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2 Laboratoire de Mathématiques et Applications, Bd. Pierre et Marie Curie, Téléport 2, B.P. 30179,
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ABSTRACT. We provide sufficient convergence conditions for the semilocal convergence of
Ulm’s method [9] to a locally unique solution of an equation in a Banach space setting.
Our results compare favorably to recent ones by Ezquerro and Hernández [3] which have
improved earlier ones [4], [6]–[10], since under the same computational cost we provide:
larger convergence domain; finer error bounds on the distances involved, and an at least as
precise information on the location of the solution.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution x? of equation

F (x) = 0, (1.1)
where, F is a Fréchet–differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y.

A large number of problems in applied mathematics and also in engineering are
solved by finding the solutions of certain equations. For example, dynamic sys-
tems are mathematically modeled by difference or differential equations and their
solutions usually represent the states of the systems. For the sake of simplicity,
assume that a time–invariant system is driven by the equation ẋ = Q(x), for some
suitable operator Q, where x is the state. Then the equilibrium states are deter-
mined by solving equation (1.1). Similar equations are used in the case of discrete
systems. The unknowns of engineering equations can be functions (difference, dif-
ferential and integral equations), vectors (systems of linear or nonlinear algebraic
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equations), or real or complex numbers (single algebraic equations with single un-
knowns). Excpet in special cases, the most commonly used solution methods are
iterative–when starting from one or several initial approximations a sequence is
constructed that converges to a solution of the equation. Iteration methods are
also applied for solving optimization problems. In such cases, the iteration se-
quences converge to an optimal solution of the problem at hand. Since all of these
methods have the same recursive structure, they can be introduced and discussed
in a general framework.

In [9], Ulm introduced method

Bn+1 = 2 Bn −Bn F ′(xn) Bn (x0 ∈ D), B0 ∈ L(Y,X ),
xn+1 = xn −Bn F (xn) (n ≥ 0) (1.2)

to generate a sequence {xn} approximating x?. Method (1.2) has some usefull
properties: First it is like Newton’s method, self–correcting. Second, it converges
with Newton–like rate. Third, it is inversion free unlike Newton’s method. Fourth,
apart from solving equation (1.1), the method generates successive approximation:
Bn ∈ L(Y,X ) to the inverse derivative F ′(x?)−1 which important especially when
one is interested in solutions sensitive to small perturbations [2], [6].

Ulm [9], Moser [6], Hald [4], Zehnder [10], Petzeltova [7], Potra [8] and others [1],
[2] have provided sufficient convergence conditions under various assumptions for
the convergence of method (1.2) to x?.

Recently, Ezquerro and Hernández [3] provided a semilocal convergence analysis
for method (1.2) using recurrence relations and conditions which are more general
than the mentioned works (see also [5]). They also gave numerical examples where
their results hold when the ones by the authors mentioned above do not hold.

Here we are motivated by optimization considerations and the work in [3]. In
particular we also provide sufficient convergence conditions for method (1.2) using
similar recurrence relations. However under the same computational cost as in [3],
our approach has the following advantages:

(a) larger convergence domain;
(b) finer error estimations on the distances ‖ xn+1 − xn ‖, ‖ xn − x? ‖ (n ≥ 0);

and
(c) an at least as precise information on the location of the solution of x?.

2. Semilocal convergence analysis of method (1.2)

To make the paper as self–contained as possible, we re–introduce some of the
notations used in [3]. We assume throughout this study:

(H1) ‖ B0 ‖≤ c0,
(H2) ‖ F (x0) ‖≤ η,
(H3) 0 <‖ I − F ′(x0) B0 ‖≤ a0 < 1,
(H4) (H4) ‖ F ′(x)−F ′(y) ‖≤ ω(‖ x−y ‖), for all x, y ∈ D and some continuous

non–decreasing function such that

ω(t r) ≤ ω(r) tp for all r > 0, t ∈ [0, 1], p ∈ [0, 1].

It then follows from (H4) that there exists a continuous and non–decreasing func-
tion ω0 : (0,+∞) −→ (0,+∞) such that

‖ F ′(x)− F ′(x0) ‖≤ ω0(‖ x− x0 ‖) for all x ∈ D
and

ω0(r) ≤ ω(r) for all r > 0. (2.1)
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Clearly
ω(r)
ω0(r)

can be arbitrarily large [1], [2]. Function ω0 is not used in [3]. It turn

out that the introduction of function ω0 in case it is strictly smaller than ω is the
reason for the finer convergence analysis than in [3] that follows:

Let us set
b0 = c0 ω0(c0 η). (2.2)

Define auxiliary scalar functions g and h by

g(x, y) = x +
y

1 + p
(2.3)

and
h(x, y) = 1 + x + y. (2.4)

We shall show that method (1.2) is well defined. Note that if x1 ∈ D, then

‖ I − F ′(x1)B0 ‖ = ‖ I − F ′(x0) B0 + (F ′(x0)− F ′(x1))B0 ‖
≤ a0 + ω0(‖ x1 − x0 ‖) ‖ B0 ‖= a0 + b0;

‖ B1 −B0 ‖ = ‖ B0 −B0 F ′(x1) B0 ‖
= ‖ B0 (I − F ′(x1) B0) ‖
≤ c0 (a0 + b0);

‖ F (x1) ‖ ≤ ‖ I − F ′(x0) B0 ‖ ‖ F (x0) ‖ +
∫ 1

0

ω(t ‖ x1 − x0 ‖) dt ‖ x1 − x0 ‖

≤ g(a0, b0) ‖ F (x0) ‖;
‖ B1 ‖ = ‖ 2 B0 −B0 F ′(x1) B0 ‖

≤ ‖ B0 ‖ + ‖ B0 −B0 F ′(x1) B0 ‖
≤ c0 + c0 (a0 + b0) = c0 h(a0, b0);

‖ x2 − x1 ‖≤‖ B1 ‖ ‖ F (x1) ‖≤ g(a0, b0)h(a0, b0) ‖ F (x0) ‖;
‖ x2 − x0 ‖≤ (1 + g(a0, b0)h(a0, b0)) ‖ B0 ‖ ‖ F (x0) ‖;

and if x2 ∈ D, g(a0, b0)h(a0, b0) < 1, then we get

‖ B1 ‖ ‖ F ′(x2)− F ′(x1) ‖≤ b0 g(a0, b0)p h(a0, b0)1+p,

and
‖ I − F ′(x1) B1 ‖≤‖ I − F ′(x1)B0 ‖2≤ (a0 + b0)2,

so that
‖ I − F ′(x2) B1 ‖ ≤ ‖ I − F ′(x1) B1 ‖ + ‖ F ′(x2)− F ′(x1) ‖ ‖ B1 ‖

≤ (a0 + b0)2 + b0 g(a0, b0)p h(a0, b0)1+p,

and

‖ B2 −B1 ‖≤ c0 h(a0, b0)
[
(a0 + b0)2 + b0 g(a0, b0)p h(a0, b0)1+p

]
.

Let us set

a1 = (a0 + b0)2, b1 = b0 g(a0, b0)p h(a0, b0)1+p and c1 = c0 h(a0, b0).

Then we can define scalar sequences for all n ≥ 1:

an = (an−1 + bn−1)2 (2.5)

bn = bn−1 g(an−1, bn−1)p h(an−1, bn−1)1+p (2.6)
cn = cn−1 h(an−1, bn−1). (2.7)

Let us also define scalar sequences {αn}, {βn}, {γn} used in [3] as {an}, {bn} and
{cn} respectively with

γ0 = c0, α0 = a0
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but

β0 = c0 ω(c0 η).

Clearly in case function ω0 is strictly smaller than ω, the our triplet {an}, {bn} and
{cn} is finer than {αn}, {βn} and {γn} used in [3].

We shall state the following results but only prove Theorem 2.6, since the rest
of the proofs are similar to the corresponding ones in [3] (simply replace the triplet
{αn}, {βn}, {γn} by {an}, {bn} and {cn} respectively in the proofs given in [3]):

Lemma 2.1. Let g and h be the scalar functions given by (2.3) and (2.4) respectively.
If a0 and b0 satisfy

g(a0, b0)p h(a0, b0)1+p < 1 and (a0 + b0)2 < a0, (2.8)

then the following hold true:

(a) ( g(a0, b0)h(a0, b0) < 1,
(b) the sequences {an} and {bn} are decreasing.

The next aim of the study is to prove that method (1.2) is well–defined, so that we
present a system of recurrence relations in the next lemma from which we obtain
the last. The proof of the lemma follows from a similar way that the mentioned
above and using induction.

Lemma 2.2. If a0 and b0 satisfy (2.8) and B(x0, R c0 η) ⊆ D, where R =
1

1−∆
and

∆ = g(a0, b0)h(a0, b0), then the next recurrence relations are true for all n ≥ 1:

(R1) ‖ F (xn) ‖≤ g(an−1, bn−1) ‖ F (xn−1) ‖,
(R2) ‖ Bn ‖≤ h(an−1, bn−1) ‖ Bn−1 ‖≤ cn,
(R3) ‖ xn+1 − xn ‖≤ g(an−1, bn−1)h(an−1, bn−1) ‖ Bn−1 ‖ ‖ F (xn−1) ‖,

(R4) ‖ xn+1 − x0 ‖≤
1−∆n+1

1−∆
‖ B0 ‖ ‖ F (x0) ‖< R c0 η,

(R5) ‖ Bn ‖ ω(‖ xn+1 − xn ‖) ≤ bn,
(R6) ‖ I − F ′(xn)Bn ‖≤ an,
(R7) ‖ I − F ′(xn+1) Bn ‖≤ an + bn,
(R8) ‖ Bn+1 −Bn ‖≤ (an + bn) cn.

Note that, from (R4), we obtain xn ∈ D, for all n ≥ 0, if the hypotheses of Lemma
2.2 are satisfied.

Remark 2.3. If a0 = 0, then B0 = (F ′(x0))−1 and the first step of iteration (1.2) is
the same as in Newton’s method. In this case, we have

a1 = b2
0, b1 = b0 (1 + b0)

(
b0 (1 + b0)

1 + p

)p

, c1 = (1 + b0) c0,

an = (an−1 + bn−1)2, n ≥ 2,
bn = bn−1 g(an−1, bn−1)p h(an−1, bn−1)1+p, n ≥ 2,
cn = cn−1 h(an−1, bn−1), n ≥ 2.

These sequences {an} and {bn}, for n ≥ 0, are also decreasing if

(1 + p) b0 + (1 + b0)
(

b0 (1 + b0)
1 + p

)p

< 1 and (b2
0 + b1)2 < b2

0, (2.9)
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so that the recurrence relations appearing in Lemma 2.2 are also satisfied, excpet
for (R4), that now is

‖ xn+1 − x0 ‖≤
(

1 + f(b0)
1−∆

n

1−∆

)
‖ B0 ‖ ‖ F (x0) ‖< R c0 η,

where
R = 1 + f(b0)

b0 (1 + b0)
(1 + p) (1−∆)

and ∆ = g(a1, b1)h(a1, b1).

Since the sequence {xn} is well–defined, the following aim is to see that {xn} is
a Cauchy sequence. We then provide the following semilocal convergence result,
which is also used to draw conclusions about the existence of a solution and the
domain in which it is located.

Theorem 2.4. Let F : D ⊆ X −→ Y be a Fréchet–différentiable operator on a
non–empty open convex domain D. Let x0 ∈ D and B0 ∈ L(Y,X ). Suppose that
conditions (H1)–(H4), (2.8) and B(x0, R c0 η) ⊆ D, are satisfied. Then the sequence
{xn}, defined by (1.2) and starting from x0, remains in B(x0, R c0 η) and converges
to a solution x? of equation F (x) = 0.

Remark 2.5. In the case a0 = 0 (B0 = (F ′(x0))−1), the convergence of sequence
(1.2) follows in the same way as in Theorem 2.4 with (2.9), except for R, that it now
is R.

In the next result we show the uniqueness of the solution x? of equation F (x) =
0.

Theorem 2.6. Suppose that conditions (H1)–(H4) are satisfied and function ω is
also strictly increasing. Then the solution x? of equation F (x) = 0 is unique in the
domain D0 = B(x0, r

?) ∩ D, where r? is the smallest positive root of the equation in
the variable y: ∫ y

R c0 η

ω0(s) ds =
1
c0

(1− a0) (y −R c0 η). (2.10)

Proof Let us assume y? is a solution of F (x) = 0 in D0. According to Argyros ([1],
[2]), we have the approximation

0 = F (y?)− F (x?) =
∫ 1

0

F ′(x? + t (y? − x?)) dt (y? − x?). (2.11)

Let us set M =
∫ 1

0

F ′(x? + t (y? − x?)) dt. We have:

‖ I −MB0 ‖ ≤ ‖ I − F ′(x0)B0 ‖ + ‖ F ′(x0)−M ‖‖ B0 ‖

≤ a0 + c0

∫ 1

0

‖ F ′(x0)− F ′(x? + t (y? − x?)) ‖ dt

≤ a0 + c0

∫ 1

0

ω0((1− t) ‖ x? − x0 ‖ +t ‖ y? − x0 ‖) dt

< a0 +
c0

r −R c0 η

∫ r?

R c0 η

ω0(s) ds = 1,

it follows from the previous estimation and the Banach lemma of invertible opera-
tors [1], [2], that M−1 exists. In view of (2.11) we deduce x? = y?.

It is show in Theorem 2.4 that it is not necessary for x0 to satisfy the conditions
given by (2.8) to obtain the semilocal convergence of Ulm’s method given by (1.2),
since it suffices that they are satisfied for some iterate xj of (1.2). So, we obtain
the following corollary.
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Corollary 2.7. Under the conditions of Theorem 2.4, further assume: there exists
j ∈ N such that

g(aj , bj)p h(aj , bj)1+p < 1 and (aj + bj)2 < aj , (2.12)

where, aj =‖ I − F ′(xj) Bj ‖, bj = cj ω(cj η), cj =‖ Bj ‖, η =‖ F (xj) ‖ and

B(x0, Rj) ⊆ D, with Rj = R c0 η +
i=j−1∑

i=0

‖ xi+1 − xi ‖, then sequence {xn}, defined

by (1.2) and starting from x0, remains in B(x0, Rj) and converges to a solution x? of
equation F (x) = 0.

Proof The proof of Corollary 2.7 follows from the facts that the sequences {an} and
{bn} are decreasing for all n > j and the recurrence relations given in Lemma 2.2
now hold for all n > j + 1.

In order for us to show that the R–order of convergence of method (1.2) under
hypotheses (H1)–(H4) is 1 + p, we first need a result concerning the behavior of
certain functions.

Lemma 2.8. Let g and h be the functions given by (2.3) and (2.4) respectively and

define δ1 =
a1

a0
, δ2 =

b1

b0
and δ = max{δ1, δ2}. If (2.8) is satisfied, then

(a) g(δ x, δ y) = δ g(x, y) and h(δ x, δ y) < h(x, y), for all δ ∈ (0, 1),

(b) an < δ(1+p)n−1
an−1 < δ

(1+p)n−1
p a0 and bn < δ(1+p)n−1

bn−1 < δ
(1+p)n−1

p b0,
for all n ≥ 1.

We show the following result on the R–order of convergence for method (1.2):

Theorem 2.9. Under the conditions of Theorem 2.4, the method (1.2) has R–order
of convergence at least 1 + p. Moreover, the following a priori error estimates are
obtained:

‖ xn − x? ‖≤ An δ

(1 + p)n − 1
p2

1−A δ

(1 + p)n

p

c0 η, (2.13)

where A = ∆ δ−1/p and ∆ = g(a0, b0) h(a0, b0).

Remark 2.10. Observe that if F ′ is Lipschitz continuous in D, then ω(r) = K r,
K ≥ 0. and method (1.2) is of R–order of convergence at least two.

Remark 2.11. If a0 = 0 (B0 = (F ′(x0))−1), the R–order of sequence (1.2) follows
exactly as in the previous theorem.

Taking now into account the estimates regarding consecutive points are good to
distance ‖ xn − x? ‖ (see (R3) in Lemma 2.2), we can for an element xk (k > n) of
the sequence {xn} such that ‖ xk − x? ‖ is smaller enough and ‖ xn − x? ‖ can be
estimated from the distance between two consecutive points. So,

‖ xn − x? ‖≤‖ xn+j − x? ‖ +
i=j∑
i=1

‖ xn+i − xn+i−1 ‖, j ≥ 1, n ≥ 1, (2.14)

and the error given in (2.13) is then improved.
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Remark 2.12. [3] To finish, as we have indicated in the introduction, we study
the convergence of the sequence–operators {Bn}. Note that {Bn} converges to the
bounded right of F ′(x?). Indeed, from (R8), it follows

‖ Bk+1 −Bk ‖≤ (ak + bk) ck ≤ (ak + bk) h(a0, b0)k c0,

since h is increasing in the both arguments {an} and {bn} are decreasing se-
quences. In consequence,

‖ Bk+1 −Bk ‖≤ δ

(1 + p)k − 1
p (a0 + b0)h(a0, b0)k c0.

Therefore,

‖ Bn+m −Bn ‖ ≤
( k=m−1∑

k=0

δ

(1 + p)n+k − 1
p h(a0, b0)n+k

)
(a0 + b0) c0

≤ δ−1/p (a0 + b0) c0 h(a0, b0)n+m−1 S

where

S =
k=m−1∑

k=0

δ

(1 + p)n+k

p .

Moreover,

S ≤ δ

(1 + p)n+m−1

p
(

δ

(1 + p)n

p
(1− (1 + p)m−1) 1− δm (1+p)n

1− δ(1+p)n

)
,

since δ
(1+p)k

p ≤ δ
(1+p)n

p δ(1+p)n (k−n), for k = n+1, n+2, · · · , n+m−1. Thus, {Bn} is
a Cauchy sequence and then lim

n
Bn = B?. On the other hand, ‖ I−F ′(x?) Bn ‖−→

0 by letting n →∞ and taking into account that

‖ I − F ′(xn) Bn ‖≤ an ≤ δ2 ((1+p)n−1)/p a1,

‖ Bn ‖≤ h(a0, b0)n c0,

‖ F ′(x?)− F ′(xn) ‖≤
(

∆n

1−∆

)p

ω(η).

Consequently, B? is the bounded right inverse of F ′(x?).

Remark 2.13. The sufficient convergence conditions given in [3] corresponding to
(2.8) and (2.9) are given by

g(α0, β0)p h(α0, β0)1+p < 1 and (α0 + β0)2 < α0, (2.15)

and

(1 + p) β0 + (1 + β0)
(

β0 (1 + β0)
1 + p

)p

< 1 and (β2
0 + β2

1)2 < β2
0 , (2.16)

respectively.
In case strict inequality holds in (2.1), conditions (2.15) and (2.16) imply (2.8)

and (2.9) respectively but not necessary vice verca (unless if ω0(r) = ω(r) for all
r > 0). Moreover due to the fact that

b0 ≤ β0;

the rest of the advantages already stated at the introduction of this study hold true.
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We provide a numerical example to show that our conditions (2.8) (or (2.9)) hold,
whereas (2.15) (or (2.16)) do not.

Example 2.14. X = Y = R, D = [q, 2− q], q ∈ [0, 1], x0 = 1 and define function F
on D by

F (x) = x3 − q. (2.17)
Using (2.17), (H1)–(H4), (2.2), (2.4) and (2.8), we get

η = 1− q, ω(r) = 6 (2− q) r, ω0(r) = 3 (3− q) r, b0 = 3 c2
0 (3− q) (1− q)

and
β0 = 6 c2

0(2− q) (1− q).
Let c0 = B0 = 8/30 and q = 0.55.
Then we obtain

α0 = a0 = 0.2, β0 = 0.2784, b0 = 0.2448 and (α0 + β0)2 = 0.22886656 > 0.2.

That is there is no guarantee that method (1.2) converges to x? = 3
√

q = 0.819321271,
since (2.15) is violated.

Howeover conditions (2.8) and (2.9) are satisfied since they become

0.672992926 < 1 and 0.19784704 < 0.2,

respectively.
Hence, the conclusions of Theorem 2.4 for equation apply and our method (1.2)

converges to x?.

Remark 2.15. The earlier results on method (1.2), [4], [6], [7]–[10] require that
operator F ′ satisfies the Lipschitz condition:

‖ F ′(x)− F ′(y) ‖≤ K ‖ x− y ‖ for all x, y ∈ D. (2.18)

It follows from (2.18) that there exists K0 such that

‖ F ′(x)− F ′(x0) ‖≤ K0 ‖ x− x0 ‖ for all x ∈ D. (2.19)

Clearly
K0 ≤ K (2.20)

holds and
K

K0
can be arbitrarily large [1], [2].

In case strict inequality holds in (2.20), one can visit the results mentioned above
and use (2.18) and (2.19) instead of only (2.18) in the convergence analysis of
method (1.2). It then follows that the resulting approach will produce a finer con-
vergence analysis for method (1.2) with advantages over earlier works as stated
in the introduction of this study. Howeover we leave the details to the motivated
reader.
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