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ABSTRACT. The comparison between the classical method of successive approximations (
Picard) method and Adomian decomposition method was studied in many papers for exam-
ple ([14] and [37]).

In this paper we are concerning with two analytical methods; the classical method of suc-
cessive approximations ( Picard )[18] and Adomian decomposition methods ([1]-[6], [16] and
[17]) for a coupled system of quadratic integral equations of fractional order. Also, the exis-
tence and uniqueness of the solution and the convergence will be discussed for each method
and some examples will be studied.
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1. INTRODUCTION

Quadratic integral equations (QIEs) are often applicable in the theory of radia-
tive transfer, kinetic theory of gases, in the theory of neutron transport and in the
traffic theory. The quadratic integral equations can be very often encountered in
many applications.

The quadratic integral equations have been studied in several papers and mono-
graphs (see for examples [8]-[12] and [20]-[26]).

The authors [27] proved the existence and the uniqueness of continuous solution
for the quadratic integral equation

£(t) = alt) + glt, (1)) / f(s,2(s)) ds
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by using the principle of contraction mapping and comparing the two analytical
methods; the classical method of successive approximations (Picard)[18] which
consists the construction of a sequence of functions such that the limit of this
sequence of functions in the sense of uniform convergence is the solution of the
quadratic integral equation, and Adomian decomposition method which gives the
solution as a series see([1]-[6], [16] and [17]). Also, from the results of the examples
the authors deduced that Picard method gives more accurate solution than ADM.

Systems occur in various problems of applied nature, for instance, see ([27]-[15],
[29]-[31]). Recently, Su [36] discussed a two-point boundary value problem for a
coupled system of fractional differential equations. Gafiychuk et al. [31] analyzed
the solutions of coupled nonlinear fractional reaction-diffusion equations.

The coupled systems have been studied in many papers; see [27], [36] and [37].

This paper deals with the coupled system of quadratic integral equations of frac-
tional order

o) = @)+ ) | (t}(a)) fi(s.9(s)) ds, £ € 0.1],
(1.1)
t —3 ﬁ—]
y(t) = ax(t) + g2t,z(t)) ‘/0 (tl“(ﬁ)) fa(s,x(s)) ds, t € [0,1],

where «, 5> 0.
and comparing the results obtained from the two methods; Picard and Adomian
decomposition methods. Also, some examples will be studied.

Now, the definition of the fractional-order integral operator is given by:

Definition 1.1. Let § be a positive real number, the fractional-order integral of
order (§ of the function f is defined on the interval [a, b] by (see [32], [33], [34]

and [35])
t(p_ )81
2 = [ o ds

and when a = 0, we have I°f(t) = Igf(t).

For further properties of fractional-order integral operator (see [32]-[35] ) for
example.

2. METHOD OF SUCCESSIVE APPROXIMATIONS (PICARD METHOD)

Now, the coupled system (1.1) will be investigated under the assumptions:
() a;: I — Ry =][0,+ ), i =1,2is continuous on I where I = [0, 1];
() fi, g::IxD C Ry — Ry, i=1,2 are continuous and there exist positive
constants M, and N;, ¢ = 1,2 such that |g;(t,z)| < M; and |f;(¢,2)| < N;
on D;
(i) fi, gi, ¢ = 1,2 satisfy Lipschitz condition with Lipschitz constants L; and
K; such that,

lgi(t,z) — gi(t,y)] < Lilz —yl,
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Let C = C(I) be the space of all real valued functions which are continuous on /.
Define the operators T7,7T> by

_ S)afl

Tuy(t) = ai(t) + g1(t,y(®) / “F(a) fi(s(s)) ds, t € 1

to(p_ g)A-1
Tox(t) = as(t) + golt, z(t)) / (tr(ﬁ)) Fols,2(s)) ds, t € 1,

0

where «, 5 > 0.
Then the coupled (1.1) may be written as:

Define the operator 7' by
T(x,y)(t) = (Tvy(t), Tox(t)).

Theorem 2.1. Let the assumptions (i)-(iii) be satisfied. If (M1K; + N1Lq)(MaK5 +
NyLs) < 1, then the coupled system of quadratic integral equations of fractional
order (1.1) has a unique positive solution (z,y) € C x C.

Proof. 1t is clear that the operators 77, T map C into C.
Applying Picard method to the coupled system of quadratic integral equation (1.1),
the solution is constructed by the sequences

_ s)a—l

x(t) = al(t)—l—gl(t,yn,l(t))/o (tl“@) f1(8,yn—1(8)) ds, n=1,2,...,

ro(t) = ai(t)
(2.1)

t(p_ g)B-1
yn(t) = a2(t) +gg(t,xn_1(t))/ (tl"(ﬁ)) fa(s,xpn—1(s)) ds, n=1,2,...,

0
Yo (t) = Qa2 (t)
All the functions z,(t) and y,(t) are continuous functions. Also, z,(t¢) and
yn(t) can be written as a sum of successive differences:

n*£0+z 95']1
_y0+z yjl

This means that convergence of the two sequences {z,} and {y,} is equivalent to
convergence of the two infinite series ) .(z; —2;_1), »_.(y; —y;—1) and the solution
will be
u(t) = (z(t),y(t)), where

z(t) = lim x,(t),

n—oo

y(t) = lim  y,(t),

n—oo

i.e. if the two infinite series ) (z; — j_1), »_(y; — yj—1) converge, then the two
sequence {z,(t)}, {yn(t)} will convergeto z(t) and y(t) respectively. To prove the
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uniform convergence of {z,(t)} and {y,(t)} we shall consider the two associated
series

Z[xn(t) — zp—1(t)],
D [y (t) = ynr (2)]

From (2.1) for n =1, we get

t(p_ g)B-1
210 = a0lt) = (b)) [ B Falsn(s) ds
t —3 a—1
y1 () = yo(t) = g1 (¢, 20(t)) /O (tw-)o F1(s, 20(s)) ds
and
bt —s)Pt tP
|2 (t) — zo(t) | < M2N2/0 Fg s < M s
Also, N
| yl(t) - yO(t) | < MiN; ﬁ (2.2)

Now, we shall obtain an estimate for z,(t) — x,—1(t), n > 2

20®) = 201) < oaltna @) [ t(t}(;)ﬁ_lﬂs Yooi(s)) ds
— ot ynalt / fols,yu-a(s)) ds
T gt gt / " folssuna(s) ds
— g2t yn(t / fzsynz())d
< ot [ - 205 5 1() — Fols, vm2(s))] ds

_ S)a—l

+  [92(tyn-1(t) — g2, yn—2()) | /0 (tF@z) f2(8,Yn—2(s)) ds,

using assumptions (ii) and (iii), we get

|I’n(t) — xn_l(t)| S MQKQ/O

¢ (t— s)'B’1
I'(B)

t(p_ g)B-1
+ NoLo|yn-1(t) — yn72(t)|/0 (tI‘(@ ds

Putting n = 2, then using (2.2) we get

t _)p-1
o) =m0 = MoK [ )~ ) | ds

+  No Lo| y1(t) — yo(t) |

|yn—1(5) - yn—2(5)‘ ds

8

T@+1)
totB tatB

[22(t) —21(t)] < M2M1N1K2F(a TOMBratl) + MlNlNzLQF(a +1).IT(8+1)

< MN;(MyKy + NyLy) t*H5,
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By the same way we can prove that:
ly2(t) = (t)] < MyNyp(MyKy + NiLy) to+F

using the above estimate we get

t(f_ g)B-1
a3t —ma(t)] < MoK / C= ) () — 3a(s)] ds

ST
to(p_ )81
+ NaLs [ya(t) —yl(t)‘/o (tf(;) "

< MaNo(MiKi + NiLy)(MoKz + NoLy) %7,
by a similar way as done before we have the following:
lys(t) — y2(t)| < MoNo(Mi1 Ky + N1Ly)(MaKy + NoLy) t*+20
lz4(t) — 23(t)] < MoNy(M Ky 4+ Ny Ly)?(MyKy 4+ NoLy) t22128
lya(t) — ys(t)| < MyNy (MK, + N1Ly )} (My Ky + NoLy) t2o+28
|25 (t) — 24(t)] < MIN (MK, 4+ Ny Ly)?(MyKy 4+ NoLy)? t30+28
Repeating this technique, we obtain the general estimate for the terms of the series:
MyNy(M Ky + Ni1L1)% (MyKy + NaLo)5~1 for n even
|2n () =2n-1(t)] <
MiN; (MK + N1L1) "% (Mo Ky + NaLy)™s  for n odd
and
MiNy (MK + N1L1)% (MyKy + NyLo) 51 for n even

yn(t)=yn-1(t)] <
—1 n—1
2

MyNy(My Ky + NiLy) "5 (MyKa + NoLy) ™2
Since (M;K; + N1L1)(M3Ks 4+ NoLy) < 1, then the uniform convergence of

for n odd

[Tn(t) — Tn—1(t)]

n=1

and -
Z [yn(t) - ynfl(t)]

is proved and so the sequences {z,(t)} and {y,(t)} are uniformly convergent.
Since f;(t,x) and g;(t,z) are continuous in the second argument then

o) = @)+t @) [T Ao ds

_ S)a—l

ar(t) + g1t y(0)) / “F(a) f1(s,9(s)) ds.

and

t(p_ g)B-1
W) = as(t) + Tim ga(t,zn1(t)) /O (tr(;)

_ <\B-1
i fa(s,z(s)) ds.

= as(t) +92(taz(t))/0 ( r'g)

Therefore, the sequence {u,(t)} which is defined by u,(t) = (x,(t), yn(t)) is
uniformly convergent. Thus, the existence of a solution is proved.

fa(s,xn—1(8)) ds
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To prove the uniqueness, let @(t) = (Z,7)(t) be a continuous solution of (1.1).
Then
)a—l

B = al) + (i) / =" ¢ (s, 5(s)) ds, t € [0,1],

I'(a)
t— )81

gt) = ax(t) + g1(t,Z(¢)) /0 ( T fa(s,%(s)) ds, t € [0,1],

and

ja(t) —un(t)] = |

IN
~ N
=

IN A

by a simple calculations we get

lim z,(t) = z(t) = &(t),

n—oo
lim y,(t) = y(t) = 4(t)-
n—oo
Therefore
lim u,(t) = u(t) = a(t).
n—oo
Which completes the proof. O

Corollary 2.1. Let the assumptions of Theorem 2.1 be satisfied. If o, § — 1, then
the coupled system of quadratic integral equation

w(t) = ant) + ot y(t)) / f1(s5,9(s) ds
y(t) = an(t) + galt 2(t)) / fols,2(s)) ds

has a unique continuous solution.

3. ADOMIAN DECOMPOSITION METHOD (ADM)

The Adomian decomposition method (ADM) is a non-numerical method for solv-

ing a wide variety of functional equations and usually gets the solution in a series
form.
Since the beginning of the 1980s, Adomian ([1]-[6] and [16]-[17]) has presented
and developed a so-called decomposition method for solving algebraic, differen-
tial, integro- differential, differential-delay, and partial differential equations. The
solution is found as an infinite series which converges rapidly to accurate solu-
tions. The method has many advantages over the classical techniques, mainly, it
makes unnecessary the linearization, perturbation and other restrictive methods
and assumptions which may change the problem being solved, sometimes seri-
ously. In recent decades, there has been a great deal of interest in the Adomian
decomposition method. The method was successfully applied to a large amount of
applications in applied sciences. For more details about the method and its appli-
cation, see ([1]-[6], [37] and [16]-[17]).
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In this section, we shall study Adomian decomposition method (ADM) for the cou-
pled system (1.1).
The solution algorithm of the coupled system (1.1) using ADM is,

_ S)(X—l

xo(t) = a1 (t), x; (t) = A1 (t)/o (tl"(

o) Bi_1(s)ds, i > 1, (3.1)

¢t _ o)t
0® = . u0=Coa [ CLEDa e i1 62

where A;, B;, C; and D; are Adomian polynomials of the nonlinear terms

g1 (ty(), fi(s,y(s)), g2(t,z(t)) and f5(s,x(s)) respectively, which take the

forms

1 | k
A= 5 M <ZA ykﬂ :
- A=0

B, = * Z}%
‘ il wz k ’
- A=0

C;, = L AP
Ta wz E: T )
=0

1 k
b= ﬂdx < Z)xo

Finally, the solution of the coupled system (1.1) will be
oo
t) = Z x;(t) and y(t Zyl (8.3)
i=0

4. CONVERGENCE ANALYSIS

4.1. Existence and Uniqueness theorem.

Theorem 4.1. Leta; (t),as (t) € C(I).If 0 < R < 1 then the coupled system (1.1)

xT

has a unique solution X € C2%(I), where X = , R =max{ry,ra},

1 (ﬁ+1) [LoNy + KoMy, r F(aJrl) [LiNy + K1 M].

Proof. The system (1.1):

<z>=<z;>+<$é>< G T el )

can be written as,

X =G+ DM,

where,

v ()= (1) o=(§ )= (Bl i e

The mapping F': E — E is defined as,
FX =G+ DM,
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Let X,U € E, then

FU = G+ DN,
where,
t(t—s)F"
_ ( u ) N ( 92 (t,u(t)) fy S fa (s,u(s)) ds )
= s = _g)a—1 .
v g1 (tv(t)) fy Sk fi (s,0(s)) ds

SO,
IFX —FU|| = |D|||M - N]|

(92 (t.2(t) fy U o (5.2 (5)) ds — g2 (t,u(t)) [y Uk 2 (5. u (5)) ds )I

fo F(a) fl (s,y(s))ds — g1 (¢, v(t fo tr‘zzxa) J1(s,v(s))ds

g2 (t,2(1)) ‘f“;” "o s (5)) ds = ga (t.u(t) Jy S5 o (5. () ds
+g2 (tu(t) [ ¢ F(ﬁ) " fa (5,2 () ds — g2 (¢, u(t)) Ot(t;(ﬁ) fa (s,u(s)) ds

a1 (t,y(t) J“F%wfl (5,9 () ds — g1 (£, v(t)) ;%h (5,9 () ds
+g1 (6 0(t) o S i (5,9 () ds — g1 (t,0(1)) fy Sk fi (s,0(5)) ds

92 (1,2(0)) = g2 (6, u(O)] L o (s, (s)) ds
g2 (tu(t)) fo U [fa (5.2 (5)) — fa (s,u(s))] ds

g1 (£, y(t)) — g1< o] fy e i (59 () ds
o1 (tv() fy S [ (5,9 () — fu (s, 0(s))] ds

vty max | (1) — u()] fg (¢ “m( x(s))| ds
+r()max\92(tu())||x )] [ (t— 5)° ds

ey maly(t) = ()] fy (¢ = )" 11 (5,9 ()] ds
485 max g (8, 0(0) [0(8) — o(0)] i (¢ — ° " ds

( oy [L2N2 + Ko M) ||2(t) — u(t)]| )

arey LN+ KM Jy(t) — v(@)]]

( Ty L2z + oMol l(t) — u(t)] )

rary L1+ KM [ly(t) — ()]
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ry () — u(t)]
r2 [[y(t) —v(d)]]

where
_ 1
CT(a+1)

r = [LaNs + KoM, 19 [L1N1 + K1 My]

1
T(G+1)
which implies that

IFX - FU| < R|X U]
where,
R =max{ry,r},
under the condition 0 < R < 1, the mapping F' is contraction and hence there

exists a unique solution X € C? (I ) of the system (1.1) and this completes the
proof. O

4.2. Proof of convergence.

Theorem 4.2. Let the solution of the system (1.1) be exist. If |x;1(t)| < ¢ where
c is a positive constant then the series solution (3.3) of the system (1.1) using ADM
converge.

P
Proof. Define the two sequences {51, } and {S2,} such that, S1, = > z;(¢) and

i=0
o0
Sap = Y yi(t) are the sequences of partial sums from the series solutions . z;(t)
= i=0

o0
and ) y;(t). Now,
i=0

g1 (ty(t) = ZA“ fi(s,y (s ZBZ,

g2 (t,2(t)) = Zci7 fa(s,2(s)) = ZDi7
i=0 i=0

Let Sjp and S, (j = 1,2), be arbitrary partial sums with p > ¢g. We are going to
prove that {S jp} are Cauchy sequences in this Banach space F.

p q
YT — T
1=0 1=0

||Sjp*quH =
p q
> Yi— 2o Yi
1=0 =0
p B—1 q s)B—1
> Cioa () fy U5 2&1mw—z@4@t“>
< DI 3° 2

t(t—s)*7! d t(t—s)* !
> Aici (8) [y r(a Zle()ds—gAi—l(t) 0 p(a

ZDZ 1()
ZBz 1()
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T’ (t=5)°~ < getia
;)Ci 1 fo p(ﬁ ZDz 1 (s )ds_;)cifl(t) ZDz 1(s)ds
Tq $)8—1 z—q )81
+ X Cit () o L ZDZ 1(s)ds = 3 Cima (1 o L ZDZ 1 (s)ds
<
P t (t—s) a O
fain g Eamafann g Lo
" A, t””*” B ds— > A; t””” qB d
+20“1() Zzl()s ;)%1()0 T(a) 1(5)ds
p t p
[z Cer (0= 3 Cia 0] Diis (s)ds
1=0 =0
C; ¢y ™ D, Y’ d
+;) 271() 0 T ;) i—1 (3) ;) i—1 (5) S
<
q _ge-1 2
£ 0- E 4 0] 55 £ B9
q a—1 p q
+ Z: A1,1 (t) f(f (t}?lz) |:§)le (s) — ;}Bi,1 (S):| ds
[ p " (t75)671
2 Ca ()] Jy T 5 Dia (5)ds
1=q
g t (t—s)P1 L
+2 Cia () Jy T > D;_1(s)|ds
i=0 i=q+1
<
p t (t—s)>t p
S A () Jy R 3 Bia () ds
1=q
< t—s)t | &
+ >0 A1 (1) [y ra— | 2 Bi-1(s)|ds
i=0 1=q+1
p—1 _gp-1 P
e (t)] S D )i
i=q i=
a t (t—s)P~? =l
=+ ZOOi_l (t) fO NG Z D;_1 (S) ds
i= i=q
<
p—1 a—1
5 A <t>] [ S B s
i=q =0
q
+ZOA'L 1 fo (Jt 2 ( )] ds
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[92(t, S1(p-1)) = 92(t, Sh(q-1))] Jo & Fg(g) -~ [falt. S1p)] ds
Y
+92(t, S1q) J% [f2(tvsl(p—)1) fa(t, S1q-1))] ds

<
[gl(tst(p—l)) g1(t, SQ(q 1))} ' u [fi(t, S2p)] ds
+91(t, S2q) ot(t FS(L) [fl(tv’SQ(p—l)) fl(tst(q—l))]d
(ﬁ+1) [L2N3 + M K| HSl(p 1) Sl(qfl)H
<
F(a+1) [L1Ny + My K HS2 (p-1) — S2(g-1) H
< R[Sjp-1) = Sig-)l

Let p = g + 1 then,

1Sj(a+1) = Siall < R||Sjq = Sia-nl < B*|Sjq-1) = Sjta-2)|| < -+ < R [ISj1 — Sjol

From the triangle inequality we have,

1Sip = Siall - < [|Sita+1) = Siall + [|Sica+2) = Sicarnll + -+ [[Sip = Sio-) |
< [RT+R"™ +-- -+ RP7 (IS5 — Sjoll
< RI[I4+R+--+ RS — Sio
<

1— Rp4
R? [1—1%} [l

where < in > = ( zl ) . Now0 < R < 1, and p > ¢ implies that (1—RP~%) < 1.
21 1
Consequently,
R4
1550 = Sjall - < 7= lzal

N

R4
< ot ()

but, if |z;1(t)| < ¢ then [|S, — Sjq]| — 0 as ¢ — oo and hence {S;p} are Cauchy
[&.°]
sequences in this Banach space so, the series > z;(¢) and Z yi(t) converge and

=0 =0

this completes the proof. O

5. NUMERICAL EXAMPLES

Example 1 Consider the following nonlinear FCSQIEs,

(2 PN gy [ =9
o(t) = (t - ﬁ)+y<t> [ v
(5.1)
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2

yt) = (—

22309287/

Applying ADM to system (5.1), we get

xo(t)

Yo(t)

- <t2

t11/2

357

)

_(t 1048576t%/2
o\ 2 223092877

1048576¢39/2 >

s |

—t
= 3.

ot (tf

§)~1/2
o) = At [ L2

o T'(1/2)

t (t _ 8)1/2
I'(3/2)

T (3/2)

25(s) ds,

Bi_l(S) dS, 7 Z 17

tp g)1/2
) , yilt) = C¢71(t)/0 uDi,l(s) ds, i>1,

where A;, B;, C;, and D; are Adomian polynomials of the nonlinear terms 2, 3>, z*
and z° respectively and the solution will be,

2(t) =Y wi(t), y(t) =Y wilt)
=0 :

Table 1 shows the absolute error of ADM solution (¢ = 2), while table 2 shows the
absolute error of Picard solution (¢ = 2).

Table 1: Absolute Error Table 2: Absolute Error

t

‘xexact - xAD]W|

|xemact - xPicard|

|yexact — YPicard |

0.1

6.61744x10~ %%

6.61744x10 %%

3.76158x 1037

0.2

4.65868x10~20

0

3.9443x10 31

0.3

7.80598x 1016

1.31798x10° 18

7.37112x10 26

0.4

7.77967x10~13

3.61304x10°1°

1.11707x10~20

0.5

1.64741x10°10

1.66655x 1012

1.17449x10° 16

0.6

1.30963x10~8

2.49761x10~10

2.26918x10 13

0.7

5.29431x10~7

1.72135x10~8

1.36183x10~ 10

0.8

0.0000130294

6.71089x 10~ "7

3.47021x10~8

0.9

0.000217161

0.0000169013

4.56449%x10°

1

0.00249546

0.000299432

0.000340497

[1] G. Adomian
[2] G. Adomian
[3] G. Adomian
[4] G. Adomian

|yemact — yADM| t
3.13306x 1026 0.1
2.62749x10~ 1 0.2
2.94604x10~1° 0.3
2.19741x10~ 12 0.4
3.70791x10~10 0.5
2.44052x10~8 0.6
8.37533x 10~ "7 0.7
0.0000178146 0.8
0.000262602 0.9
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