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ABSTRACT. The purpose of this paper is to give a Tikhonov regularization method and
some regularization inertial proximal point algorithm for the problem of finding a common
fixed point of a finite family of nonexpansive mappings in a uniformly convex and uniformly
smooth Banach space E, which admits a weakly sequentially continuous normalized duality
mapping j from E to E∗.
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1. INTRODUCTION

Let E be a Banach space. We consider the following problem

Finding an element x∗ ∈ S = ∩N
i=1F (Ti), (1.1)

where F (Ti) is the set of fixed points of nonexpansive mappings Ti : C −→ C
and C is a closed convex nonexpansive retract subset of a uniformly convex and
uniformly smooth Banach space E.

It is well-known that, numerous problems in mathematics and physical sci-
ences can be recast in terms of a fixed point problem for nonexpansive mappings.
For instance, if the nonexpansive mappings are projections onto some closed and
convex sets, then the fixed point problem becomes the famous convex feasibility
problem. Due to the practical importance of these problems, algorithms for finding
fixed points of nonexpansive mappings continue to be flourishing topic of interest
in fixed point theory. This problem has been investigated by many researchers:
see, for instance, Bauschke [7], O’ Hara et al. [22], Jung [16], Chang et al. [10],
Takahashi and Shimoji [27], Ceng et al. [9], Chidume et al. [11, 12], Plubtieng and
Ungchittrakool [23], Kang et al. [17], N. Buong et al. [8] and others.
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On the other hand, the problem of finding a fixed point of a nonexpansive map-
ping T : E −→ E is equivalent to the problem of finding a zero of m−accretive
A = I − T. One of the methods to solve the problem 0 ∈ A(x), where A is maximal
monotone in a Hilbert space H is proximal point algorithm. This algorithm sug-
gested by Rockafellar [24], starting from any initial guess x0 ∈ H, this algorithm
generates a sequence {xn} given by

xn+1 = JA
cn

(xn + en), (1.2)

where JA
r = (I + rA)−1 ∀r > 0 is the resolvent of A on the space H. Rockafellar

[24] proved the weak convergence of the algorithm (1.2) provided that the regular-
ization sequence {cn} remains bounded away from zero and the error sequence
{en} satisfies the condition

∑∞
n=0 ‖en‖ < ∞. However G

..
uler’s example [15] shows

that in infinite dimensional Hilbert space, proximal point algorithm (1.2) has only
weak convergence.

Ryazantseva [25] extended the proximal point algorithm (1.2) for the case that
A is an m−accretive mapping in a properly Banach space E and proved the weak
convergence of the sequence generated by (1.2) to a solution of the equation 0 ∈
A(x) which is assumed to be unique. Then, to obtain the strong convergence
for algorithm (1.2), Ryazantseva [26] combined the proximal algorithm with the
regularization, named regularization proximal algorithm, in the form

cn(A(xn+1) + αnxn+1) + xn+1 = xn, x0 ∈ E. (1.3)

Under some conditions on cn and αn, the strong convergence of {xn} of (1.3)
is guaranteed only when the dual mapping j is weak sequential continuous and
strong continuous, and the sequence {xn} is bounded.

Attouch and Alvarez [6] considered an extension of the proximal point algorithm
(1.2) in the form

cnA(un+1) + un+1 − un = γn(un − un−1), u0, u1 ∈ H, (1.4)

which is called an inertial proximal point algorithm, where {cn} and {γn} are two
sequences of positive numbers. With this algorithm we also only obtained weak
convergence of the sequence {xn} to a solution of problem A(x) 3 0 in Hilbert
spaces. Note that this algorithm was proposed by Alvarez in [2] in the context of
convex minimization.

Then, Moudafi [19] applied this algorithm for variational inequalities, Moudafi
and Elisabeth [20] studied this algorithm by using enlargement of a maximal
monotone operator, and Moudafi and Oliny [21] considered convergence of a split-
ing inertial proximal method. The main result in these papers is also the weak
convergence of the algorithm in Hilbert spaces.

In this paper, we introduced the algorithms in the forms
N∑

i=1

Ai(xn) + αn(xn − y) = 0, (1.5)

cn(
N∑

i=1

Ai(un+1) + αn(un+1 − y)) + un+1 = QC(un + γn(un − un−1)), (1.6)

where y, u0, u1 ∈ C, and QC : E −→ C is a sunny nonexpansive retraction from
E onto C to solve the problem (1.1).

And also, we give some analogue regularization methods for the more general
problems, such as: the problem of finding a common fixed point of a finite family
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of nonexpansive nonself - mapping on a closed and convex subset of E. Finally,
the stability of the regularization algorithms are considered in this paper.

2. PRELIMINARIES

Let E be a Banach space with its dual space E∗. For the sake of simplicity, the
norms of E and E∗ are denoted by the same symbol ‖.‖. We write 〈x, x∗〉 instead
of x∗(x) for x∗ ∈ E∗ and x ∈ E. We use the symbols ⇀,

∗
⇀ and −→ to denote the

weak convergence, weak* convergence and strong convergence, respectively.

Definition 2.1. A Banach space E is said to be uniformly convex if for any ε ∈ (0, 2]
the inequalities ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε imply there exists a δ = δ(ε) ≥ 0
such that

‖x + y‖
2

≤ 1− δ.

The function

δE(ε) = inf{1− 2−1‖x + y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε} (2.1)

is called the modulus of convexity of the space E. The function δE(ε) defined on the
interval [0, 2] is continuous, increasing and δE(0) = 0. The space E is uniformly
convex if and only if δE(ε) > 0, ∀ε ∈ (0, 2].
The function

ρE(τ) = sup{2−1
(
‖x + y‖+ ‖x− y‖

)
− 1 : ‖x‖ = 1, ‖y‖ = τ}, (2.2)

is called the modulus of smoothness of the space E. The function ρE(τ) defined
on the interval [0,+∞) is convex, continuous, increasing and ρE(0) = 0.

Definition 2.2. A Banach space E is said to be uniformly smooth, if

lim
τ→0

ρE(τ)
τ

= 0. (2.3)

It is well known that every uniformly convex and uniformly smooth Banach space
is reflexive. In what follows, we denote

hE(τ) :=
ρE(τ)

τ
. (2.4)

The function hE(τ) is nondecreasing. In addition, we have the following estimate

hE(Kτ) ≤ LKhE(τ), ∀K > 1, τ > 0, (2.5)

where L is the Figiel’s constant [3, 4, 13], 1 < L < 1.7.

Definition 2.3. A mapping j from E onto E∗ satisfying the condition

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 and ‖f‖ = ‖x‖} (2.6)

is called the normalized duality mapping of E.

In any smooth Banach space J(x) = 2−1grad‖x‖2 and, if E is a Hilbert space,
then J = I, where I is the identity mapping. It is well known that if E∗ is stricly
convex or E is smooth, then J is single valued. Suppose that J be single valued,
then J is said to be weakly sequentially continuous if for each {xn} ⊂ E with
xn ⇀ x, J(xn) ∗

⇀ J(x). We denote the single valued normalized duality mapping
by j.

Definition 2.4. An operator A : D(A) ⊆ E ⇒ E is called accretive if for all
x, y ∈ D(A) there exists j(x− y) ∈ J(x− y) such that

〈u− v, j(x− y)〉 ≥ 0, ∀u ∈ A(x), v ∈ A(y). (2.7)
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Definition 2.5. A mapping T : C −→ E is said to be nonexpansive on a closed
and convex subset C of Banach space E if

‖T (x)− T (y)‖ ≤ ‖x− y‖, ∀x, y ∈ C. (2.8)

It is clear that, if T : C −→ E is a nonexpansive, then I−T is accretive operator.

Definition 2.6. Let G be a nonempty closed and convex subset of E. A mapping
QG : E −→ G is said to be

i) a retraction onto G if Q2
G = QG;

ii) a nonexpansive retraction if it also satisfies the inequality

‖QGx−QGy‖ ≤ ‖x− y‖, ∀x, y ∈ E; (2.9)

iii) a sunny retraction if for all x ∈ E and for all t ∈ [0,+∞),

QG(QGx + t(x−QGx)) = QGx. (2.10)

A closed and convex subset C of E is said to be a nonexpansive retract of E,
if there exists a nonexpansive retraction from E onto C and is said to be a sunny
nonexpansive retract of E, if there exists a sunny nonexpansive retraction from E
onto C.

Proposition 2.7. [14] Let C be a nonempty closed convex subset of a smooth Banach
E. A mapping QC : E −→ C is a sunny nonexpansive retraction if and only if

〈x−QCx, j(ξ −QCx)〉 ≤ 0, ∀x ∈ E, ∀ξ ∈ C. (2.11)

Definition 2.8. Let C1, C2 be convex subsets of E. The quantity

β(C1, C2) = sup
u∈C1

inf
v∈C2

‖u− v‖ = sup
u∈C1

d(u, C2)

is said to be semideviation of the set C1 from the set C2. The function

H(C1, C2) = max{β(C1, C2), β(C2, C1)}

is said to be a Hausdorff distance between C1 and C2.

Lemma 2.9. [5] If E is a uniformly smooth Banach space, C1 and C2 are closed and
convex subsets of E such that the Hausdorff H(C1, C2) ≤ δ, and QC1 and QC2 are
the sunny nonexpansive retractions onto the subsets C1 and C2, respectively, then

‖QC1x−QC2x‖2 ≤ 16R(2r + d)hE(
16Lδ

R
), (2.12)

where L is Figiel’s constant, r = ‖x‖, d = max{d1, d2}, and R = 2(2r +d)+ δ. Here
di = dist(θ, Ci), i = 1, 2, and θ is the origin of the space E.

3. MAIN RESULTS

First, we need the following lemmas in the proof of our results.

Lemma 3.1. [3] Let E be a uniformly convex and uniformly smooth Banach space.
If A = I − T with a nonexpansive mapping T then for all x, y ∈ D(T ), the domain of
T ,

〈Ax−Ay, j(x− y)〉 ≥ L−1R2δE

(
‖Ax−Ay‖

4R

)
, (3.1)

where ‖x‖ ≤ R, ‖y‖ ≤ R and 1 < L < 1.7 is Figiel constant.
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Lemma 3.2 (demiclosedness principle). [1] Let E be a reflexive Banach space having
a weakly sequentially continuous duality mapping, C a nonempty closed convex
subset of E, and T : C −→ E a nonexpansive mapping. Then the mapping I − T
is demiclosed on C, where I is the identity mapping; that is, xn ⇀ x in E and
(I − T )xn −→ y imply that x ∈ C and (I − T )x = y.

Lemma 3.3. [28] Let {an} be a sequence of nonnegative real numbers satisfying the
following relation:

an+1 ≤ (1− αn)an + σn, ∀n ≥ 0,

where {αn} ⊂ (0, 1) for each n ≥ 0 such that (i) limn→∞ αn = 0; (ii)
∑∞

n=1 αn = ∞.

Suppose either (a) σn = o(αn), or (b)
∑∞

n=1 |σn| < ∞, or (c) lim sup
σn

αn
≤ 0. Then

an → 0 as n →∞.

Lemma 3.4. [18] Let C be a closed convex subset of a strictly convex Banach space
E and let T : C −→ E be a nonexpansive mapping from C into E. Suppose that C
is be sunny nonexpansive retract of E. If F (T ) 6= ∅, then F (T ) = F (QCT ), where
QC is a sunny nonexpansive retraction from E onto C.

Theorem 3.5. Let E be a uniformly convex and uniformly smooth Banach space
which admits a weakly sequentially continuous normalized duality mapping j from
E to E∗. Let C be a nonempty closed convex sunny nonexpansive retract of E and let
Ti : C −→ C, i = 1, 2, ..., N be nonexpansive mappings such that S = ∩N

i=1F (Ti) 6=
∅. Then

i) For each αn > 0 the equation (1.5) has unique solution xn;
ii) If the sequence of positive numbers {αn} satisfies limn→∞ αn = 0, then {xn}

converges strongly to QSy, where QS : E −→ S is a sunny nonexpansive
retraction from E onto S.

Moreover, we have the following estimate

‖xn+1 − xn‖ ≤
|αn+1 − αn|

αn
R0 ∀n ≥ 0, (3.2)

where R0 = 2‖y −QSy‖.

Proof. i) For each n ≥ 0, equation (1.5) defines unique sequence {xn} ⊂ E, because
for each n, the element xn is unique fixed point of the contraction mapping T :
C −→ C defined by

T (x) =
1

N + αn

N∑
i=1

Ti(x) +
αn

N + αn
y. (3.3)

ii) From equation (1.5), we have

〈
N∑

i=1

Ai(xn), j(xn − x∗)〉+ αn〈xn − y, j(xn − x∗)〉 = 0, ∀x∗ ∈ S. (3.4)

By virtue of the property of
∑N

i=1 Ai and j, we obtain

〈
N∑

i=1

Ai(xn), j(xn − x∗)〉 ≥ 0, ∀x∗ ∈ S.

Thus,
〈xn − y, j(xn − x∗)〉 ≤ 0, ∀x∗ ∈ S. (3.5)
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From inequality (3.5), we get

‖xn − x∗‖2 ≤ 〈y − x∗, j(xn − x∗)〉 ≤ ‖y − x∗‖.‖xn − x∗‖, ∀x∗ ∈ S. (3.6)

Therefore
‖xn − x∗‖ ≤ ‖y − x∗‖, ∀n ≥ 0, ∀x∗ ∈ S, (3.7)

that implies the boundedness of the sequence {xn}. Every bounded set in a reflex-
ive Banach space is relatively weakly compact. This means that there exists some
subsequence {xnk

} ⊆ {xn} which converges weakly to a limit point x. Since C is
closed and convex, it is also weakly closed. Therefore x ∈ C.

We will show that x ∈ S. Indeed, for each i ∈ {1, 2, ..., N}, x∗ ∈ S and R > 0
satisfy R ≥ max{sup ‖xn‖, ‖x∗‖}, we have

δE(
‖Ai(xn)‖

4R
) ≤ L

R2
〈Ai(xn), j(xn − x∗)〉

≤ L

R2
〈

N∑
k=1

Ak(xn), j(xn − x∗)〉

≤ Lαn

R2
‖xn − y‖.‖xn − x∗‖

≤ Lαn

R2
(R + ‖y‖).‖y − x∗‖ −→ 0, n −→∞.

Since modulus of convexity δE is continuous and E is the uniformly convex Banach
space, Ai(xn) −→ 0, n −→ ∞. From Lemma 3.2, it implies that Ai(x) = 0. Since
i ∈ {1, 2, ..., N} is an arbitrary element, we obtain x ∈ S.
In inequality (3.6) replacing xn by xnk

and x∗ by x, using the weak continuity of j
we obtain xnk

−→ x. From inequality (3.5), we get

〈x− y, j(x− x∗)〉 ≤ 0, ∀x∗ ∈ S. (3.8)

Now, we show that the inequality (3.8) has unique solution. Suppose that x1 ∈ S
is also its solution. Then

〈x1 − y, j(x1 − x∗)〉 ≤ 0, ∀x∗ ∈ S. (3.9)

In inequalities (3.8) and (3.9) replacing x∗ by x1 and x, respectively, we obtain

〈x− y, j(x− x1)〉 ≤ 0,

〈y − x1, j(x− x1)〉 ≤ 0.

Their combination gives ‖x− x1‖2 ≤ 0, thus x = x1 = QSy and the sequence {xn}
converges weakly to x = QSy, because QSy satisfies the inequality (3.8). Finally,
from the first inequality in (3.6), implies that xn −→ QSy.

Now, we prove the inequality (3.2). In equation (1.5) replacing n by n+1 we have
N∑

i=1

Ai(xn+1) + αn+1(xn+1 − y) = 0. (3.10)

From (3.10) and (1.5), we get

〈αn+1xn+1 − αnxn, j(xn+1 − xn)〉 ≤ (αn+1 − αn)〈y, j(xn+1 − xn)〉. (3.11)

Therefore,

αn‖xn+1 − xn‖2 ≤ (αn+1 − αn)〈y − xn+1, j(xn+1 − xn)〉
≤ |αn+1 − αn|.‖y − xn+1‖.‖xn+1 − xn‖
≤ 2‖y −QSy‖.|αn+1 − αn|.‖xn+1 − xn‖.
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Thus,

‖xn+1 − xn‖ ≤
|αn+1 − αn|

αn
R0 ∀n ≥ 0,

where R0 = 2‖y −QSy‖. �

Theorem 3.6. Let E be a uniformly convex and uniformly smooth Banach space
which admits a weakly sequentially continuous normalized duality mapping j from
E to E∗. Let C be a nonempty closed convex sunny nonexpansive retract of E and let
Ti : C −→ C, i = 1, 2, ..., N be nonexpansive mappings such that S = ∩N

i=1F (Ti) 6=
∅. If the sequences {cn}, {αn} and {γn} satisfy

i) 0 < c0 < cn, αn > 0, αn −→ 0,
|αn+1 − αn|

α2
n

−→ 0,
∑∞

n=0 αn = +∞;

ii) γn ≥ 0, γnα−1
n ‖un − un−1‖ −→ 0,

then the sequence {un} defined by (1.6) converges strongly to QSy, where QS :
E −→ S is a sunny nonexpansive retraction from E onto S.

Proof. First, for each n ≥ 1, equation (1.6) defines unique sequence {un} ⊂ E,
because for each n, the element un+1 is unique fixed point of the contraction
mapping f : C −→ C defined by

f(x) =
cn

cn(N + αn) + 1

N∑
i=1

Ti(x) +
cnαn

cn(N + αn) + 1
y +

1
cn(N + αn) + 1

z, (3.12)

where z = QC(un + γn(un − un−1)) ∈ C.
Now, we rewrite equations (1.5) and (1.6) in their equivalent forms

dn

N∑
i=1

Ai(xn) + xn − y = βn(xn − y), (3.13)

dn

N∑
i=1

Ai(un+1) + un+1 − y = βn[QC(un + γn(un − un−1))− y], (3.14)

where βn =
1

1 + cnαn
and dn = cnβn.

From (3.13), (3.14) and by virtue of the property of
∑N

i=1 Ai, we get

‖uu+1 − xn‖ ≤ βn‖QC(un + γn(un − un−1))− xn‖
= βn‖QC(un + γn(un − un−1))−QC(xn)‖
≤ βn‖un − xn‖+ βnγn‖un − un−1‖.

Thus,

‖un+1 − xn+1‖ ≤ ‖un+1 − xn‖+ ‖xn+1 − xn‖

≤ βn‖un − xn‖+ βnγn‖un − un−1‖+
|αn+1 − αn|

αn
R,

(3.15)

or equivalent to

‖un+1 − xn+1‖ ≤ (1− bn)‖un − xn‖+ σn, bn =
cnαn

1 + cnαn
, (3.16)
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where σn = βnγn‖un − un−1‖+
|αn+1 − αn|

αn
R.

By the assumption, we have

σn

bn
=

1
cn

α−1
n γn‖un − un−1‖+ (

1
cn

+ 1)
|αn+1 − αn|

α2
n

R

≤ 1
c0

α−1
n γn‖un − un−1‖+ (

1
c0

+ 1)
|αn+1 − αn|

α2
n

R −→ 0.

Furthermore, since
∑∞

n=0 αn = +∞,
∑∞

n=0 bn = +∞.
By Lemma 3.3, we obtain ‖un − xn‖ −→ 0. Since xn −→ QSy, un −→ QSy. �

Corollary 3.7. Let E be a uniformly convex and uniformly smooth Banach space
which admits a weakly sequentially continuous normalized duality mapping j from
E to E∗. Let Ti : E −→ E, i = 1, 2, ..., N be nonexpansive mappings such that
S = ∩N

i=1F (Ti) 6= ∅. If the sequences {cn}, {αn} and {γn} satisfy

i) 0 < c0 < cn, αn > 0, αn −→ 0,
|αn+1 − αn|

α2
n

−→ 0,
∑∞

n=0 αn = +∞;

ii) γn ≥ 0, γnα−1
n ‖un − un−1‖ −→ 0,

then the sequence {un} defined by

cn(
N∑

i=1

Ai(un+1) + αnun+1) + un+1 = un + γn(un − un−1), u0, u1 ∈ E

converges strongly to QSθ, where QS : E −→ S is a sunny nonexpansive retraction
from E onto S.

Proof. Applying Theorem 3.6 for C = E and y = θ, we obtain the proof of this
corollary. �

Corollary 3.8. Let E be a uniformly convex and uniformly smooth Banach space
which admits a weakly sequentially continuous normalized duality mapping j from
E to E∗. Let C be a nonempty closed convex sunny nonexpansive retract of E and let
fi : C −→ E, i = 1, 2, ..., N be nonexpansive mappings such that S = ∩N

i=1F (fi) 6=
∅. If the sequences {cn}, {αn} and {γn} satisfy

i) 0 < c0 < cn, αn > 0, αn −→ 0,
|αn+1 − αn|

α2
n

−→ 0,
∑∞

n=0 αn = +∞;

ii) γn ≥ 0, γnα−1
n ‖un − un−1‖ −→ 0,

then the sequence {un} defined by

cn(
N∑

i=1

Bi(un+1) + αn(un+1 − y)) + un+1 = QC(un + γn(un − un−1)), (3.17)

converges strongly to QSy, where Bi = I − QCfi, i = 1, 2, ..., N , QC is a sunny
nonexpansive retraction from E onto C, QS is a sunny nonexpansive retraction from
E onto S, and y, u0, u1 ∈ C.

Proof. By Lemma 3.4, we have S = ∩N
i=1F (QCfi). Applying Theorem 3.6 for Ti =

QCfi, i = 1, 2, ..., N we obtain the proof of this corollary. �

Finally, we study stability of the algorithms (1.5) and (1.6) with respect to pertur-
bations of both operators Ti and constraint set C satisfying the following conditions:
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(P1) Instead of C, there is a sequence of closed convex sunny nonexpasive
retract subsets Cn ⊂ E, n = 1, 2, 3, ... such that the Hausdorff H(Cn, C) ≤
δn, where {δn} is a sequence of positive numbers with the propertie

δn+1 ≤ δn, ∀n ≥ 1. (3.18)

(P2) On the each set Cn, there is a nonexpansive self-mapping Tn
i : Cn −→

Cn, i = 1, 2, ..., N satisfying the conditions: there exists the increasing
positive for all t > 0 function g(t) and ξ(t) such that g(0) ≥ 0, ξ(0) = 0
and x ∈ Ck, y ∈ Cm, ‖x− y‖ ≤ δ, then

‖T k
i x− Tm

i y‖ ≤ g(max{‖x‖, ‖y‖})ξ(δ). (3.19)

In this paper, we establish the convergence and stability of the Tikhonov reg-
ularization method (1.5) and the regularization inertial proximal point algorithm
(1.6) in the forms

N∑
i=1

An
i (zn) + αn(zn −QCn

y) = 0, (3.20)

cn(
N∑

i=1

An
i (un+1) + αn(un+1 −QCn

y)) + un+1 = QCn
(un + γn(un − un−1)),

(3.21)

respectively, where u0, u1 and y are elements in E, and An
i = I−Tn

i , i = 1, 2, ..., N ,
with respect to perturbations of the set C, and QCn

: E −→ Cn is the sunny
nonexpansive retraction of E onto Cn.

Theorem 3.9. Let E be a uniformly convex and uniformly smooth Banach space
which admits a weakly sequentially continuous normalized duality mapping j from
E to E∗. Let C be a nonempty closed convex sunny nonexpansive retract of E and let
Ti : C −→ C, i = 1, 2, ..., N be nonexpansive mappings such that S = ∩N

i=1F (Ti) 6=
∅.

i) For each αn > 0 equation (3.20) has unique solution zn;
ii) If the conditions (P1) and (P2) are fulfilled and the sequences of positive

numbers {αn}, {δn} satisfy

αn −→ 0,
δn + ξ(δn)

αn
−→ 0, as n −→∞, (3.22)

then {zn} converges strongly to QS(QCy), where QS : E −→ S is a sunny
nonexpansive retraction from E onto S.

Moreover, if {αn} is a decreasing sequence, then we have the following estimate

‖zn+1 − zn‖ ≤ 4δn + K
δn + ξ(2δn)

αn
+

αn − αn+1

αn
R

+ K3

√
LK4

√
hE(δn), ∀n ≥ 0,

(3.23)

where R, K, K3, K4 are any constants.

Proof. i) For each n ≥ 0, by an argument similar to the proof of Theorem 3.5, it
follows that, the equation (3.20) has a unique solution zn.
ii) Since the distance Hausdorff H(Cn, C) ≤ δn, therefore for each solution xn of
equation (1.5) (note that, in the case that the element y in (1.5) is replaced by QCy),
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there exists an element un ∈ Cn such that ‖xn − un‖ ≤ δn.
From equations (1.5) and (3.20), we have

N∑
i=1

(An
i (zn)−An

i (un)) + αn(zn − xn)− αn(QCny −QCy)

+
N∑

i=1

(An
i (un)−Ai(xn)) = 0.

(3.24)

By virtue of the property of
∑N

i=1 An
i and j, we get

〈
N∑

i=1

(An
i (zn)−An

i (un)), j(zn − un)〉 ≥ 0,

that implies

αn〈zn − xn, j(zn − un)〉 ≤ αn〈QCn
y −QCy, j(zn − un)〉

+ 〈
N∑

i=1

(Ai(xn)−An
i (un)), j(zn − un)〉.

(3.25)

Thus,

αn‖zn − un‖ ≤ αn‖xn − un‖+ αn‖QCn
y −QCy‖+

N∑
i=1

‖Ai(xn)−An
i (un)‖

≤ αnδn + αn‖QCn
y −QCy‖+

N∑
i=1

‖Ai(xn)−An
i (un)‖.

Since H(Cn, C) ≤ δn, there exists constants K1 > 0 and K2 > 1 such that the
inequalities

‖QCny −QCy‖ ≤ K1

√
hE(K2δn) ≤ K1

√
LK2

√
hE(δn)

hold.
Next, for each i ∈ {1, 2, ..., N}, we have

‖Ai(xn)−An
i (un)‖ ≤ δn + g(max{‖xn‖, ‖un‖})ξ(δn)

≤ δn + g(M)ξ(δn),

where M = max{sup ‖xn‖, sup ‖un‖} < +∞.
Consequently,

αn‖zn − un‖ ≤ αnδn + αnK1

√
LK2

√
hE(δn) + N(δn + g(M)ξ(δn)). (3.26)

Thus,

‖zn − xn‖ ≤ ‖zn − un‖+ ‖xn − un‖

≤ 2δn + K1

√
LK2

√
hE(δn) + N

δn + g(M)ξ(δn)
αn

.
(3.27)

Since αn −→ 0,
δn + ξ(δn)

αn
−→ 0, hence δn −→ 0 and hE(δn) −→ 0. By inequality

(3.27), we obtain ‖xn−zn‖ −→ 0. By Theorem 3.5, it implies that xn −→ QS(QCy),
thus the sequence {zn} also converges strongly to QS(QCy).
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Finally, we prove the inequality (3.23). In equation (3.20) replacing n by n + 1,
we have

N∑
i=1

An+1
i (zn+1) + αn(zn+1 −QCn+1y) = 0. (3.28)

Since
H(Cn, Cn+1) ≤ H(Cn, C) +H(C,Cn+1) ≤ 2δn,

we assert that for any zn+1 ∈ Cn+1 there exists an element vn ∈ Cn such that
‖zn+1 − vn‖ ≤ 2δn.
From equations (3.20) and (3.28), we obtain

N∑
i=1

(An
i (zn)−An

i (vn)) + αn(zn −QCn
y)− αn+1(zn+1 −QCn+1y)

+
N∑

i=1

(An
i (vn)−An+1

i (zn+1)) = 0.

By virtue of the property of
∑N

i=1 An
i and j, we get

αn‖zn − vn‖ ≤ αn+1‖vn − zn+1‖+ |αn − αn+1|.‖vn −QCny‖

+ αn+1‖QCny −QCn+1y‖+
N∑

i=1

‖An
i (vn)−An+1

i (zn+1)‖
(3.29)

Since H(Cn, Cn+1) ≤ 2δn, there exists constants K3 > 0 and K4 > 1 such that the
inequalities

‖QCn
y −QCn+1y‖ ≤ K3

√
hE(K4δn) ≤ K3

√
LK4

√
hE(δn) (3.30)

hold.
Since vn ∈ Cn, therefore

‖vn −QCn
y‖ ≤ ‖vn − y‖ ≤ sup ‖zn‖+ ‖y‖+ 2δ1 := R. (3.31)

Next, for each i ∈ {1, 2, ..., N}, we have

‖An
i (vn)−An+1

i (zn+1)‖ ≤ 2δn + ‖Tn
i (vn)− Tn+1

i (zn+1)‖
≤ 2δn + g(max{‖vn‖, ‖zn+1‖})ξ(2δn)

≤ 2δn + g(M ′)ξ(2δn),

(3.32)

where M ′ = max{sup ‖vn‖, sup ‖zn‖} < +∞.
Combining (3.29), (3.30), (3.31) and (3.32), we obtain

‖zn − vn‖ ≤ 2δn + K3

√
LK4

√
hE(δn) + R

αn − αn+1

αn
+ K

δn + ξ(2δn)
αn

, (3.33)

where K = max{2N,Ng(M ′)}.
Consequently,

‖zn+1 − zn‖ ≤ 4δn + K
δn + ξ(2δn)

αn
+ R

αn − αn+1

αn
+ K3

√
LK4

√
hE(δn). (3.34)

�

Next, we will prove the strong convergence and stability of regularization inertial
proximal point algorithm (3.21) by the following theorem.
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Theorem 3.10. Let E be a uniformly convex and uniformly smooth Banach space
which admits a weakly sequentially continuous normalized duality mapping j from
E to E∗. Let C be a nonempty closed convex sunny nonexpansive retract of E and let
Ti : C −→ C, i = 1, 2, ..., N be nonexpansive mappings such that S = ∩N

i=1F (Ti) 6=
∅. If the conditions (P1) and (P2) are fulfilled, and the sequences {αn}, {δn}, {c̃n}
and {γn} satisfy

i) αn ↘ 0,
αn − αn+1

α2
n

−→ 0, as n −→∞,
∑∞

n=1 αn = +∞,

ii)
δn + ξ(2δn)

α2
n

−→ 0,

√
hE(δn)
αn

−→ 0, as n −→∞,

iii) 0 < c0 < cn, γn ≥ 0, γnα−1
n ‖un − un−1‖ −→ 0, as n −→∞,

then the sequence {un} defined by (3.21) converges strongly to QS(QCy), where
QS : E −→ S is a sunny nonexpansive retraction from E onto S.

Proof. First, for each n by an argument similar to the proof of Theorem 3.6, it
follows that, the equation (3.21) has unique solution un+1 ∈ Cn.

Now, we rewrite equations (3.20) and (3.21) in their equivalent forms

dn

N∑
i=1

An
i (zn) + zn −QCn

y = βn(zn −QCn
y), (3.35)

dn

N∑
i=1

An
i (un+1) + un+1 −QCn

y = βn[QCn
(un + γn(un − un−1))−QCn

y], (3.36)

where βn =
1

1 + cnαn
and dn = cnβn.

From (3.35), (3.36) and by virtue of the property of
∑N

i=1 An
i , we have

‖uu+1 − zn‖ ≤ βn‖QCn
(un + γn(un − un−1))− zn‖

= βn‖QCn
(un + γn(un − un−1))−QCn

(zn)‖
≤ βn‖un − zn‖+ βnγn‖un − un−1‖.

Consequently,

‖un+1 − zn+1‖ ≤ ‖un+1 − zn‖+ ‖zn+1 − zn‖

≤ βn‖un − zn‖+ βnγn‖un − un−1‖+ 4δn + K
δn + ξ(2δn)

αn

+ R
αn − αn+1

αn
+ K3

√
LK4

√
hE(δn),

(3.37)

or equivalent to

‖un+1 − zn+1‖ ≤ (1− bn)‖un − zn‖+ σn, (3.38)

where bn =
cnαn

1 + c̃nαn
and

σn = βnγn‖un − un−1‖+ 4δn + K
δn + ξ(2δn)

αn
+ R

αn − αn+1

αn

+ K3

√
LK4

√
hE(δn).
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By the assumption, we obtain

σn

bn
=

1
cn

α−1
n γn‖un − un−1‖+ (

1
cn

+ αn)
[
αn − αn+1

α2
n

R + 4
δn

αn
+ K

δn + ξ(2δn)
α2

n

]
+ (

1
cn

+ αn)K3

√
LK4

√
hE(δn)
αn

≤ 1
c0

α−1
n γn‖un − un−1‖+ (

1
c0

+ αn)
[
αn − αn+1

α2
n

R + 4
δn

αn
+ K

δn + ξ(2δn)
α2

n

]
+ (

1
c0

+ αn)K3

√
LK4

√
hE(δn)
αn

−→ 0, n −→∞.

Since
∑∞

n=0 αn = +∞,
∑∞

n=0 bn = +∞.
By Lemma 3.3, it implies that ‖un − zn‖ −→ 0. Since zn −→ QS(QCy), un −→
QS(QCy).

�
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