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ABSTRACT. In this article we prove the existence of at least one weak solution for the
quasilinear problem�

−∆pu(x) = λ|u(x)|p−2u(x) + h(x, u(x)) in Ω,
u = 0 on ∂Ω

where ∆pu := div(|∇u|p−2∇u) is the p-Laplacian operator, p > 1, Ω ⊂ RN is a non-
empty bounded domain with Lipschitz boundary (Ω ∈ C0,1), λ is a positive parameter and
h : Ω × R → R is a bounded Carathéodory function. The approach is fully based on the
degree theory.
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1. INTRODUCTION

The aim of this paper is to establish the existence of at least one weak solution
for the following quasilinear problem{

−∆pu(x) = λ|u(x)|p−2u(x) + h(x, u(x)) in Ω,
u = 0 on ∂Ω,

(1.1)

where ∆pu := div(|∇u|p−2∇u) is the p-Laplacian operator, p > 1, Ω ⊂ RN is a
non-empty bounded domain with Lipschitz boundary (Ω ∈ C0,1), λ is a positive
parameter and h : Ω× R → R is a bounded Carathéodory function.

On the Sobolev space W 1,p
0 (Ω), we consider the norm

‖u‖ =
( ∫

Ω

|∇u(x)|pdx

) 1
p

.
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By a (weak) solution of the problem (1.1), we mean any u ∈ W 1,p
0 (Ω) such that∫

Ω

|∇u(x)|p−2∇u(x)∇v(x)dx− λ

∫
Ω

|u(x)|p−2u(x)v(x)dx−
∫

Ω

h(x, u(x))v(x) = 0

for all v ∈ W 1,p
0 (Ω). It is well known that the eigenvalue problem{

−∆pu(x) = λ|u(x)|p−2u(x) in Ω,
u = 0 on ∂Ω (1.2)

has a principal eigenvalue (i.e., the least one) λ1 > 0 which is simple and charac-
terized variationally by

λ1 = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω
|∇u(x)|p dx∫

Ω
|u(x)|p dx

.

Let X be a reflexive real Banach space and X∗ its dual. Here and in the sequel
we denote by 〈f, u〉 := f(u) the value of the linear form f ∈ X∗ for an element
u ∈ X. If X is a Hilbert space, then according to the Riesz Representation Theorem,
〈f, u〉 = (u, f).

Definition 1.1. The operator T : X → X∗ is said to satisfy the (S+) condition, if
the assumptions

un ⇀ u0 (weakly) in X and lim sup
n→∞

〈T (un), un − u0〉 ≤ 0

imply
un → u0 (strongly) in X.

It is clear that if T : X → X∗ satisfies the (S+) condition and K : X → X∗ be a
compact operator, then the sum T + K : X → X∗ satisfies the (S+) condition. We
say that T : X → X∗ is demicontinuous, if T maps strongly convergent sequences
in X to weakly convergent sequences in X∗.

The main aim of the present paper is to prove the existence of at least one
weak solution of (1.1) via degree theory. Various applications of degree theory
for solutions of nonlinear boundary value problems are already available, see for
instance [1, 2, 4–6, 8]. For other basic notations and definitions we refer to [3].

2. MAIN RESULTS

First we here recall for reader’s convenience the following Theorem of [9] which
is our main tool to prove the results.

Theorem 2.1 (Skrypnik [9]). Let T : X → X∗ be a bounded and demicontinuous
operator satisfying the (S+) condition. Let D ⊂ X be an open, bounded and non-
empty set with the boundary ∂D such that T (u) 6= 0 for u ∈ ∂D. Then there exists
an integer

deg(T,D, 0)
(called the degree of the mapping T ) such that

(i) deg(T,D, 0) 6= 0 implies that there exists an element u0 ∈ D such that

T (u0) = 0.

(ii) If D is symmetric with respect to the origin and T satisfies T (u) = −T (−u)
for any u ∈ ∂D, then

deg(T,D, 0)
is an odd number (and thus different from zero).
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(iii) (Homotopy invariance property) Let Tλ be a family of bounded and demi-
continuous mappings which satisfy the (S+) condition and which depend
continuously on a real parameter λ ∈ [0, 1], and let Tλ(u) 6= 0 for any
u ∈ ∂D and λ ∈ [0, 1]. Then

deg(Tλ,D, 0)

is constant with respect to λ ∈ [0, 1]. In particular, we have

deg(T0,D, 0) = deg(T1,D, 0).

We introduce the operators J,G, S : W 1,p
0 (Ω) → (W 1,p

0 (Ω))∗ in the following way

〈J(u), v〉 :=
∫

Ω

|∇u(x)|p−2∇u(x)∇v(x)dx,

〈G(u), v〉 :=
∫

Ω

|u(x)|p−2u(x)v(x)dx,

〈S(u), v〉 :=
∫

Ω

h(x, u(x))v(x)dx

for any u, v ∈ W 1,p
0 (Ω). First we sketch the properties of operators J,G and S.

Lemma 2.2. The operators J,G and S are well defined. Also we have the following
properties of J,G and S.

(a) J,G and S are bounded and continuous (and so demicontinuous) operators;
(b) G and S are compact operators;
(c) J satisfies the (S+) condition;
(d) J is invertible and its inverse is continuous.

Proof. The fact that J,G and S are well defined follows the standard procedure. The
first two statements follows from the Hölder inequality, the boundedness of h and
the compact embedding W 1,p

0 (Ω) ↪→↪→ Lp(Ω). Let us prove the third statement.
Indeed, let un ⇀ u0 in W 1,p

0 (Ω) and

lim sup
n→∞

〈J(un), un − u0〉 ≤ 0.

Then limn→∞〈J(u0), un − u0〉 = 0, and so

0 ≥ lim sup
n→∞

〈J(un)− J(u0), un − u0〉

= lim sup
n→∞

∫
Ω

(
|∇un(x)|p−2∇un(x)− |∇u0(x)|p−2∇u0(x)

)(
∇un(x)−∇u0(x)

)
dx

≥ lim sup
n→∞

{∫
Ω

|∇un(x)|pdx−
( ∫

Ω

|∇un(x)|pdx

) p−1
p

( ∫
Ω

|∇u0(x)|pdx

) 1
p

−
( ∫

Ω

|∇u0(x)|pdx

) p−1
p

( ∫
Ω

|∇un(x)|pdx

) 1
p

−
∫

Ω

|∇u0(x)|pdx

}
= lim sup

n→∞

[
‖un‖p−1 − ‖u0‖p−1

][
‖un‖ − ‖u0‖

]
≥ 0,

where the last inequality follows from the fact that s 7→ |s|p−1 is strictly increasing
on (0,∞). Hence ‖un‖ → ‖u0‖, and due to the uniform convexity of W 1,p

0 (Ω) we
have un → u0 in W 1,p

0 (Ω). Thus J satisfies the (S+) condition.
Finally, we prove the fourth statement. Indeed, the strict monotonicity of s 7→ |s|p−2

implies that
〈J(u)− J(v), u− v〉 > 0 for u 6= v.
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Hence J is injective. To prove that J−1 is continuous we proceed via contradiction.
Suppose there exists a sequence {fn}∞n=1, fn → f in (W 1,p

0 (Ω))∗ and

‖J−1(fn)− J−1(f)‖ ≥ δ for a δ > 0.

Let un := J−1(fn) and u := J−1(f). It follows that

‖fn‖‖un‖ ≥ 〈fn, un〉 = 〈J(un), un〉 = ‖un‖p, i.e., ‖un‖p−1 ≤ ‖fn‖.
We may then assume un ⇀ ũ in W 1,p

0 (Ω) due to the reflexivity of W 1,p
0 (Ω). Hence

〈J(un)− J(ũ), un − ũ〉 = 〈J(un)− J(u), un − ũ〉+ 〈J(u)− J(ũ), un − ũ〉 → 0

since J(un) → J(u) in (W 1,p
0 (Ω))∗. Then we have

0 = lim
n→∞

〈J(un)− J(ũ), un − ũ〉 ≥ lim
n→∞

[
‖un‖p−1 − ‖ũ‖p−1

][
‖un‖ − ‖ũ‖

]
≥ 0,

i.e., ‖un‖ → ‖ũ‖. Hence un → ũ follows due to the fact that W 1,p
0 (Ω) is a uniformly

convex Banach space. Since J is continuous and injective, ũ = u, a contradiction.
�

We state our main result as follows.

Theorem 2.3. Let λ < λ1 and let h : Ω × R → R be a bounded Carathéodory
function. Then the problem (1.1) has at least one weak solution.

Proof. We set
T = J − λG− S,

such that J,G and S are as above. Then existence of a weak solution of (1.1) is
equivalent to the existence of a solution of the operator equation

T (u) = 0. (2.1)

Our plan is to use the degree argument to prove the existence of a solution of
(2.1). By Lemma 2.2, the operator T is a bounded and demicontinuous operator
satisfying the (S+) condition.
The operator J satisfies

〈J(u), u〉 = ‖u‖p.

Moreover, J and G are odd mappings and (p− 1)-homogeneous, i.e.,

J(tu) = tp−1J(u) and G(tu) = tp−1G(u) for any t > 0, u ∈ W 1,p
0 (Ω).

Our sketch is the following. The existence of at least one solution of (2.1) would
follow from

deg(J − λG− S, B(0;R), 0) 6= 0 (2.2)
if we found a ball B(0;R) for which (2.2) is valid. To prove (2.2) we use the homotopy
invariance property of the degree (Theorem 2.1(iii)) and connect the operator J −
λG−S with the operator J−λG on the boundary of a ball B(0;R) with a sufficiently
large radius R > 0. Once this is done we finally use

deg(J − λG,B(0;R), 0) 6= 0. (2.3)

(The value of the degree in (2.3) is an odd number according to Theorem 2.1(ii)).
So, to complete the proof, we have to find an admissible homotopy connecting
J − λG− S and J − λG. We define a homotopy

Tτ (u) := J(u)− λG(u)− τS(u), τ ∈ [0, 1], u ∈ W 1,p
0 (Ω).

It is enough to prove that there exists R > 0 such that for all u ∈ W 1,p
0 (Ω), ‖u‖ = R

and τ ∈ [0, 1] we have
Tτ (u) 6= 0. (2.4)
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Assume, by contradiction, that no such R > 0 exists, i.e., we can find sequence
{un}∞n=1 ⊂ W 1,p

0 (Ω) and {τn}∞n=1 ⊂ [0, 1] such that ‖un‖ → ∞ and

J(un)− λG(un)− τnS(un) = 0. (2.5)

We set vn := un

‖un‖p−1 , divide (2.5) by ‖un‖p−1 and use that J and G are (p − 1)-
homogenous to get

J(vn)− λG(vn)− τn
S(un)
‖un‖p−1

= 0. (2.6)

Due to the reflexivity of W 1,p
0 (Ω) and the compactness of the interval [0, 1], passing

to suitable subsequence, we may assume that

vnk
⇀ v in W 1,p

0 (Ω) and τnk
→ τ ∈ [0, 1].

Let M := supx∈Ω, s∈R |h(x, s)|. We have∫
Ω

|h(x, unk
(x))|

‖unk
‖p−1

|v(x)|dx ≤ M

∫
Ω

|v(x)|
‖unk

‖p−1
dx ≤ M1

‖v‖
‖unk

‖p−1
→ 0 as k →∞,

where M1 > 0 is a constant. To summarize, since G is compact, we have

τnk

S(unk
)

‖unk
‖p−1

→ 0, (2.7)

λG(vnk
) → λG(v), (2.8)

in (W 1,p
0 (Ω))∗ as k →∞.

So, putting together (2.6)-(2.8) we also obtain that

J(vnk
) → λG(v)

in (W 1,p
0 (Ω))∗ as k →∞, i.e.,

vnk
→ J−1(λG(v))

in W 1,p
0 (Ω) as k →∞ (Remember that J is invertible and its inverse is continuous).

Since at the same time vnk
⇀ v in W 1,p

0 (Ω), we have

vnk
→ v in W 1,p

0 (Ω)

and
J(v)− λG(v) = 0 in (W 1,p

0 (Ω))∗ for a τ ∈ [0, 1]. (2.9)
Since ‖vnk

‖ = 1 for all k = 1, 2, . . . , we have ‖v‖ = 1. However, this contradicts the
assumption λ < λ1. It proves that (2.4) holds, i.e., the homotopy Tτ is admissible.
This completes the proof. �

3. THE CASE p = 2 AND λ = λ1

Let us assume that p = 2 and consider the eigenvalue problem{
−∆u(x) = λu(x) in Ω,
u = 0 on ∂Ω.

(3.1)

It is known that the eigenvalues of (3.1) form an increasing sequence

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · , λn →∞.

In fact, it is also possible to prove that λ1 has multiplicity 1 (i.e., λ1 < λ2) and the
corresponding eigenfunction ϕ1 ∈ W 1,2

0 (Ω) is positive in Ω. Moreover, we have∫
Ω

∇ϕ1(x)∇v(x)dx = λ1

∫
Ω

ϕ1(x)v(x)dx, (3.2)

for any v ∈ W 1,2
0 (Ω).
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Now, We formulate the following Theorem.

Theorem 3.1. Let h : Ω× R → R be a bounded Carathéodory function and satisfy
the following conditions:

(i) lims→+∞ h(x, s) = h(x,+∞), lims→−∞ h(x, s) = h(x,−∞), for a.a.
x ∈ Ω;

(ii) h(x,−∞) < h(x, s) < h(x, +∞), for a.a. x ∈ Ω and for all s ∈ R.

Then, the problem {
−∆u(x) = λ1u(x) + h(x, u(x)) in Ω,
u = 0 on ∂Ω,

(3.3)

has at least one weak solution if and only if∫
Ω

h(x,−∞)ϕ1(x)dx < 0 <

∫
Ω

h(x,+∞)ϕ1(x)dx. (3.4)

Proof. For the sufficiency part we will follow a scheme similar to the proof of Theo-
rem 2.3, but now J,G, S : W 1,2

0 (Ω) → W 1,2
0 (Ω) and

(J(u), v) :=
∫

Ω

∇u(x)∇v(x)dx = (u, v),

(G(u), v) :=
∫

Ω

u(x)v(x)dx,

(S(u), v) :=
∫

Ω

h(x, u(x))v(x)dx

for any u, v ∈ W 1,2
0 (Ω). For δ > 0 so small that λ1 + δ < λ2 we define a homotopy

Tτ (u) := u− λ1G(u)− (1− τ)δG(u)− τS(u), τ ∈ [0, 1], u ∈ W 1,2
0 (Ω).

Performing all steps as in the proof of Theorem 2.3 we arrive at an analogue of (2.9),
namely,

v −
[
λ1 + (1− τ)δ

]
G(v) = 0, ‖v‖ = 1, for a τ ∈ [0, 1],

This is a contradiction if τ 6= 1, since λ1 + (1 − τ)δ is not an eigenvalue (λ1 <
λ1 + (1− τ)δ < λ2) and v 6= 0.

Let us assume τ = 1, i.e., τnk
→ 1. Now, however, we have no contradiction,

since λ1 is an eigenvalue and
v − λ1G(v) = 0

has a solution with ‖v‖ = 1. Another step is necessary to reach a contradiction
and to prove that the homotopy Tτ is admissible. We have to revise the last step
when passing to the limit in

vn − λ1G(vn)− (1− τn)δG(vn)− τn
S(un)
‖un‖

= 0

and employ special properties of S. Namely,

unk
− λ1G(unk

)− (1− τnk
)δG(unk

)− τnk
S(unk

) = 0

is equivalent to the integral identity∫
Ω

∇unk
(x)∇w(x)dx =

[
λ1+(1−τnk

)δ
] ∫

Ω

unk
(x)w(x)dx+τnk

∫
Ω

h(x, unk
(x))w(x)dx

(3.5)
for all w ∈ W 1,2

0 (Ω). Taking w = ϕ1 in (3.5) and using the fact that∫
Ω

∇unk
(x)∇ϕ1(x)dx = λ1

∫
Ω

unk
(x)ϕ1(x)dx,
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(see (3.2)), we obtain

(τnk
− 1)δ

∫
Ω

unk
(x)ϕ1(x)dx = τnk

∫
Ω

h(x, unk
(x))ϕ1(x)dx. (3.6)

As above, vnk
:= unk

‖unk
‖ → v in W 1,2

0 (Ω) and v = κϕ1 with a κ 6= 0. Assume that κ >

0. Since vnk
→ κϕ1 in W 1,2

0 (Ω), by the compact embedding W 1,2
0 (Ω) ↪→↪→ L2(Ω),

we have vnk
→ κϕ1 in L2(Ω). Hence (at least for a subsequence) vnk

(x) → κϕ1 > 0
a.e. in Ω, i.e., unk

(x) → +∞ a.e. in Ω. Passing to the limit in (3.6) and using
τnk

→ 1− and the Lebesgue Dominated Convergence Theorem, we obtain∫
Ω

h(x, +∞)ϕ1(x)dx = lim
k→∞

(τnk
− 1)δ

∫
Ω

unk
(x)ϕ1(x)dx ≤ 0.

This contradicts the second inequality in (3.4). Similarly, if κ < 0, then (at least for
a subsequence) unk

(x) → −∞ a.e. in Ω. Passing to the limit in (3.6), we obtain∫
Ω

h(x,−∞)ϕ1(x)dx = lim
k→∞

(τnk
− 1)δ

∫
Ω

unk
(x)ϕ1(x)dx ≥ 0.

This contradicts the first inequality in (3.4). This proves that Tτ is admissible, and
so (3.4) is sufficient for the existence of a weak solution of (3.3).

To prove that (3.4) is also necessary we proceed as follows. Let u0 be a weak
solution of (3.3), i.e.,∫

Ω

∇u0(x)∇v(x)dx = λ1

∫
Ω

u0(x)v(x)dx +
∫

Ω

h(x, u0(x))v(x)dx,

for any v ∈ W 1,2
0 (Ω). Take v = ϕ1, then∫

Ω

∇u0(x)∇ϕ1(x)dx = λ1

∫
Ω

u0(x)ϕ1(x)dx +
∫

Ω

h(x, u0(x))ϕ1(x)dx.

Using (3.2), we have ∫
Ω

h(x, u0(x))ϕ1(x)dx = 0.

By assumption (ii),

h(x,−∞) < h(x, u0(x)) < h(x, +∞). (3.7)

Multiply (3.7) by ϕ1(> 0) and integrate. Then∫
Ω

h(x,−∞)ϕ1(x)dx < 0 <

∫
Ω

h(x, +∞)ϕ1(x)dx,

and we have the result. �

Similarly to the proof of Theorem 3.1, we can prove the following

Theorem 3.2. Let h : Ω× R → R be a bounded Carathéodory function and satisfy
the following conditions:

(i) lims→+∞ h(x, s) = h(x, +∞), lims→−∞ h(x, s) = h(x,−∞), for a.a.
x ∈ Ω;

(ii) h(x,+∞) < h(x, s) < h(x,−∞), for a.a. x ∈ Ω and for all s ∈ R.

Then, the problem (3.3) has at least one weak solution if and only if∫
Ω

h(x, +∞)ϕ1(x)dx < 0 <

∫
Ω

h(x,−∞)ϕ1(x)dx. (3.8)

Remark 3.3. It is possible to solve the problem (3.3) directly by means of the Leray-
Schauder degree theory as well, since the operator J in the proof of Theorem 3.1 is
just an identity on W 1,2

0 (Ω).
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