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ABSTRACT. The purpose of this paper is to give a Tikhonov regularization method and
some regularization inertial proximal point algorithm for the problem of finding a common
fixed point of a finite family of nonexpansive mappings in a uniformly convex and uniformly
smooth Banach space F, which admits a weakly sequentially continuous normalized duality
mapping j from E to E*.
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1. INTRODUCTION
Let E be a Banach space. We consider the following problem
Finding an element 2* € S = N, F(T}), (1.1)

where F(T;) is the set of fixed points of nonexpansive mappings T; : C — C
and C' is a closed convex nonexpansive retract subset of a uniformly convex and
uniformly smooth Banach space E.

It is well-known that, numerous problems in mathematics and physical sci-
ences can be recast in terms of a fixed point problem for nonexpansive mappings.
For instance, if the nonexpansive mappings are projections onto some closed and
convex sets, then the fixed point problem becomes the famous convex feasibility
problem. Due to the practical importance of these problems, algorithms for finding
fixed points of nonexpansive mappings continue to be flourishing topic of interest
in fixed point theory. This problem has been investigated by many researchers:

see, for instance, Bauschke [7], O’ Hara et al. [22], Jung [16], Chang et al. [10],
Takahashi and Shimoji [27], Ceng et al. [9], Chidume et al. [11, 12], Plubtieng and

Ungchittrakool [23], Kang et al. [17], N. Buong et al. [8] and others.
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On the other hand, the problem of finding a fixed point of a nonexpansive map-
ping T : E — FE is equivalent to the problem of finding a zero of m—accretive
A =TI —T. One of the methods to solve the problem 0 € A(x), where A is maximal
monotone in a Hilbert space H is proximal point algorithm. This algorithm sug-
gested by Rockafellar [24], starting from any initial guess xo € H, this algorithm
generates a sequence {2, } given by

Tn41 = J:?L (xn + en)a (12)

where JA = (I +7A)~! ¥r > 0 is the resolvent of A on the space H. Rockafellar
[24] proved the weak convergence of the algorithm (1.2) provided that the regular-
ization sequence {c,} remains bounded away from zero and the error sequence
{e,} satisfies the condition y_ -, ||e,|| < co. However Giiler’s example [15] shows
that in infinite dimensional Hilbert space, proximal point algorithm (1.2) has only
weak convergence.

Ryazantseva [25] extended the proximal point algorithm (1.2) for the case that
A is an m—accretive mapping in a properly Banach space FE and proved the weak
convergence of the sequence generated by (1.2) to a solution of the equation 0 €
A(x) which is assumed to be unique. Then, to obtain the strong convergence
for algorithm (1.2), Ryazantseva [26] combined the proximal algorithm with the
regularization, named regularization proximal algorithm, in the form

en(A(Tpy1) + @pTpy) + Ty = Tp, @0 € E. (1.3)

Under some conditions on ¢, and «,, the strong convergence of {a?n} of (1.3)
is guaranteed only when the dual mapping j is weak sequential continuous and
strong continuous, and the sequence {z,} is bounded.

Attouch and Alvarez [6] considered an extension of the proximal point algorithm
(1.2) in the form

CnA(Un+1) + Unp+1 — Un = ’Yn(un - unfl)» Ug, U1 € Ha (1.4)

which is called an inertial proximal point algorithm, where {c,} and {v,} are two
sequences of positive numbers. With this algorithm we also only obtained weak
convergence of the sequence {z,} to a solution of problem A(z) > 0 in Hilbert
spaces. Note that this algorithm was proposed by Alvarez in [2] in the context of
convex minimization.

Then, Moudafi [19] applied this algorithm for variational inequalities, Moudafi
and Elisabeth [20] studied this algorithm by using enlargement of a maximal
monotone operator, and Moudafi and Oliny [21] considered convergence of a split-
ing inertial proximal method. The main result in these papers is also the weak
convergence of the algorithm in Hilbert spaces.

In this paper, we introduced the algorithms in the forms

N
> Ai(wn) + an(zn —y) =0, (1.5)
=1
N
CH(Z Ai(un+1) + an(unJrl - y)) + Un+1 = QC’(un + ’Vn(un — Unfl))7 (1.6)

i=1
where y, ug, u; € C, and Q¢ : F — C is a sunny nonexpansive retraction from
FE onto C to solve the problem (1.1).
And also, we give some analogue regularization methods for the more general
problems, such as: the problem of finding a common fixed point of a finite family
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of nonexpansive nonself - mapping on a closed and convex subset of . Finally,
the stability of the regularization algorithms are considered in this paper.

2. PRELIMINARIES

Let F be a Banach space with its dual space E*. For the sake of simplicity, the
norms of E and E* are denoted by the same symbol ||.||. We write (z, z*) instead
of 2*(x) for 2* € E* and « € E. We use the symbols —, — and — to denote the
weak convergence, weak* convergence and strong convergence, respectively.

Definition 2.1. A Banach space F is said to be uniformly convex if for any ¢ € (0, 2]
the inequalities [|z]| < 1, [ly|| < 1, ||z — y|| > ¢ imply there exists a 6 = d(¢) > 0
such that

LA

The function
0p(e) =inf{l =27z +y| : Jlzll = llyl =1, [l= — yll =} 2.1)
is called the modulus of convexity of the space E. The function §g(e) defined on the
interval [0, 2] is continuous, increasing and §g(0) = 0. The space F is uniformly
convex if and only if g (e) > 0, Ve € (0,2].
The function
pe(r) =sw{27 (lz +yll + o —yl) = 1: ol =1, lyll =7} @2

is called the modulus of smoothness of the space E. The function pg(7) defined
on the interval [0, +00) is convex, continuous, increasing and pg(0) = 0.

Definition 2.2. A Banach space FE is said to be uniformly smooth, if

tim PET) 2.3)
T—0 T
It is well known that every uniformly convex and uniformly smooth Banach space

is reflexive. In what follows, we denote

hg(r) = pEfT). (2.4)
The function hg(7) is nondecreasing. In addition, we have the following estimate
hg(K7) < LKhg(1), VK > 1, 7 > 0, (2.5)
where L is the Figiel’s constant [3, 4, 13], 1 < L < 1.7.

Definition 2.3. A mapping j from E onto E* satisfying the condition
J(@) ={f € B" : (x, f) = ||«||* and || f|| = |l[|} (2.6)
is called the normalized duality mapping of F.
In any smooth Banach space J(z) = 2~ !grad||z||? and, if E is a Hilbert space,
then J = I, where I is the identity mapping. It is well known that if E* is stricly

convex or E is smooth, then J is single valued. Suppose that J be single valued,
then J is said to be weakly sequentially continuous if for each {z,} C E with

z, — x, J(z,) = J(z). We denote the single valued normalized duality mapping
by j.

Definition 2.4. An operator A : D(A) C E = FE is called accretive if for all
x,y € D(A) there exists j(x — y) € J(z — y) such that

(u—wv,jx—y)) >0, Yu € A(z), v € A(y). (2.7)
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Definition 2.5. A mapping 7' : C' — F is said to be nonexpansive on a closed
and convex subset C' of Banach space F if
IT(z) =T < llz =y, Yo,y € C. (2.8)
Itis clear that, if T : ' — F is a nonexpansive, then I —7T is accretive operator.

Definition 2.6. Let G be a nonempty closed and convex subset of £. A mapping
Q¢ : F — (G is said to be

i) a retraction onto G if Q% = Qg
ii) a nonexpansive retraction if it also satisfies the inequality

1Qcz — Qayll < [lz —yll, Va,y € E; (2.9)
iii) a sunny retraction if for all z € F and for all ¢ € [0, +00),
Qa(Qar + t(zr — Qar)) = Q. (2.10)

A closed and convex subset C of F is said to be a nonexpansive retract of F,
if there exists a nonexpansive retraction from F onto C and is said to be a sunny
nonexpansive retract of F, if there exists a sunny nonexpansive retraction from £
onto C'.

Proposition 2.7. [14] Let C' be a nonempty closed convex subset of a smooth Banach
E. Amapping Q¢ : E — C is a sunny nonexpansive retraction if and only if
(x — Qex,j(§ — Qex)) <0,V € E, V¢ € C. (2.11)

Definition 2.8. Let ('}, (5 be convex subsets of E. The quantity
B(Cq,C3) = sup incf |lu — v]| = sup d(u,Cs)

ueCy VL2 ucCy

is said to be semideviation of the set C; from the set (5. The function
H(C1,C2) = max{f(C1,Ca), B(C2,C1)}
is said to be a Hausdorff distance between C and Cs.

Lemma 2.9. [5] If F is a uniformly smooth Banach space, C; and Cs are closed and
convex subsets of E such that the Hausdorff H(C1,Cs) < 6, and Q¢, and Q¢, are
the sunny nonexpansive retractions onto the subsets C7 and Cs, respectively, then

16L6
Qc,z — Qe,z||? < 16R(2r+d)hE(T), (2.12)

where L is Figiel’s constant, r = ||z||, d = max{di,d>}, and R = 2(2r+d) + 4. Here
d; = dist(0,C;), i = 1,2, and 0 is the origin of the space E.

3. MAIN RESULTS

First, we need the following lemmas in the proof of our results.

Lemma 3.1. [3] Let E' be a uniformly convex and uniformly smooth Banach space.
If A = I — T with a nonexpansive mapping T then for allz,y € D(T), the domain of
T,

(o = Ao - ) > 17 2o (1), @

where ||z|| <R, ||ly|| < Rand 1 < L < 1.7 is Figiel constant.
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Lemma 3.2 (demiclosedness principle). [1] Let F be a reflexive Banach space having
a weakly sequentially continuous duality mapping, C' a nonempty closed convex
subset of £, and T : C' — E a nonexpansive mapping. Then the mapping I — T
is demiclosed on C, where I is the identity mapping; that is, ©, — x in £ and
(I -T)x, — yimply thatz € C and (I —T)x = y.

Lemma 3.3. [28] Let {a,} be a sequence of nonnegative real numbers satisfying the
following relation:

ant1 < (1= an)ag + on, ¥n >0,
where {a,} C (0,1) for each n > 0 such that (i) lim,, oo oy, = 0; (i) Y0 |y = 00.

o]
Suppose either (a) o, = o(ay,), or (b) Y oo |o,| < o0, or (c) limsup -2 < 0. Then
a, — 0asn — oo. "

Lemma 3.4. [18] Let C be a closed convex subset of a strictly convex Banach space
FE andletT : C — FE be a nonexpansive mapping from C' into E. Suppose that C

is be sunny nonexpansive retract of E. If F(T) # (), then F(T) = F(QcT), where
Q¢ is a sunny nonexpansive retraction from E onto C'.

Theorem 3.5. Let E be a uniformly convex and uniformly smooth Banach space
which admits a weakly sequentially continuous normalized duality mapping j from
E to E*. Let C be a nonempty closed convex sunny nonexpansive retract of E' and let
T,: C — C, i=1,2,..., N be nonexpansive mappings such that S = N, F(T;) #
(. Then
i) For each «,, > 0 the equation (1.5) has unique solution x,,;
ii) Ifthe sequence of positive numbers {a,, } satisfies lim,,_,, a, = 0, then{z,}
converges strongly to Qsy, where Qg : E — S is a sunny nonexpansive
retraction from E onto S.

Moreover, we have the following estimate

|Oé"+1 - an|

[Zn+1 — znll < Ry Vn > 0, (3.2)

n

where Ry = 2|y — Qsyl|-

Proof. i) For each n > 0, equation (1.5) defines unique sequence {z,,} C E, because
for each n, the element z,, is unique fixed point of the contraction mapping 7" :
C — ( defined by

1 o’

T = §Fya, 210+ 5y,

Y. (3.3)
1

ii) From equation (1.5), we have
N
O Ai(wn),j(@n — 2%) + anlzn —y,j(zn —2%)) =0, V2" € 5. (3.4)
i=1
By virtue of the property of vazl A; and j, we obtain

N
" Ai(@n), jan — 7)) >0, Va* € 8.
i=1

Thus,
(n —y,J(zp — %)) <0, Va* € 5. (3.5)



206 TRUONG MINH TUYEN/JNAO : VOL. 3, NO. 2, (2012), 201-214

From inequality (3.5), we get
lan — 212 < (y — 2%, j(2n — 2)) < |y — 2*||.[|zn — 2¥]|, V2* € S. (3.6)

Therefore
lon — || < |ly —x*||, Yn >0, Vz* € S, (8.7)

that implies the boundedness of the sequence {z,}. Every bounded set in a reflex-
ive Banach space is relatively weakly compact. This means that there exists some
subsequence {x,, } C {z,} which converges weakly to a limit point Z. Since C is
closed and convey, it is also weakly closed. Therefore T € C.

We will show that Z € S. Indeed, for each i € {1,2,..., N}, 2* € Sand R > 0
satisfy R > max{sup ||z, ]|, ||z*||}, we have

m%) < s (i), n — 7))
;XN
< (D Au(@n) j(an — "))
k=1
Loy, .
< 20—y — |
Lo, .
< R2 (R+lyl)-ly —z*|] — 0, n — oc.

Since modulus of convexity d g is continuous and F is the uniformly convex Banach
space, A;(x,) — 0, n — oco. From Lemma 3.2, it implies that A;(Z) = 0. Since
i € {1,2,..., N} is an arbitrary element, we obtain Z € S.

In inequality (3.6) replacing z,, by z,, and z* by Z, using the weak continuity of j
we obtain x,, — 7. From inequality (3.5), we get

(T—y,j(T—2")) <0, Va* € S. (3.8)

Now, we show that the inequality (3.8) has unique solution. Suppose that 7; € S
is also its solution. Then

(T1 —y,j(@T1 —2")) <0, Va* € S. (3.9)
In inequalities (3.8) and (3.9) replacing z* by Z; and T, respectively, we obtain

<E_yvj(f_fl)> é 07

(y—=1,j(@—71)) <0.

Their combination gives ||T — 71]|?> < 0, thus T = 71 = Qsy and the sequence {z,,}
converges weakly to T = Q)gy, because gy satisfies the inequality (3.8). Finally,
from the first inequality in (3.6), implies that x,, — Qgy.

Now, we prove the inequality (3.2). In equation (1.5) replacing n by n+ 1 we have

N
Z Ai(anrl) + an+1(xn+1 - y) =0. (310)
=1
From (3.10) and (1.5), we get
(n1Znt1 — T, J(Tnt1 — Tn)) < (ng1 — ) (Y, §(Tns1 — 20))- (3.11)
Therefore,
o ||Tn41 — xn”Q < (nt1 — )Y — Tny1, J(Tns1 — Tn))
<lant1 — anlly = Tpyall-[2n1 — 2|

<2|ly — Qsylllant1 — anl | Tn1 — za-
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Thus,

|an+1 - an|

|Tnt1 — zp| < Ro Vn >0,

n

where Ry = 2|y — Qsy||. -

Theorem 3.6. Let F be a uniformly convex and uniformly smooth Banach space
which admits a weakly sequentially continuous normalized duality mapping j from
E to E*. Let C' be a nonempty closed convex sunny nonexpansive retract of E and let
T,: C — C, i=1,2,..., N be nonexpansive mappings such that S = N, F(T;) #
(0. If the sequences {c, }, {a,} and {v,} satisfy

. Ap41 — Q
i) 0<co<cp, an>0,an*>0,w*>0, oo o = F00;

n
ii) Yn 2 Or "/naglnun - ’U/n71|| — 07
then the sequence {u,} defined by (1.6) converges strongly to Qgsy, where Qg :
E — S is a sunny nonexpansive retraction from E onto S.

Proof. First, for each n > 1, equation (1.6) defines unique sequence {u,} C F,
because for each n, the element wu,,; is unique fixed point of the contraction
mapping f: C — C defined by

Cy Cn Oty 1

N
flz) = m;ﬂ(z)+ cn(N+an)+1y+ cn(N—i—an)—f—lZ’ (8.12)

where z = QC(un + 'Yn(un - un71>) eC.
Now, we rewrite equations (1.5) and (1.6) in their equivalent forms

£
] =

Ai(xn) + 2 —y = Bu(zn —y), (3.13)

.
Il
_

N
dy Z Ai(un+1) FUnt1 —Y = Bn [QC(UH + 'Yn(un - un—l)) - y]v (3.14)
=1
here 3 1 dd 3
W. T n — ————————— an n — CnPn.
ere 1 +Cnan al C

From (3.13), (3.14) and by virtue of the property of Zf\; A;, we get

||Uu+1 - In” < 6nHQC(Un + 'Yn(un - Un—l)) - xn”
= BullQc(un + v (un — un—1)) — Qc(zn)||

Thus,

unt1 — Tpa|l < Muntr — zull + [Tn41 — 20|

« — (3.15)
< Bulltn = 2all + Buvllttn — oy || + 12t =l g

)
n

or equivalent to

CnOn

=" (3.16)
14+ chay

tunt1 = Tny1ll < (1= bp)llun — znl| + o, b
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Qp —
where On = ﬂ”’}/‘n”un - un—lH + MR
By the assumption, we have "

on _ 1 1 lan 1 — an|
In _ = . 2oyl Tl g
bn Cp, Fn VnHUn tn 1” + (Cn + ) O[%
1 _ 1 « -«
< 70‘»”17”““” - uﬂ—l” + (* + 1)L271|R — 0.
€o Co oz
Furthermore, since Y - a, = 400, Yoo b, = +00.
By Lemma 3.3, we obtain |u,, — z,| — 0. Since z,, — Qgvy, un, — Qgsy. 0

Corollary 3.7. Let E' be a uniformly convex and uniformly smooth Banach space
which admits a weakly sequentially continuous normalized duality mapping j from
FEtoE* LetT;: E — FE, i =1,2,..., N be nonexpansive mappings such that
S =nN,F(T;) # 0. If the sequences {c,}, {a,} and {v,} satisfy

|an+1 - an|

2
ay,

i) 0<cog<eyn, ap>0,a, — 0, — 0, Zfzoan:+oo;

ﬁ] Tn Z O’ 'YnaT_LlHun - unfln — 07

then the sequence {u,,} defined by

N
cn (D Ai(Uni1) + Qnting1) + g1 = tn + Yo (Un — Uun_1), uo, uy € E
i=1
converges strongly to QQsf, where Qg : E — S is a sunny nonexpansive retraction
from E onto S.

Proof. Applying Theorem 3.6 for C' = FE and y = 6, we obtain the proof of this
corollary. g

Corollary 3.8. Let E be a uniformly convex and uniformly smooth Banach space
which admits a weakly sequentially continuous normalized duality mapping j from
E to E*. Let C be a nonempty closed convex sunny nonexpansive retract of E and let
fi: C — E,i=1,2,..., N be nonexpansive mappings such that S = N, F(f;) #
0. If the sequences {c, }, {a,} and {7, } satisfy

|an+1 - an|

2
ay,

i) 0<cog<cp, ap >0,a, — 0, — 0, Z,olozooén:JrOO;

if) v, >0, %aﬁlHun - Un71|| — 0,
then the sequence {u,,} defined by

N
cn(Z Bi(unJrl) + an(unJrl - y)) + Un+1 = QC(un + ’Vn(un - unfl)); (3~17)
i=1
converges strongly to Qgy, where B; = I — Q¢ fi, i = 1,2,..., N, Q¢ is a sunny
nonexpansive retraction from E onto C, ()5 is a sunny nonexpansive retraction from
FE onto S, and y, ug, uy € C.

Proof. By Lemma 3.4, we have S = NI, F(Q¢ fi). Applying Theorem 3.6 for T; =
Qcfi, i =1,2,..., N we obtain the proof of this corollary. O

Finally, we study stability of the algorithms (1.5) and (1.6) with respect to pertur-
bations of both operators 7; and constraint set C satisfying the following conditions:
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(P1) Instead of C, there is a sequence of closed convex sunny nonexpasive
retract subsets C,, C E, n = 1,2,3, ... such that the Hausdorff H(C,,,C) <
dn, where {J,,} is a sequence of positive numbers with the propertie

ng1 < 6, VR > 1. (3.18)

(P2) On the each set C),, there is a nonexpansive self-mapping 7" : C,, —
Cn, © = 1,2,..., N satisfying the conditions: there exists the increasing
positive for all ¢ > 0 function ¢(¢) and £(¢) such that g(0) > 0, £(0) = 0
and z € Cy, y € Cpy, ||z —y|| <6, then

1Tz — Tyl < g(max{|j]), [ly]})&(3)- (3.19)

In this paper, we establish the convergence and stability of the Tikhonov reg-
ularization method (1.5) and the regularization inertial proximal point algorithm
(1.6) in the forms

N
Z A?(ZH) + an(zn — any) =0, (8.20)
i=1
N
Cn(z Al (Ung1) + an(Ung1 — QoY) + unt1 = Qc, (Un + Yn(Un — Un—1)),
=1
(3.21)

respectively, where ug, u; and y are elementsin £, and A? = I-T*, i =1,2,...,N,
with respect to perturbations of the set C, and Q¢, : EF — C, is the sunny

nonexpansive retraction of £ onto C,,.

Theorem 3.9. Let E be a uniformly convex and uniformly smooth Banach space
which admits a weakly sequentially continuous normalized duality mapping j from
E to E*. Let C be a nonempty closed convex sunny nonexpansive retract of E and let
T;,: C — C,i=1,2,..., N be nonexpansive mappings such that S = N, F(T}) #
0.

i) For each «,, > 0 equation (3.20) has unique solution z,,;
ii) If the conditions (P1) and (P2) are fulfilled and the sequences of positive
numbers {ay, }, {0,} satisfy

On 4+ €(0n)

79

a, — 0, — 0, asn — o0, (3.22)

then {z,} converges strongly to Qs(Qcy), where Qs : E — S is a sunny
nonexpansive retraction from E onto S.

Moreover, if {ay, } is a decreasing sequence, then we have the following estimate

K(sn + 5(2577,) + Qp — Qpy1
(0%

lznt1 — 2nll < 40, + R

n a’l’L
+ K3\/LK4\/hEg(d,), ¥n >0,

where R, K, K3, K, are any constants.

(3.23)

Proof. i) For each n > 0, by an argument similar to the proof of Theorem 3.5, it
follows that, the equation (3.20) has a unique solution z,,.

ii) Since the distance Hausdorff H(C,,,C) < 4, therefore for each solution z,, of
equation (1.5) (note that, in the case that the element y in (1.5) is replaced by Q¢y),



210 TRUONG MINH TUYEN/JNAO : VOL. 3, NO. 2, (2012), 201-214

there exists an element u,, € C,, such that ||z, — u,| < 0,.
From equations (1.5) and (3.20), we have

N

Z(AZL(ZR) - A?(un)) + an(zn - xn) - an(QCny - QC’y)

i=1
N (3.24)

+ D (AP (un) — Ai(,)) = 0.
i=1
By virtue of the property of Zf\;l A? and j, we get

N

D (A7 (za) = AP (un)), (20 — un)) 2 0,

i=1
that implies
Qn <Zn - $mj(zn - un)> < Ozn<any - Qcyaj(zn - Un)>
N
) (3.25)
+ (3 (Ai(wn) = AP (un)), (20 — 1))

i=1

Thus,

N

anl[2n = un|| < anllzn — unll + anl|Qe,y — Qeyll + Z [ Ai(zn) — Af (un)|]
i=1

N
< @nbn + anllQe,y — Qeyll + ) I Ain) — Af (un)]-
=1

Since H(Cy,,C) < §,, there exists constants K; > 0 and K5 > 1 such that the
inequalities

1Qc,y — Qecyll < KivVhp(K26,) < K1/ LKy\/hg(d,)

hold.
Next, for each i € {1,2, ..., N}, we have

[[Ai(zn) — A (un)|| < 0p 4 g(max{ ||z, |, [lunl[})E(0n)
< 6n + g(M)E(0n),

where M = max{sup ||z,]|,sup ||u, ||} < +oo.
Consequently,

an|lzn = Unl| < @ndn + an K1/ LKo\/hg(0,) + N(6n + g(M)E(0n)).  (3.26)
Thus,

20 = Znll < |20 — unll + |20 — uall

s%nuqmmﬂvw_

n

(3.27)

On + £(0n)
Qp
(3.27), we obtain ||z, — 2, || — 0. By Theorem 3.5, it implies that z,, — Qs(Qcy),

thus the sequence {z,} also converges strongly to Qs(Qcy).

Since «,, — 0, — 0, hence §,, — 0 and hg(d,) — 0. By inequality
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Finally, we prove the inequality (3.23). In equation (3.20) replacing n by n + 1,
we have

N
Z A:‘L-‘rl(zn-‘rl) + O‘n(zn-‘rl - an+1y) =0. (3.28)
i=1
Since
H(Cna Cn—i—l) S H(Cna C) =+ H(Ov Cn-i—l) S 25n7
we assert that for any 2,41 € C),41 there exists an element v,, € C, such that
2041 — vn|l < 205.
From equations (3.20) and (3.28), we obtain

N
> (AP (z0) = AT (vn)) + (20 — Q0 Y) — A1 (Zns1 — Qe y)

=1
N

+ 3 (AP (0n) = AP (2041)) = 0.

i=1
By virtue of the property of vazl A? and j, we get
anllzn — vnll < any1lvn = 2nall + lan — angalflvn — Qc, Y|

al n n+1 (3‘29)

i=1

Since H(C), Cpi1) < 24, there exists constants K3 > 0 and K4 > 1 such that the
inequalities

1Qc,y — Qe yll < Ksv/hp(Kidy) < Ksv/LKy\/hp(6,) (3.30)

hold.
Since v,, € C,,, therefore

l[on = Qe yll < llvn — yll < sup [|zn|| + [yl + 261 := R. (3.31)
Next, for each i € {1,2,..., N}, we have
IA7 (vn) — A7 (zpa )| < 200 + 1T (vn) = T3 (2040 |
< 260 + g(max{{|vn |, [|zn+111})€(26n) (3.32)
< 20, + g(M')§(26n),

where M’ = max{sup ||v,|,sup ||z.|} < +o0.
Combining (3.29), (3.30), (3.31) and (3.32), we obtain

— 2
2m — onl| < 20, + Fgy/TRay/Tm(00) + R Cnt1 4 O +EQ0) g 5,

an a'n.
where K = max{2N, Ng(M')}.
Consequently,
] 20, -
zns1 — znll < 46, + K2 +a§( ) | gln aa”“ + Ky /LKiV/hp(0,). (3.34)

O

Next, we will prove the strong convergence and stability of regularization inertial
proximal point algorithm (3.21) by the following theorem.
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Theorem 3.10. Let F be a uniformly convex and uniformly smooth Banach space
which admits a weakly sequentially continuous normalized duality mapping j from
FE to E*. Let C' be a nonempty closed convex sunny nonexpansive retract of E and let
T,: C — C, i=1,2,..., N be nonexpansive mappings such that S = NI\, F(T;) #
(). If the conditions (P1) and (P2) are fulfilled, and the sequences {a,}, {6n}, {én}
and {v,} satisfy

i) a, \,0, Lsén“ — 0, asn — 00, Y .0 a, = +00,
an
1) 20 hg(o
ii) n+§2( n) —0, £(0n)
ag, Qo
it)) 0 < co < cny Y >0, Yoy Hun — un_1]| — 0, asn — oo,

— 0, asn — o0,

then the sequence {u, } defined by (3.21) converges strongly to Qs(Qcy), where
Qs : E — S is a sunny nonexpansive retraction from E onto S.

Proof. First, for each n by an argument similar to the proof of Theorem 3.6, it
follows that, the equation (3.21) has unique solution u, 1 € C,.
Now, we rewrite equations (3.20) and (3.21) in their equivalent forms

N

dn Y AT (z) + 20 — QoY = Ba(zn — Qe y), (3.35)
i=1
N

dn Z A?<un+l> + Unp+1 — QC”y = ﬁn[QCn (un + fYn(un - unfl)) - QC,,Ly]a (336)

i=1

1
where 5, = —— and d,, = ¢, 0,.
1+ c,a

From (3.35), (3.36) and by virtue of the property of sz\; A?, we have

Hourl - Zn” < ﬁnHQC’n (un + P)/n(un - unfl)) - ZnH
= BullQc, (un + yn(tn — un—1)) — Qc, (zn)]|
< ﬁnHun - Zn” + ﬂn'}/n”un - un—lH-

Consequently,

luns1 = zng1ll < Jtng1 — 2ol + 201 — 2al|

n + £(26,
< Bullun — znll + BuYnlltn — tn—1|| + 46, + K% 5.57)
Ay — Op
RIS 4 K LR i (00),
or equivalent to
ltn 1 = Znsall < (1= ba)llun — 2l + o, (3.38)
CnQip
where b,, = ——— and
14 éhay,
On + £(20, ap — Qn

+ K3 V LK4 V hE((Sn)
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By the assumption, we obtain

- 1 _ 1 ay, — Qp, On, On + &(26,
In _ —a; il — 1|+ (— 4 an) {QHR +4— + Ki()}
bn C’I’L C an an an

1 hi (6,

FE e Ky IR Y0

< —ap Y llun — tpoa ||+ (= + an) {O‘SHR 44l K52<>}
Co Co «

n Qn, an

Vhe(bn
+ (i + an)Kg,\/LK4¢ — 0, n — oo.
Co (7%

Since > 7y, = +00, Yoo o by, = F00.
By Lemma 3.3, it implies that ||u, — 2z,| — 0. Since z, — Qs(Qcy), un, —

Qs(Qcy).
O
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