

Journal of Nonlinear Analysis and Optimization

Vol. 3, No. 1, (2012), 85-92

ISSN: 1906-9685

http://www.math.sci.nu.ac.th

A NEW ITERATIVE METHOD FOR NONEXPANSIVE MAPPINGS IN HILBERT SPACES

A. RAZANI, M. YAZDI*

Department of Mathematics, Faculty of Science, Imam Khomeini International University, P.O. Box: 34149-16818, Qazvin, Iran

ABSTRACT. In this paper, a new iterative method for finding a common fixed point of a countable nonexpansive mappings in a Hilbert space, is introduced. Then a strong convergence theorem for a countable family of nonexpansive mappings is proved. This theorem improve and extend some recent results of Tian (2010) and Xu (2004).

KEYWORDS: Fixed point; Nonexpansive mapping; Iterative method; Variational inequality; Viscosity approximation.

1. INTRODUCTION

Let H be a real Hilbert space. A mapping S of H into itself is called nonexpansive, if $\|Sx-Sy\| \leq \|x-y\|$ for all $x,y \in H$. Let Fix(S) denote the fixed points set of S. We assume $Fix(S) \neq \emptyset$, it is well known, Fix(S) is closed and convex. Recall that a contraction on H is a self-mapping f of H such that $\|f(x)-f(y)\| \leq \alpha \|x-y\|$ for all $x,y \in H$, where $\alpha \in (0,1)$ is a constant. Let A be a bounded linear operator on H. A is strongly positive; that is, there exists a constant $\overline{\gamma}>0$ such that $\langle Ax,x\rangle \geq \overline{\gamma}\|x\|^2$, for all $x \in H$.

Moudafi [5] introduced the viscosity approximation method for nonexpansive mappings. Let f be a contraction on H, starting with an arbitrary initial $x_0 \in H$, define a sequence $\{x_n\}$ recursively by

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) Sx_n, \ n \ge 0, \tag{1.1}$$

where $\{\alpha_n\}$ is a sequence in (0,1). Xu [9] proved that under certain appropriate conditions on $\{\alpha_n\}$, the sequence $\{x_n\}$ generated by (1.1) converges strongly to the unique solution x^* in Fix(S) of the variational inequality:

$$\langle (I - f)x^*, x^* - x \rangle \le 0, \text{ for all } x \in Fix(S). \tag{1.2}$$

Note that iterative methods for nonexpansive mappings can be used to solve a convex minimization problem. See, e.g., [2, 8, 10] and references therein. A typical

Article history: Received 17 March 2012. Accepted 25 March 2012.

^{*} Corresponding author.

Email address: msh_yazdi@ikiu.ac.ir(M. Yazdi).

problem is that of minimizing a quadratic function over the set of the fixed points of nonexpansive mapping on a real Hilbert space

$$\min_{x \in Fix(S)} \frac{1}{2} \langle Ax, x \rangle - \langle x, b \rangle, \tag{1.3}$$

where b is a given point in H.

In [8], it is proved, the sequence $\{x_n\}$ defined by the iterative method below with an arbitrary initial $x_0 \in H$

$$x_{n+1} = \alpha_n b + (I - \alpha_n A) S x_n, \ n \ge 0,$$
 (1.4)

converges strongly to the unique solution of the minimization problem (1.3) provided the sequence $\{\alpha_n\}$ satisfies certain conditions. Combining the iterative method (1.1) and (1.4), Marino and Xu [4] consider the following general iterative method:

$$x_{n+1} = \alpha_n \gamma f(x_n) + (I - \alpha_n A) S x_n, \ n \ge 0.$$
 (1.5)

It is proved, if the sequence $\{\alpha_n\}$ satisfies appropriate conditions, then the sequence $\{x_n\}$ generated by (1.5) converges strongly to the unique solution of the variational inequality

$$\langle (\gamma f - A)x^*, x - x^* \rangle \leq 0$$
, for all $x \in Fix(S)$.

which is the optimality condition for the minimization problem

$$\min_{x \in Fix(S)} \frac{1}{2} \langle Ax, x \rangle - h(x),$$

where h is a potential function for γf (i.e., $h'(x) = \gamma f(x)$ for $x \in H$).

On the other hand, Yamada [10] introduced the following hybrid iterative method for solving the variational inequality

$$x_{n+1} = Sx_n - \mu \lambda_n F(Sx_n), \ n \ge 0, \tag{1.6}$$

where F is k-Lipschitzian and η -strongly monotone operator with $k>0, \eta>0$ and $0<\mu<2\eta/k^2$, then, if $\{\lambda_n\}$ satisfies appropriate conditions, the sequence $\{x_n\}$ generated by (1.6) converges strongly to the unique solution of the variational inequality

$$\langle Fx^*, x - x^* \rangle \ge 0$$
, for all $x \in Fix(S)$.

Tian [7] combined the iterative method (1.5) with the Yamada's method (1.6) and considered the following iterative method:

$$x_{n+1} = \alpha_n \gamma f(x_n) + (I - \mu \alpha_n F) S x_n, \ n \ge 0.$$

$$(1.7)$$

He proved, if the sequence $\{\alpha_n\}$ satisfies appropriate conditions, then the sequence $\{x_n\}$ generated by (1.7) converges strongly to the unique solution $x^* \in Fix(S)$ of the variational inequality

$$\langle (\gamma f - \mu F)x^*, x - x^* \rangle < 0$$
, for all $x \in Fix(S)$.

In this paper, motivated by Tian [7], we prove a strong convergence theorem for a countable family of nonexpansive mappings in a Hilbert space. Our result improve and extend the corresponding results in recent works.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product $\langle .,. \rangle$ and the norm $\|.\|$. Weak and strong convergence is denoted by notation \rightarrow and \rightarrow , respectively. In a real Hilbert space H,

$$\|\lambda x + (1 - \lambda)y\|^2 = \lambda \|x\|^2 + (1 - \lambda)\|y\|^2 - \lambda(1 - \lambda)\|x - y\|^2,$$

for all $x, y \in H$ and $\lambda \in \mathbb{R}$. Let C be a nonempty closed convex subset of H. Then, for any $x \in H$, there exists a unique nearest point in C, denoted by $P_C(x)$, such that

$$||x - P_C(x)|| \le ||x - y||$$
, for all $y \in C$.

Such a P_C is called the metric projection of H onto C. It is known, P_C is nonexpansive. Further, for $x \in H$ and $z \in C$,

$$z = P_C(x) \iff \langle x - z, z - y \rangle \ge 0$$
, for all $y \in C$.

Now, we collect some lemmas which will be used in the main result.

Lemma 2.1. Let H be a real Hilbert space. Then, for all $x, y \in H$,

(I)
$$||x+y||^2 \le ||x||^2 + 2\langle y, x+y \rangle;$$

(II) $||x+y||^2 \ge ||x||^2 + 2\langle y, x \rangle.$

(II)
$$||x+y||^2 \ge ||x||^2 + 2\langle y, x \rangle$$
.

Lemma 2.2. [1] Assume $\{a_n\}$ is a sequence of nonnegative real numbers such that

$$a_{n+1} \le (1 - \gamma_n)a_n + \gamma_n v_n + r_n,$$

where $\{\gamma_n\}$ is a sequence in (0,1), $\{r_n\}$ is a sequence of nonnegative real numbers and $\{v_n\}$ is a sequence in \mathbb{R} such that

- $\begin{array}{ll} \text{(I)} & \sum_{n=1}^{\infty} \gamma_n = \infty;\\ \text{(II)} & \limsup_{n \to \infty} v_n \leq 0;\\ \text{(III)} & \sum_{n=1}^{\infty} r_n < \infty. \end{array}$

Then, $\lim_{n\to\infty} a_n = 0$.

Lemma 2.3. [3] Let C be a nonempty closed convex subset of H and $S:C\to C$ a nonexpansive mapping with $Fix(S) \neq \emptyset$. If $\{x_n\}$ is a sequence in C weakly converging to x and if $\{(I-S)(x_n)\}$ converges strongly to y, then (I-S)x = y.

Lemma 2.4. [1] Let C be a nonempty closed convex subset of H. Suppose

$$\sum_{n=1}^{\infty} \sup\{\|T_{n+1}z - T_nz\| : z \in C\} < \infty.$$

Then, for each $y \in C$, $\{T_n y\}$ converges strongly to some point of C. Moreover, let T be a mapping of C into itself defined by $Ty = \lim_{n \to \infty} T_n y$, for all $y \in C$. Then $\lim_{n\to\infty} \sup\{\|Tz - T_n z\| : z \in C\} = 0.$

Theorem 2.5. [7] Let H be a real Hilbert space, $S: H \to H$ be a nonexpansive mapping with $Fix(S) \neq \emptyset$, $f: H \to H$ be a contraction with coefficient $0 < \alpha < 1$ and F be a k-Lipschitzian and η -strongly monotone operator on H with $k > 0, \eta > 0$. Let $0 < \mu < 2\eta/k^2$ and $0 < \gamma < \mu(\eta - \frac{\mu k^2}{2})/\alpha = \tau/\alpha$. Then the unique fixed point $x_t \in H$ of the contraction $x \mapsto t\gamma f(x) + (I - t\mu F)Sx$ converges strongly to a fixed point q of S as $t \to 0$ which solves the following variational inequality

$$\langle (\mu F - \gamma f)q, q - z \rangle \leq 0$$
, for all $z \in Fix(S)$.

Theorem 2.6. [7] Let H be a real Hilbert space, $S: H \to H$ be a nonexpansive mapping with $Fix(S) \neq \emptyset$, $f: H \to H$ be a contraction with coefficient $0 < \alpha < 1$ and F be a k-Lipschitzian and η -strongly monotone operator on H with $k > 0, \eta > 0$. Let $0 < \mu < 2\eta/k^2$ and $0 < \gamma < \mu(\eta - \frac{\mu k^2}{2})/\alpha = \tau/\alpha$. Suppose $\{\alpha_n\}$ is a sequence in (0,1) satisfying the following conditions:

- $\begin{array}{ll} \text{(I)} & \lim_{n \to \infty} \alpha_n = 0; \\ \text{(II)} & \sum_{n=1}^{\infty} \alpha_n = \infty; \\ \text{(III)} & \sum_{n=1}^{\infty} |\alpha_{n+1} \alpha_n| < \infty \text{ or } \lim_{n \to \infty} \frac{\alpha_n}{\alpha_{n+1}} = 1. \end{array}$

Let $x_0 \in H$. Then the sequence $\{x_n\}$ defined by (1.7) converges strongly to q that is obtained in Theorem 2.5.

3. MAIN RESULTS

In this section, we prove the following strong convergence theorem for finding a common element of fixed points set of a countable family of nonexpansive mappings in a Hilbert space.

Theorem 3.1. Let H be a real Hilbert space H. Let $\{S_n\}_{n=1}^{\infty}$ be an infinite family of nonexpansive self-mappings on H which satisfies $\bigcap_{n=1}^{\infty} Fix(S_n) \neq \emptyset$. Let f be a contraction of H into itself with coefficient $0 < \alpha < 1$ and F a k-Lipschitzian and η -strongly monotone operator on H with $k>0, \eta>0$. Let $0<\mu<2\eta/k^2$, $0<\gamma<\mu(\eta-\frac{\mu k^2}{2})/\alpha=\tau/\alpha$ and $\tau<1$. Define a sequence $\{x_n\}\subset H$ as follows:

$$\begin{cases} y_n = \alpha_n \gamma f(x_n) + (I - \alpha_n \mu F) S_n x_n, \\ x_{n+1} = (1 - \beta_n) y_n + \beta_n S_n y_n, & n \ge 1, \end{cases}$$
(3.1)

where $\{\alpha_n\}$ and $\{\beta_n\}$ are two sequences in [0,1] satisfying the following conditions:

- $\begin{array}{ll} \text{(I)} & \lim_{n \to \infty} \alpha_n = 0 \text{ and } \sum_{n=1}^\infty \alpha_n = \infty; \\ \text{(II)} & \lim_{n \to \infty} \beta_n = 0 \text{ or } \beta_n \in [0,b) \text{ for some } b \in (0,1) \text{ and } \sum_{n=1}^\infty |\beta_{n+1} \beta_n| < \infty; \\ \text{(III)} & \sum_{n=1}^\infty |\alpha_{n+1} \alpha_n| < \infty \text{ or } \lim_{n \to \infty} \frac{\alpha_n}{\alpha_{n+1}} = 1. \end{array}$

Suppose $\sum_{n=1}^{\infty} \sup\{\|S_{n+1}z - S_nz\| : z \in K\} < \infty$ for any bounded subset K of H. Let S be a mapping of H into itself defined by $Sz = \lim_{n \to \infty} S_n z$ for all $z \in H$ and suppose $Fix(S) = \bigcap_{n=1}^{\infty} Fix(S_n)$. Then the sequences $\{x_n\}$ defined by (3.1) converge strongly to $q \in Fix(S)$ which is a unique solution of the following variational inequality

$$\langle (\mu F - \gamma f)q, q - z \rangle \leq 0$$
, for all $z \in Fix(S)$.

Proof. Let $Q = P_{\bigcap_{n=1}^{\infty} Fix(S_n)}$. So

$$\begin{split} \|Q(I - \mu F + \gamma f)(x) - Q(I - \mu F + \gamma f)(y)\| &\leq & \|(I - \mu F + \gamma f)(x) - \\ & (I - \mu F + \gamma f)(y)\| \\ &\leq & \|(I - \mu F)(x) - (I - \mu F)(y)\| \\ & + \gamma \|f(x) - f(y)\| \\ &\leq & (1 - \tau)\|x - y\| + \gamma \alpha \|x - y\| \\ &= & (1 - (\tau - \gamma \alpha))\|x - y\|, \end{split}$$

for all $x,y\in H$. Therefore, $P_{\bigcap_{n=1}^\infty Fix(S_n)}(I-\mu F+\gamma f)$ is a contraction of H into itself, which implies, there exists a unique element $q\in H$ such that q=1 $Q(I - \mu F + \gamma f)(q) = P_{\bigcap_{n=1}^{\infty} Fix(S_n)}(I - \mu F + \gamma f)(q)$ or equivalently

$$\langle (\mu F - \gamma f)q, q - z \rangle \rangle \le 0$$
, for all $z \in Fix(S)$. (3.2)

We proceed with following steps:

Step 1. $\{x_n\}$ and $\{y_n\}$ are bounded. Let $p \in Fix(S)$. Then, from (3.1), we have

$$\begin{split} \|x_{n+1} - p\| &= \|(1 - \beta_n)(y_n - p) + \beta_n(S_n y_n - p)\| \le \|y_n - p\| \\ &= \|\alpha_n(\gamma f(x_n) - \mu F(p)) + (I - \alpha_n \mu F)(S_n x_n - p)\| \\ &\le (1 - \alpha_n \tau) \|x_n - p\| + \alpha_n \gamma \alpha \|x_n - p\| + \alpha_n \|\gamma f(p) - \mu F(p)\| \\ &\le (1 - \alpha_n(\tau - \gamma \alpha)) \|x_n - p\| + \alpha_n \|\gamma f(p) - \mu F(p)\| \\ &\le \max\{\|x_n - p\|, \frac{\|\gamma f(p) - \mu F(p)\|}{\tau - \gamma \alpha}\}. \end{split}$$

By induction,

$$||x_n - p|| \le \max\{||x_1 - p||, \frac{||\gamma f(p) - \mu F(p)||}{\tau - \gamma \alpha}\}, \quad n \ge 1.$$

Hence, $\{x_n\}$ is bounded, so are $\{y_n\}$, $\{f(x_n)\}$, $\{(FS_n)x_n\}$ and $\{S_ny_n\}$. Without loss of generality, we may assume $\{x_n\}$, $\{y_n\}$, $\{f(x_n)\}$, $\{(FS_n)x_n\}$, $\{S_ny_n\} \subset K$, where K is a bounded set of H.

Step 2. $\lim_{n\to\infty} ||x_{n+1}-x_n|| = 0$. Since K is bounded, $\{S_ny_n-y_n\}$, $\{f(x_n)\}$ and $\{(FS_n)x_n\}$ are bounded. Let

$$M_1 = \sup\{\|S_n y_n - y_n\|, \|f(x_n)\|, \|(\mu F S_n) x_n\| : n \in \mathbb{N}\}.$$

From the definition of $\{x_n\}$, it is easily seen

$$\begin{aligned} \|x_{n+2} - x_{n+1}\| &= & \|(1 - \beta_{n+1})y_{n+1} + \beta_{n+1}S_{n+1}y_{n+1} - (1 - \beta_n)y_n - \beta_nS_ny_n\| \\ &= & \|(1 - \beta_{n+1})y_{n+1} + \beta_{n+1}S_{n+1}y_{n+1} - (1 - \beta_{n+1})y_n - \beta_nS_ny_n \\ &+ (1 - \beta_{n+1})y_n - (1 - \beta_n)y_n - \beta_{n+1}S_ny_n + \beta_{n+1}S_ny_n\| \\ &= & \|(1 - \beta_{n+1})(y_{n+1} - y_n) + \beta_{n+1}(S_{n+1}y_{n+1} - S_ny_n) \\ &+ (\beta_{n+1} - \beta_n)(S_ny_n - y_n)\| \\ &\leq & (1 - \beta_{n+1})\|y_{n+1} - y_n\| + \beta_{n+1}\|S_{n+1}y_{n+1} - S_ny_n\| \\ &+ |\beta_{n+1} - \beta_n|M_1 \\ &\leq & (1 - \beta_{n+1})\|y_{n+1} - y_n\| + |\beta_{n+1}\|S_{n+1}y_{n+1} - S_ny_{n+1}\| \\ &+ \beta_{n+1}\|y_{n+1} - y_n\| + |\beta_{n+1} - \beta_n|M_1 \\ &\leq & \|y_{n+1} - y_n\| + \|S_{n+1}y_{n+1} - S_ny_{n+1}\| + |\beta_{n+1} - \beta_n|M_1, \end{aligned}$$

for all $n \in \mathbb{N}$. From (3.1), we obtain

$$||y_{n+1} - y_n|| = ||\alpha_{n+1}\gamma f(x_{n+1}) + (I - \alpha_{n+1}\mu F)S_{n+1}x_{n+1} - \alpha_n\gamma f(x_n) - (I - \alpha_n\mu F)S_nx_n||$$

$$= ||(I - \alpha_{n+1}\mu F)(S_{n+1}x_{n+1} - S_nx_n) - (\alpha_{n+1} - \alpha_n)\mu F(S_nx_n) + \alpha_{n+1}\gamma (f(x_{n+1}) - f(x_n)) + (\alpha_{n+1} - \alpha_n)\gamma f(x_n)||$$

$$\leq (1 - \alpha_{n+1}\tau)||S_{n+1}x_{n+1} - S_nx_n|| + \alpha_{n+1}\gamma\alpha||x_{n+1} - x_n|| + |\alpha_{n+1} - \alpha_n||\gamma f(x_n) - \mu F(S_nx_n)||$$

$$\leq (1 - \alpha_{n+1}\tau)(||S_{n+1}x_{n+1} - S_{n+1}x_n|| + ||S_{n+1}x_n - S_nx_n||) + \alpha_{n+1}\gamma\alpha||x_{n+1} - x_n|| + |\alpha_{n+1} - \alpha_n|(\gamma + 1)M_1$$

$$\leq (1 - \alpha_{n+1}(\tau - \gamma\alpha))||x_{n+1} - x_n|| + M_1(\gamma + 1)|\alpha_{n+1} - \alpha_n| + ||S_{n+1}x_n - S_nx_n||,$$
(3.4)

for all $n \in N$. Using (3.4) in (3.3), we have

$$||x_{n+2} - x_{n+1}|| \le (1 - \alpha_{n+1}(\tau - \gamma \alpha))||x_{n+1} - x_n|| + 2\sup\{||S_{n+1}z - S_nz|| : z \in K\} + M_2(|\alpha_{n+1} - \alpha_n| + |\beta_{n+1} - \beta_n|),$$
(3.5)

where $M_2 = M_1(\gamma + 1)$. Assume $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$. Setting $r_n = M_2(|\alpha_{n+1} - \alpha_n| + |\beta_{n+1} - \beta_n|) + 2\sup\{\|S_{n+1}z - S_nz\| : z \in K\}$

$$\sum_{n=1}^{\infty} r_n = M_2 \sum_{n=1}^{\infty} (|\alpha_{n+1} - \alpha_n| + |\beta_{n+1} - \beta_n|) + 2 \sum_{n=1}^{\infty} \sup\{||S_{n+1}z - S_nz|| : z \in K\} < \infty.$$

Therefore, it follows from Lemma 2.2, $\lim_{n\to\infty} \|x_{n+1} - x_n\| = 0$. Now, suppose $\lim_{n\to\infty} \frac{\alpha_n}{\alpha_{n+1}} = 1$. From (3.5), we get

$$||x_{n+2} - x_{n+1}|| \le (1 - \alpha_{n+1}(\tau - \gamma \alpha))||x_{n+1} - x_n|| + 2\sup\{||S_{n+1}z - S_nz|| : z \in K\} + M_2|\beta_{n+1} - \beta_n| + \alpha_{n+1}M_2|1 - \frac{\alpha_n}{\alpha_{n+1}}|.$$

Setting $r_n=M_2|\beta_{n+1}-\beta_n|+2\sup\{\|S_{n+1}z-S_nz\|:z\in K\},$ we have

$$\sum_{n=1}^{\infty} r_n = M_2 \sum_{n=1}^{\infty} |\beta_{n+1} - \beta_n| + 2 \sum_{n=1}^{\infty} \sup\{ \|S_{n+1}z - S_nz\| : z \in K \} < \infty.$$

Therefore, it follows from Lemma 2.2, $\lim_{n\to\infty} ||x_{n+1} - x_n|| = 0$.

Step 3. $\lim_{n\to\infty} ||x_n - y_n|| = 0$. Indeed, from (3.1), we obtain

$$||x_{n+1} - y_n|| = \beta_n ||y_n - S_n y_n||.$$

If $\lim_{n\to\infty} \beta_n = 0$, $\lim_{n\to\infty} ||x_{n+1} - y_n|| = 0$. If $\beta_n \in [0,b)$ for some $b \in (0,1)$, we have

$$||x_{n+1} - y_n|| = \beta_n ||y_n - S_n y_n||$$

$$\leq \beta_n (||y_n - S_n x_n|| + ||S_n x_n - S_n y_n||)$$

$$\leq b(||y_n - S_n x_n|| + ||x_n - y_n||)$$

$$\leq b(||y_n - x_{n+1}|| + ||x_n - x_{n+1}|| + ||y_n - S_n x_n||).$$

Hence

$$||x_{n+1} - y_n|| \le \frac{b}{1-b} (||x_n - x_{n+1}|| + ||y_n - S_n x_n||).$$

So, by Step 2 and

$$\lim_{n \to \infty} \|y_n - S_n x_n\| = \lim_{n \to \infty} \alpha_n \|\gamma f(x_n) - \mu F(S_n x_n)\| = 0,$$
 (3.6)

we have $\lim_{n\to\infty} \|x_{n+1} - y_n\| = 0$. This implies $\lim_{n\to\infty} \|x_n - y_n\| = 0$. Step 4. $\lim_{n\to\infty} \|x_n - Sx_n\| = 0$. Since

$$||x_n - S_n x_n|| \le ||x_n - x_{n+1}|| + ||x_{n+1} - y_n|| + ||y_n - S_n x_n||,$$

it follows from Step 2, Step 3 and (3.6) that $\lim_{n\to\infty} \|x_n - S_n x_n\| = 0$. By

$$||x_n - Sx_n|| \le ||Sx_n - S_nx_n|| + ||S_nx_n - x_n|| \le \sup\{||Sz - S_nz|| : z \in \{x_n\}\} + ||x_n - S_nx_n||$$

and Lemma 2.4, we have $\lim_{n\to\infty} ||x_n - Sx_n|| = 0$.

Step 5. We claim $\limsup_{n\to\infty} \langle (\gamma f - \mu F)q, y_n - q \rangle \leq 0$, where $q = P_{\bigcap_{n=1}^\infty Fix(S_n)}(I - \mu F + \gamma f)(q)$. Take a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that

$$\limsup_{n \to \infty} \langle (\gamma f - \mu F) q, x_n - q \rangle = \lim_{i \to \infty} \langle (\gamma f - \mu F) q, x_{n_k} - q \rangle.$$

Since $\{x_{n_k}\}$ is bounded in H, without loss of generality, we assume $x_{n_k} \rightharpoonup z \in H$. It follows from Step 4 and Lemma 2.3 that $z \in Fix(S)$. So, from (3.2), we obtain

$$\limsup_{n \to \infty} \langle (\gamma f - \mu F)q, y_n - q \rangle = \limsup_{n \to \infty} \langle (\gamma f - \mu F)q, x_n - q \rangle = \langle (\gamma f - \mu F)q, z - q) \rangle \le 0.$$

Step 6. $\{x_n\}$ converges strongly to q. From (3.1) and Lemma 2.1, we get

$$\begin{aligned} \|x_{n+1} - q\|^2 &= \|(1 - \beta_n)(y_n - q) + \beta_n(S_n y_n - q)\|^2 \\ &\leq \|y_n - q\|^2 = \|\alpha_n \gamma f(x_n) + (I - \alpha_n \mu F)S_n x_n - q\|^2 \\ &= \|\alpha_n(\gamma f(x_n) - \mu F(q)) + (I - \alpha_n \mu F)(S_n x_n - q)\|^2 \\ &\leq \|(I - \alpha_n \mu F)(S_n x_n - q)\|^2 + 2\alpha_n \langle \gamma f(x_n) - \mu F(q), y_n - q \rangle \\ &\leq (1 - \alpha_n \tau)^2 \|x_n - q\|^2 + 2\alpha_n \langle \gamma f(x_n) - \gamma f(q), y_n - q \rangle \\ &+ 2\alpha_n \langle \gamma f(q) - \mu F(q), y_n - q \rangle \\ &\leq (1 - \alpha_n \tau)^2 \|x_n - q\|^2 + 2\alpha_n \gamma \alpha \|x_n - q\|(\|y_n - x_n\| + \|x_n - q\|) \\ &+ 2\alpha_n \langle \gamma f(q) - \mu F(q), y_n - q \rangle \\ &\leq (1 - 2\alpha_n (\tau - \gamma \alpha)) \|x_n - q\|^2 + (\alpha_n \tau)^2 \|x_n - q\|^2 \\ &+ 2\alpha_n \gamma \alpha \|x_n - q\| \|y_n - x_n\| + 2\alpha_n \langle \gamma f(q) - \mu F(q), y_n - q \rangle \\ &\leq (1 - 2\alpha_n (\tau - \gamma \alpha)) \|x_n - q\|^2 + 2\alpha_n (\tau - \gamma \alpha) \left\{ \frac{(\alpha_n \tau^2) M_3^2}{2(\tau - \gamma \alpha)} \right. \\ &+ \frac{\gamma \alpha M_3}{\tau - \gamma \alpha} \|y_n - x_n\| + \frac{1}{\tau - \gamma \alpha} \langle \gamma f(q) - \mu F(q), y_n - q \rangle \right\} \\ &= (1 - \delta_n) \|x_n - q\|^2 + \delta_n \theta_n, \end{aligned}$$

where $M_3=\sup\{\|x_n-q\|: n\geq 1\}$, $\delta_n=2\alpha_n(\tau-\gamma\alpha)$ and $\theta_n=\frac{(\alpha_n\tau^2)M_3^2}{2(\tau-\gamma\alpha)}+\frac{\gamma\alpha M_3}{\tau-\gamma\alpha}\|y_n-x_n\|+\frac{1}{\tau-\gamma\alpha}\langle\gamma f(q)-\mu F(q),y_n-q\rangle$. It is easy to see, $\lim_{n\to\infty}\delta_n=0$, $\sum_{n=1}^\infty\delta_n=\infty$ and $\limsup_{n\to\infty}\theta_n\leq 0$. Hence by Lemma 2.2, $\{x_n\}$ converges strongly to q. From Step 4, Step 6 and Lemma 2.3, we have $q\in Fix(S)$. This completes the proof.

Taking F=A (A is a strongly positive bounded linear operator on H), $\mu=1$ in Theorem 3.1, we get

Corollary 3.2. we have $\{x_n\}$ generated by

$$\begin{cases} y_n = \alpha_n \gamma f(x_n) + (I - \alpha_n A) S_n x_n, \\ x_{n+1} = (1 - \beta_n) y_n + \beta_n S_n y_n, & n \ge 1, \end{cases}$$

converges strongly to $q \in Fix(S)$ which solves the variational inequality

$$\langle (A - \gamma f)q, q - z \rangle \leq 0$$
, for all $z \in Fix(S)$.

Taking F = I, $\mu = 1$, $\gamma = 1$ in Theorem 3.1, we get

Corollary 3.3. we have $\{x_n\}$ generated by

$$\begin{cases} y_n = \alpha_n f(x_n) + (1 - \alpha_n) S_n x_n, \\ x_{n+1} = (1 - \beta_n) y_n + \beta_n S_n y_n, & n \ge 1, \end{cases}$$

converges strongly to $q \in Fix(S)$ which solves the variational inequality

$$\langle (I-f)q, q-z \rangle \leq 0$$
, for all $z \in Fix(S)$.

Remark 3.4. Theorem 3.1 can be obtained without assumption $\tau < 1$. Therefore, Theorem 3.1 is a generalization of Theorem 2.6.

Proof. We only use the assumption $\tau < 1$ for finding $q \in H$ which solves the variational inequality (3.2) in Theorem 3.1. It is needed to prove Step 5 of the proof of Theorem 3.1. So, we just retrieve Step 5 of the proof of Theorem 3.1. By Theorem 2.5, there exists $q \in Fix(S)$ such that

$$\langle (\mu F - \gamma f)q, q - z \rangle \leq 0$$
, for all $z \in Fix(S)$.

Thus the Step 5 in the proof of Theorem 3.1 is obtained. The rest of the proof is similar to the original one.

Remark 3.5. Corollary 3.3 is a generalization of [9, Theorem 3.2].

Acknowledgements The authors would like to thanks the referees for their valuable comments.

REFERENCES

- K. Aoyama, Y. Kimura, W. Takahashi, M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in Banach space, Nonlinear Anal. 67(2007), 2350-2360.
- F. Deutech, I. Yamada, Minimizing certain convex functions over the intersection of the fixed poiont sets of nonexpansive mappings, Nummer. Funct. Anal. Optim. 19(1998), 33-56.
- K. Geobel, W.A. Kirk, Topics in Metric Fixed Point theory, Cambridge Studies in Advanced Mathematics, 28. Cambridge University Press, Cambridge, 1990.
- G. Marino, H.K. Xu, A general iterative method for nonexpansive mappings in Hibert spaces, J. Math. Anal. Appl. 318(2006), 43-52.
- 5. A. Moudafi, Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl. 241(2000), 46-55.
- J.W. Peng, J.C. Yao, A viscosity approximation scheme for system of equilibrium problems, nonexpansive mappings and monotone mappings, Nonlinear Anal. doi:10.1016/j.na.2009.05.028.
- M. Tian, A general iterative alghoritm for nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 73(2010), 689-694.
- 8. H.K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116(2003), 659-678.
- H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), 279-291.
- 10. I. Yamada, The hybrid steepest descent for variational inequality problems over tha intersection of fixed points sets of nonexpansive mappings in: D. Butnariu, Y. Censor, S. Reich (Eds.), Inherently Parallel Alghoritms in Feasibility and Optimization and Their Application, Elservier, New York, 2001, pp.473-504.