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ABSTRACT. The comparison between the classical method of successive approximations (
Picard) method and Adomian decomposition method was studied in many papers for exam-
ple ([14] and [37]).
In this paper we are concerning with two analytical methods; the classical method of suc-
cessive approximations ( Picard )[18] and Adomian decomposition methods ([1]-[6], [16] and
[17]) for a coupled system of quadratic integral equations of fractional order. Also, the exis-
tence and uniqueness of the solution and the convergence will be discussed for each method
and some examples will be studied.
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1. INTRODUCTION

Quadratic integral equations (QIEs) are often applicable in the theory of radia-
tive transfer, kinetic theory of gases, in the theory of neutron transport and in the
traffic theory. The quadratic integral equations can be very often encountered in
many applications.
The quadratic integral equations have been studied in several papers and mono-
graphs (see for examples [8]-[12] and [20]-[26]).
The authors [27] proved the existence and the uniqueness of continuous solution
for the quadratic integral equation

x(t) = a(t) + g(t, x(t))
∫ t

0

f(s, x(s)) ds
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by using the principle of contraction mapping and comparing the two analytical
methods; the classical method of successive approximations (Picard)[18] which
consists the construction of a sequence of functions such that the limit of this
sequence of functions in the sense of uniform convergence is the solution of the
quadratic integral equation, and Adomian decomposition method which gives the
solution as a series see([1]-[6], [16] and [17]). Also, from the results of the examples
the authors deduced that Picard method gives more accurate solution than ADM.

Systems occur in various problems of applied nature, for instance, see ([27]-[15],
[29]-[31]). Recently, Su [36] discussed a two-point boundary value problem for a
coupled system of fractional differential equations. Gafiychuk et al. [31] analyzed
the solutions of coupled nonlinear fractional reaction-diffusion equations.
The coupled systems have been studied in many papers; see [27], [36] and [37].

This paper deals with the coupled system of quadratic integral equations of frac-
tional order

x(t) = a1(t) + g1(t, y(t))
∫ t

0

(t− s)α−1

Γ(α)
f1(s, y(s)) ds, t ∈ [0, 1],

(1.1)

y(t) = a2(t) + g2(t, x(t))
∫ t

0

(t− s)β−1

Γ(β)
f2(s, x(s)) ds, t ∈ [0, 1],

where α, β > 0.
and comparing the results obtained from the two methods; Picard and Adomian
decomposition methods. Also, some examples will be studied.

Now, the definition of the fractional-order integral operator is given by:

Definition 1.1. Let β be a positive real number, the fractional-order integral of
order β of the function f is defined on the interval [a, b] by (see [32], [33], [34]
and [35])

Iβ
a f(t) =

∫ t

a

(t− s)β−1

Γ(β)
f(s) ds,

and when a = 0, we have Iβf(t) = Iβ
0 f(t).

For further properties of fractional-order integral operator (see [32]-[35] ) for
example.

2. METHOD OF SUCCESSIVE APPROXIMATIONS (PICARD METHOD)

Now, the coupled system (1.1) will be investigated under the assumptions:
(i) ai : I → R+ = [0,+ ∞), i = 1, 2 is continuous on I where I = [0, 1];
(ii) fi, gi : I×D ⊂ R+ → R+, i = 1, 2 are continuous and there exist positive

constants Mi and Ni, i = 1, 2 such that |gi(t, x)| ≤ Mi and |fi(t, x)| ≤ Ni

on D;
(iii) fi, gi, i = 1, 2 satisfy Lipschitz condition with Lipschitz constants Li and

Ki such that,

|gi(t, x)− gi(t, y)| ≤ Li|x− y|,
|fi(t, x)− fi(t, y)| ≤ Ki|x− y|.



PICARD AND ADOMIAN DECOMPOSITION METHODS FOR A COUPLED SYSTEM 173

Let C = C(I) be the space of all real valued functions which are continuous on I.
Define the operators T1, T2 by

T1y(t) = a1(t) + g1(t, y(t))
∫ t

0

(t− s)α−1

Γ(α)
f1(s, y(s)) ds, t ∈ I

T2x(t) = a2(t) + g2(t, x(t))
∫ t

0

(t− s)β−1

Γ(β)
f2(s, x(s)) ds, t ∈ I,

where α, β > 0.
Then the coupled (1.1) may be written as:

x(t) = T1y(t)

y(t) = T2x(t).

Define the operator T by

T (x, y)(t) = (T1y(t), T2x(t)).

Theorem 2.1. Let the assumptions (i)-(iii) be satisfied. If (M1K1 + N1L1)(M2K2 +
N2L2) < 1, then the coupled system of quadratic integral equations of fractional
order (1.1) has a unique positive solution (x, y) ∈ C × C.

Proof. It is clear that the operators T1, T2 map C into C.
Applying Picard method to the coupled system of quadratic integral equation (1.1),
the solution is constructed by the sequences

xn(t) = a1(t) + g1(t, yn−1(t))
∫ t

0

(t− s)α−1

Γ(α)
f1(s, yn−1(s)) ds, n = 1, 2, . . . ,

x0(t) = a1(t)
(2.1)

yn(t) = a2(t) + g2(t, xn−1(t))
∫ t

0

(t− s)β−1

Γ(β)
f2(s, xn−1(s)) ds, n = 1, 2, . . . ,

y0(t) = a2(t).

All the functions xn(t) and yn(t) are continuous functions. Also, xn(t) and
yn(t) can be written as a sum of successive differences:

xn = x0 +
n∑

j=1

(xj − xj−1),

yn = y0 +
n∑

j=1

(yj − yj−1).

This means that convergence of the two sequences {xn} and {yn} is equivalent to
convergence of the two infinite series

∑
(xj−xj−1),

∑
(yj−yj−1) and the solution

will be
u(t) = (x(t), y(t)), where

x(t) = lim
n→∞

xn(t),

y(t) = lim
n→∞

yn(t),

i.e. if the two infinite series
∑

(xj − xj−1),
∑

(yj − yj−1) converge, then the two
sequence {xn(t)}, {yn(t)} will converge to x(t) and y(t) respectively. To prove the



174 A. M. A. EL-SAYED, H. H. G. HASHEM AND E. A. A. ZIADA/JNAO : VOL. 3, NO. 2, (2012), 171-183

uniform convergence of {xn(t)} and {yn(t)} we shall consider the two associated
series

∞∑
n=1

[xn(t)− xn−1(t)],

∞∑
n=1

[yn(t)− yn−1(t)].

From (2.1) for n = 1, we get

x1(t)− x0(t) = g2(t, y0(t))
∫ t

0

(t− s)β−1

Γ(β)
f2(s, y0(s)) ds

y1(t)− y0(t) = g1(t, x0(t))
∫ t

0

(t− s)α−1

Γ(α)
f1(s, x0(s)) ds

and

| x1(t)− x0(t) | ≤ M2N2

∫ t

0

(t− s)β−1

Γ(β)
ds ≤ M2N2

tβ

Γ(β + 1)
.

Also,

| y1(t)− y0(t) | ≤ M1N1
tα

Γ(α + 1)
. (2.2)

Now, we shall obtain an estimate for xn(t)− xn−1(t), n ≥ 2

xn(t)− xn−1(t) ≤ g2(t, yn−1(t))
∫ t

0

(t− s)β−1

Γ(β)
f2(s, yn−1(s)) ds

− g2(t, yn−2(t))
∫ t

0

(t− s)β−1

Γ(β)
f2(s, yn−2(s)) ds

+ g2(t, yn−1(t))
∫ t

0

(t− s)β−1

Γ(β)
f2(s, yn−2(s)) ds

− g2(t, yn−1(t))
∫ t

0

(t− s)β−1

Γ(β)
f2(s, yn−2(s)) ds

≤ g2(t, yn−1(t))
∫ t

0

(t− s)β−1

Γ(β)
[f2(s, yn−1(s))− f2(s, yn−2(s))] ds

+ [ g2(t, yn−1(t))− g2(t, yn−2(t)) ]
∫ t

0

(t− s)α−1

Γ(α)
f2(s, yn−2(s)) ds,

using assumptions (ii) and (iii), we get

|xn(t)− xn−1(t)| ≤ M2K2

∫ t

0

(t− s)β−1

Γ(β)
|yn−1(s)− yn−2(s)| ds

+ N2L2|yn−1(t)− yn−2(t)|
∫ t

0

(t− s)β−1

Γ(β)
ds.

Putting n = 2, then using (2.2) we get

|x2(t)− x1(t)| ≤ M2K2

∫ t

0

(t− s)β−1

Γ(β)
|y1(s)− y0(s) | ds

+ N2 L2| y1(t)− y0(t) |
tβ

Γ(β + 1)

|x2(t)− x1(t)| ≤ M2M1N1K2
tα+β

Γ(α + 1)Γ(β + α + 1)
+ M1N1N2L2

tα+β

Γ(α + 1).Γ(β + 1)

≤ M1N1(M2K2 + N2L2) tα+β .
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By the same way we can prove that:

|y2(t)− y1(t)| ≤ M2N2(M1K1 + N1L1) tα+β

using the above estimate we get

|x3(t)− x2(t)| ≤ M2K2

∫ t

0

(t− s)β−1

Γ(β)
|y2(s)− y1(s)| ds

+ N2L2 |y2(t)− y1(t)|
∫ t

0

(t− s)β−1

Γ(β)
ds

≤ M2N2(M1K1 + N1L1)(M2K2 + N2L2) t2α+β .

by a similar way as done before we have the following:

|y3(t)− y2(t)| ≤ M2N2(M1K1 + N1L1)(M2K2 + N2L2) tα+2β

|x4(t)− x3(t)| ≤ M2N2(M1K1 + N1L1)2(M2K2 + N2L2) t2α+2β

|y4(t)− y3(t)| ≤ M1N1(M1K1 + N1L1)2(M2K2 + N2L2) t2α+2β

|x5(t)− x4(t)| ≤ M1N1(M1K1 + N1L1)2(M2K2 + N2L2)2 t3α+2β

Repeating this technique, we obtain the general estimate for the terms of the series:

|xn(t)−xn−1(t)| ≤


M2N2(M1K1 + N1L1)

n
2 (M2K2 + N2L2)

n
2−1 for n even

M1N1(M1K1 + N1L1)
n−1

2 (M2K2 + N2L2)
n−1

2 for n odd
and

|yn(t)−yn−1(t)| ≤


M1N1(M1K1 + N1L1)

n
2 (M2K2 + N2L2)

n
2−1 for n even

M2N2(M1K1 + N1L1)
n−1

2 (M2K2 + N2L2)
n−1

2 for n odd

Since (M1K1 + N1L1)(M2K2 + N2L2) < 1, then the uniform convergence of
∞∑

n=1

[xn(t)− xn−1(t)]

and
∞∑

n=1

[yn(t)− yn−1(t)]

is proved and so the sequences {xn(t)} and {yn(t)} are uniformly convergent.
Since fi(t, x) and gi(t, x) are continuous in the second argument then

x(t) = a1(t) + lim
n→∞

g1(t, yn−1(t))
∫ t

0

(t− s)α−1

Γ(α)
f1(s, yn−1(s)) ds

= a1(t) + g1(t, y(t))
∫ t

0

(t− s)α−1

Γ(α)
f1(s, y(s)) ds.

and

y(t) = a2(t) + lim
n→∞

g2(t, xn−1(t))
∫ t

0

(t− s)β−1

Γ(β)
f2(s, xn−1(s)) ds

= a2(t) + g2(t, x(t))
∫ t

0

(t− s)β−1

Γ(β)
f2(s, x(s)) ds.

Therefore, the sequence {un(t)} which is defined by un(t) = (xn(t), yn(t)) is
uniformly convergent. Thus, the existence of a solution is proved.
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To prove the uniqueness, let ũ(t) = (x̃, ỹ)(t) be a continuous solution of (1.1).
Then

x̃(t) = a1(t) + g1(t, ỹ(t))
∫ t

0

(t− s)α−1

Γ(α)
f1(s, ỹ(s)) ds, t ∈ [0, 1],

ỹ(t) = a2(t) + g1(t, x̃(t))
∫ t

0

(t− s)β−1

Γ(β)
f2(s, x̃(s)) ds, t ∈ [0, 1],

and

|ũ(t)− un(t)| = |(x̃(t), ỹ(t))− (xn(t), yn(t))|
= |(x̃(t)− xn(t), ỹ(t)− yn(t))|
≤ sup

t∈I
|(x̃(t)− xn(t), ỹ(t)− yn(t))|

≤ ||(x̃(t)− xn(t), ỹ(t)− yn(t))||
≤ ||x̃(t)− xn(t)||+ ||ỹ(t))− yn(t)||,

by a simple calculations we get

lim
n→∞

xn(t) = x(t) = x̃(t),

lim
n→∞

yn(t) = y(t) = ỹ(t).

Therefore
lim

n→∞
un(t) = u(t) = ũ(t).

Which completes the proof. �

Corollary 2.1. Let the assumptions of Theorem 2.1 be satisfied. If α, β → 1, then
the coupled system of quadratic integral equation

x(t) = a1(t) + g1(t, y(t))
∫ t

0

f1(s, y(s)) ds

y(t) = a1(t) + g2(t, x(t))
∫ t

0

f2(s, x(s)) ds

has a unique continuous solution.

3. ADOMIAN DECOMPOSITION METHOD (ADM)

The Adomian decomposition method (ADM) is a non-numerical method for solv-
ing a wide variety of functional equations and usually gets the solution in a series
form.
Since the beginning of the 1980s, Adomian ([1]-[6] and [16]-[17]) has presented
and developed a so-called decomposition method for solving algebraic, differen-
tial, integro- differential, differential-delay, and partial differential equations. The
solution is found as an infinite series which converges rapidly to accurate solu-
tions. The method has many advantages over the classical techniques, mainly, it
makes unnecessary the linearization, perturbation and other restrictive methods
and assumptions which may change the problem being solved, sometimes seri-
ously. In recent decades, there has been a great deal of interest in the Adomian
decomposition method. The method was successfully applied to a large amount of
applications in applied sciences. For more details about the method and its appli-
cation, see ([1]-[6], [37] and [16]-[17]).
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In this section, we shall study Adomian decomposition method (ADM) for the cou-
pled system (1.1).
The solution algorithm of the coupled system (1.1) using ADM is,

x0 (t) = a1 (t) , xi (t) = Ai−1 (t)
∫ t

0

(t− s)α−1

Γ (α)
Bi−1 (s) ds, i ≥ 1, (3.1)

y0 (t) = a2 (t) , yi (t) = Ci−1 (t)
∫ t

0

(t− s)β−1

Γ (β)
Di−1 (s) ds, i ≥ 1, (3.2)

where Ai, Bi, Ci and Di are Adomian polynomials of the nonlinear terms

g1 (t, y(t)) , f1 (s, y (s)) , g2 (t, x(t)) and f2 (s, x (s)) respectively, which take the
forms

Ai =
1
i!

[
di

dλi
g1

(
t,
∞∑

k=0

λkyk

)]
λ=0

,

Bi =
1
i!

[
di

dλi
f1

(
s,

∞∑
k=0

λkyk

)]
λ=0

,

Ci =
1
i!

[
di

dλi
g2

(
t,

∞∑
k=0

λkxk

)]
λ=0

,

Di =
1
i!

[
di

dλi
f2

(
s,
∞∑

k=0

λkxk

)]
λ=0

.

Finally, the solution of the coupled system (1.1) will be

x(t) =
∞∑

i=0

xi(t) and y(t) =
∞∑

i=0

yi(t) (3.3)

4. CONVERGENCE ANALYSIS

4.1. Existence and Uniqueness theorem.

Theorem 4.1. Let a1 (t) , a2 (t) ∈ C (I) . If 0 < R < 1 then the coupled system (1.1)

has a unique solution X ∈ C2 (I) , where X =
(

x
y

)
, R = max {r1, r2} ,

r1 = 1
Γ(β+1) [L2N2 + K2M2] , r2 = 1

Γ(α+1) [L1N1 + K1M1] .

Proof. The system (1.1):(
x
y

)
=
(

a1

a2

)
+
(

0 1
1 0

)(
g2 (t, x(t))

∫ t

0
(t−s)β−1

Γ(β) f2 (s, x (s)) ds

g1 (t, y(t))
∫ t

0
(t−s)α−1

Γ(α) f1 (s, y (s)) ds

)
can be written as,

X = G + DM,

where,

X =
(

x
y

)
, G =

(
a1

a2

)
, D =

(
0 1
1 0

)
, M =

(
g2 (t, x(t))

∫ t

0
(t−s)β−1

Γ(β) f2 (s, x (s)) ds

g1 (t, y(t))
∫ t

0
(t−s)α−1

Γ(α) f1 (s, y (s)) ds

)
The mapping F : E → E is defined as,

FX = G + DM,
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Let X, U ∈ E , then
FU = G + DN,

where,

U =
(

u
v

)
, N =

(
g2 (t, u(t))

∫ t

0
(t−s)β−1

Γ(β) f2 (s, u (s)) ds

g1 (t, v(t))
∫ t

0
(t−s)α−1

Γ(α) f1 (s, v (s)) ds

)
.

so,

‖FX − FU‖ = ‖D‖ ‖M −N‖

=

∥∥∥∥∥∥∥
 g2 (t, x(t))

∫ t

0
(t−s)β−1

Γ(β) f2 (s, x (s)) ds− g2 (t, u(t))
∫ t

0
(t−s)β−1

Γ(β) f2 (s, u (s)) ds

g1 (t, y(t))
∫ t

0
(t−s)α−1

Γ(α) f1 (s, y (s)) ds− g1 (t, v(t))
∫ t

0
(t−s)α−1

Γ(α) f1 (s, v (s)) ds


∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



g2 (t, x(t))
∫ t

0
(t−s)β−1

Γ(β) f2 (s, x (s)) ds− g2 (t, u(t))
∫ t

0
(t−s)β−1

Γ(β) f2 (s, x (s)) ds

+g2 (t, u(t))
∫ t

0
(t−s)β−1

Γ(β) f2 (s, x (s)) ds− g2 (t, u(t))
∫ t

0
(t−s)β−1

Γ(β) f2 (s, u (s)) ds

g1 (t, y(t))
∫ t

0
(t−s)α−1

Γ(α) f1 (s, y (s)) ds− g1 (t, v(t))
∫ t

0
(t−s)α−1

Γ(α) f1 (s, y (s)) ds

+g1 (t, v(t))
∫ t

0
(t−s)α−1

Γ(α) f1 (s, y (s)) ds− g1 (t, v(t))
∫ t

0
(t−s)α−1

Γ(α) f1 (s, v (s)) ds



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥∥



[g2 (t, x(t))− g2 (t, u(t))]
∫ t

0
(t−s)β−1

Γ(β) f2 (s, x (s)) ds

+g2 (t, u(t))
∫ t

0
(t−s)β−1

Γ(β) [f2 (s, x (s))− f2 (s, u (s))] ds

[g1 (t, y(t))− g1 (t, v(t))]
∫ t

0
(t−s)α−1

Γ(α) f1 (s, y (s)) ds

+g1 (t, v(t))
∫ t

0
(t−s)α−1

Γ(α) [f1 (s, y (s))− f1 (s, v (s))] ds



∥∥∥∥∥∥∥∥∥∥∥∥∥

=



L2
Γ(β) max

t∈I
|x(t)− u(t)|

∫ t

0
(t− s)β−1 |f2 (s, x (s))| ds

+ K2
Γ(β) max

t∈I
|g2 (t, u(t))| |x(t)− u(t)|

∫ t

0
(t− s)β−1

ds

L1
Γ(α) max

t∈I
|y(t)− v(t)|

∫ t

0
(t− s)α−1 |f1 (s, y (s))| ds

+ K1
Γ(α) max

t∈I
|g1 (t, v(t))| |y(t)− v(t)|

∫ t

0
(t− s)α−1

ds



=

 1
βΓ(β) [L2N2 + K2M2] ‖x(t)− u(t)‖

1
αΓ(α) [L1N1 + K1M1] ‖y(t)− v(t)‖



=

 1
Γ(β+1) [L2N2 + K2M2] ‖x(t)− u(t)‖

1
Γ(α+1) [L1N1 + K1M1] ‖y(t)− v(t)‖





PICARD AND ADOMIAN DECOMPOSITION METHODS FOR A COUPLED SYSTEM 179

=

 r1 ‖x(t)− u(t)‖

r2 ‖y(t)− v(t)‖


where

r1 =
1

Γ (β + 1)
[L2N2 + K2M2] , r2 =

1
Γ (α + 1)

[L1N1 + K1M1]

which implies that
‖FX − FU‖ ≤ R ‖X − U‖

where,
R = max {r1, r2} ,

under the condition 0 < R < 1, the mapping F is contraction and hence there
exists a unique solution X ∈ C2 (I) of the system (1.1) and this completes the
proof. �

4.2. Proof of convergence.

Theorem 4.2. Let the solution of the system (1.1) be exist. If |xj1(t)| < c where
c is a positive constant then the series solution (3.3) of the system (1.1) using ADM
converge.

Proof. Define the two sequences {S1p} and {S2p} such that, S1p =
p∑

i=0

xi(t) and

S2p =
p∑

i=0

yi(t) are the sequences of partial sums from the series solutions
∞∑

i=0

xi(t)

and
∞∑

i=0

yi(t). Now,

g1 (t, y(t)) =
∞∑

i=0

Ai, f1 (s, y (s)) =
∞∑

i=0

Bi,

g2 (t, x(t)) =
∞∑

i=0

Ci, f2 (s, x (s)) =
∞∑

i=0

Di,

Let Sjp and Sjq (j = 1, 2), be arbitrary partial sums with p > q. We are going to
prove that {Sjp} are Cauchy sequences in this Banach space E.

‖Sjp − Sjq‖ =

∥∥∥∥∥∥∥∥∥∥


p∑

i=0

xi −
q∑

i=0

xi

p∑
i=0

yi −
q∑

i=0

yi


∥∥∥∥∥∥∥∥∥∥

≤ ‖D‖

∥∥∥∥∥∥∥∥


p∑
i=0

Ci−1 (t)
∫ t

0
(t−s)β−1

Γ(β)

p∑
i=0

Di−1 (s) ds−
q∑

i=0

Ci−1 (t)
∫ t

0
(t−s)β−1

Γ(β)

q∑
i=0

Di−1 (s) ds

p∑
i=0

Ai−1 (t)
∫ t

0
(t−s)α−1

Γ(α)

p∑
i=0

Bi−1 (s) ds−
q∑

i=0

Ai−1 (t)
∫ t

0
(t−s)α−1

Γ(α)

q∑
i=0

Bi−1 (s) ds


∥∥∥∥∥∥∥∥
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≤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



p∑
i=0

Ci−1 (t)
∫ t

0
(t−s)β−1

Γ(β)

p∑
i=0

Di−1 (s) ds−
q∑

i=0

Ci−1 (t)
∫ t

0
(t−s)β−1

Γ(β)

p∑
i=0

Di−1 (s) ds

+
q∑

i=0

Ci−1 (t)
∫ t

0
(t−s)β−1

Γ(β)

p∑
i=0

Di−1 (s) ds−
q∑

i=0

Ci−1 (t)
∫ t

0
(t−s)β−1

Γ(β)

q∑
i=0

Di−1 (s) ds

p∑
i=0

Ai−1 (t)
∫ t

0
(t−s)α−1

Γ(α)

p∑
i=0

Bi−1 (s) ds−
q∑

i=0

Ai−1 (t)
∫ t

0
(t−s)α−1

Γ(α)

p∑
i=0

Bi−1 (s) ds

+
q∑

i=0

Ai−1 (t)
∫ t

0
(t−s)α−1

Γ(α)

p∑
i=0

Bi−1 (s) ds−
q∑

i=0

Ai−1 (t)
∫ t

0
(t−s)α−1

Γ(α)

q∑
i=0

Bi−1 (s) ds



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



[
p∑

i=0

Ci−1 (t)−
q∑

i=0

Ci−1 (t)
] ∫ t

0
(t−s)β−1

Γ(β)

p∑
i=0

Di−1 (s) ds

+
q∑

i=0

Ci−1 (t)
∫ t

0
(t−s)β−1

Γ(β)

[
p∑

i=0

Di−1 (s)−
q∑

i=0

Di−1 (s)
]

ds

[
p∑

i=0

Ai−1 (t)−
q∑

i=0

Ai−1 (t)
] ∫ t

0
(t−s)α−1

Γ(α)

p∑
i=0

Bi−1 (s) ds

+
q∑

i=0

Ai−1 (t)
∫ t

0
(t−s)α−1

Γ(α)

[
p∑

i=0

Bi−1 (s)−
q∑

i=0

Bi−1 (s)
]

ds



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



[
p∑

i=q+1

Ci−1 (t)

] ∫ t

0
(t−s)β−1

Γ(β)

p∑
i=0

Di−1 (s) ds

+
q∑

i=0

Ci−1 (t)
∫ t

0
(t−s)β−1

Γ(β)

[
p∑

i=q+1

Di−1 (s)

]
ds

[
p∑

i=q+1

Ai−1 (t)

] ∫ t

0
(t−s)α−1

Γ(α)

p∑
i=0

Bi−1 (s) ds

+
q∑

i=0

Ai−1 (t)
∫ t

0
(t−s)α−1

Γ(α)

[
p∑

i=q+1

Bi−1 (s)

]
ds



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



[
p−1∑
i=q

Ci−1 (t)

] ∫ t

0
(t−s)β−1

Γ(β)

p∑
i=0

Di−1 (s) ds

+
q∑

i=0

Ci−1 (t)
∫ t

0
(t−s)β−1

Γ(β)

[
p−1∑
i=q

Di−1 (s)

]
ds

[
p−1∑
i=q

Ai−1 (t)

] ∫ t

0
(t−s)α−1

Γ(α)

p∑
i=0

Bi−1 (s) ds

+
q∑

i=0

Ai−1 (t)
∫ t

0
(t−s)α−1

Γ(α)

[
p−1∑
i=q

Bi−1 (s)

]
ds



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
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≤

∥∥∥∥∥∥∥∥∥∥∥∥∥



[
g2(t, S1(p−1))− g2(t, S1(q−1))

] ∫ t

0
(t−s)β−1

Γ(β) [f2(t, S1p)] ds

+g2(t, S1q)
∫ t

0
(t−s)β−1

Γ(β)

[
f2(t, S1(p−)1)− f2(t, S1(q−1))

]
ds

[
g1(t, S2(p−1))− g1(t, S2(q−1))

] ∫ t

0
(t−s)α−1

Γ(α) [f1(t, S2p)] ds

+g1(t, S2q)
∫ t

0
(t−s)α−1

Γ(α)

[
f1(t, S2(p−1))− f1(t, S2(q−1))

]
ds



∥∥∥∥∥∥∥∥∥∥∥∥∥

≤

 1
Γ(β+1) [L2N2 + M2K2]

∥∥S1(p−1) − S1(q−1)

∥∥
1

Γ(α+1) [L1N1 + M1K1]
∥∥S2(p−1) − S2(q−1)

∥∥


≤ R
∥∥Sj(p−1) − Sj(q−1)

∥∥
Let p = q + 1 then,∥∥Sj(q+1) − Sjq

∥∥ ≤ R
∥∥Sjq − Sj(q−1)

∥∥ ≤ R2
∥∥Sj(q−1) − Sj(q−2)

∥∥ ≤ · · · ≤ Rq ‖Sj1 − Sj0‖
From the triangle inequality we have,

‖Sjp − Sjq‖ ≤
∥∥Sj(q+1) − Sjq

∥∥+
∥∥Sj(q+2) − Sj(q+1)

∥∥+ · · ·+
∥∥Sjp − Sj(p−1)

∥∥
≤

[
Rq + Rq+1 + · · ·+ Rp−1

]
‖Sj1 − Sj0‖

≤ Rq
[
1 + R + · · ·+ Rp−q−1

]
‖Sj1 − Sj0‖

≤ Rq

[
1−Rp−q

1−R

]
‖xj1‖

where
(

x11

x21

)
=
(

x1

y1

)
. Now 0 < R < 1, and p > q implies that (1−Rp−q) ≤ 1.

Consequently,

‖Sjp − Sjq‖ ≤ Rq

1−R
‖xj1‖

≤ Rq

1−R
max
t∈I

|xj1(t)|

but, if |xj1(t)| < c then ‖Sjp − Sjq‖ → 0 as q → ∞ and hence, {Sjp} are Cauchy

sequences in this Banach space so, the series
∞∑

i=0

xi(t) and
∞∑

i=0

yi(t) converge and

this completes the proof. �

5. NUMERICAL EXAMPLES

Example 1 Consider the following nonlinear FCSQIEs,

x(t) =
(

t2 − t11/2

35
√

π

)
+ y2(t)

∫ t

0

(t− s)−1/2

Γ (1/2)
y3(s) ds,

(5.1)
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y(t) =
(

t

2
− 1048576t39/2

22309287
√

π

)
+ x4(t)

∫ t

0

(t− s)1/2

Γ (3/2)
x5(s) ds,

and has the exact solution x (t) = t2, y (t) = t
2 .

Applying ADM to system (5.1), we get

x0(t) =
(

t2 − t11/2

35
√

π

)
, xi(t) = Ai−1(t)

∫ t

0

(t− s)−1/2

Γ (1/2)
Bi−1(s) ds, i ≥ 1,

y0(t) =
(

t

2
− 1048576t39/2

22309287
√

π

)
, yi(t) = Ci−1(t)

∫ t

0

(t− s)1/2

Γ (3/2)
Di−1(s) ds, i ≥ 1,

where Ai, Bi, Ci, and Di are Adomian polynomials of the nonlinear terms y2, y3, x4

and x5 respectively and the solution will be,

x(t) =
q∑

i=0

xi(t), y(t) =
q∑

i=0

yi(t)

Table 1 shows the absolute error of ADM solution (q = 2), while table 2 shows the
absolute error of Picard solution (q = 2).

Table 1: Absolute Error Table 2: Absolute Error

t |xexact − xADM | |yexact − yADM |
0.1 6.61744×10−24 3.13306×10−26

0.2 4.65868×10−20 2.62749×10−19

0.3 7.80598×10−16 2.94604×10−15

0.4 7.77967×10−13 2.19741×10−12

0.5 1.64741×10−10 3.70791×10−10

0.6 1.30963×10−8 2.44052×10−8

0.7 5.29431×10−7 8.37533×10−7

0.8 0.0000130294 0.0000178146
0.9 0.000217161 0.000262602
1 0.00249546 0.00290512

t |xexact − xPicard| |yexact − yPicard|
0.1 6.61744×10−24 3.76158×10−37

0.2 0 3.9443×10−31

0.3 1.31798×10−18 7.37112×10−26

0.4 3.61304×10−15 1.11707×10−20

0.5 1.66655×10−12 1.17449×10−16

0.6 2.49761×10−10 2.26918×10−13

0.7 1.72135×10−8 1.36183×10−10

0.8 6.71089×10−7 3.47021×10−8

0.9 0.0000169013 4.56449×10−6

1 0.000299432 0.000340497
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