60— Lipschitz continuous
mapping. Let D : H — 2% be a maximal monotone mapping such that A=*(0) N
D=1(0) # o. Let JP be the resolvent of D for each v > 0. Let u € H be arbitrary
chosen and let f : H — H be a L—Lipschitzian mapping and assume that the
Jollowing conditions hold:

HD) 0<pu<2, O0<y<upu(l-5)/L=1/L;

(H2) w € (0,1);

H3) {an} C (0,1), o — 0

(H4) {0\,} C [01,02] (where 0 < < bz <1);

(H5) ano Q= 00.
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Then the sequences {x, }, {y,} and {t,,} generated by following algorithm
xg € H,

Yn = Ty — )\nA:L'n7

t, =xp — )\nAyna (3.17)

Tng1 = VS (tn) + omp + (1 — anp) [(1 = w)I + wJP](tn),

converge strongly to x*, which satisfies ©* = Pa-1(0)np-1(0)(u + %f(ac*))

Proof. Recall that JTD is a nonexpansive mapping ( hence demiclosed and
0—demicontractive). On the other hand, we have A~1(0) = VI(A, H) and
Fiz(JP) = D1(0). So we can apply Corollary 3.3 to conclude that the sequences
{zn}, {yn} and {t,} generated by the iterative method (3.17) converge strongly to
a*, which satisfies ©* = P4-1(0)np-1(0)(u + £ f(2")). O
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