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ABSTRACT. We use a hybrid iterative method to find a common element of the set of fixed
points of an infinite family of Lipschitzian quasi-nonexpansive mappings, the set of solutions
of the general system of the variational inequality and the set of solutions of the generalized
mixed equilibrium problem in real Hilbert spaces. We also show that our main strong
convergence theorem for finding that common element can be deduced for nonexpansive
mappings and applied for strict pseudo-contraction mappings. Our results extend the work
by Cho et al. (2009) [4].
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1. INTRODUCTION

Let H be a real Hilbert space with inner product (-, -) and norm || - || and let C
be a nonempty closed convex subset of H. Let B : C' — H be a nonlinear mapping,
¢ : C = R|J{+o0} be a function and f : C x C — R be a bifunction. Peng and
Yao [10] considered the following generalized mixed equilibrium problem:

Finding u € C such that f(u,y) + ¢(y) + (Bu,y —u) > p(u), YyeC. (1.1

In this paper, we denote the set of solutions of (1.1) by GMEP (f, ¢, B). It is
obvious that if v is a solution of (1.1), it implies that v € dom ¢ = {u e C
p(u) < 4o00}.
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If B=0in (1.1), we obtain the following mixed equilibrium problem [3]:
Finding u € C such that f(u,y) + ¢(y) > ¢(u), VyeC. (1.2)
We denote the set of solutions of (1.2) by MEP (f, ¢).

If p =01in (1.1), we obtain the following generalized equilibrium problem [16]:
Finding v € C such that f(u,y) + (Bu,y —u) >0, Vye C. (1.3
We denote the set of solutions of (1.3) by GEP (f, B).

If p=0and B = 0in (1.1), we obtain the following equilibrium problem [2]:
Finding v € C such that f(u,y) >0, Vye€ C. (1.4)
We denote the set of solutions of (1.4) by EP (f).

If f(z,y) =0 forall z,y € C in (1.1), we obtain the following generalized varia-
tional inequality problem:

Finding u € C such that ¢(y) + (Bu,y — u) > ¢(u), Yy € C. (1.5)
We denote the set of solutions of (1.5) by GVI (C, ¢, B).

Ifp=0and f(z,y) = 0forallz,y € Cin (1.1), we obtain the following variational
inequality problem (see also [1, 5]):

Finding v € C such that (Bu,y —u) >0, VyeC. (1.6)
We denote the set of solutions of (1.6) by VI (C, B).

If B=0and f(x,y) = 0 for all z,y € C in (1.1), we obtain the following
minimization problem:

Finding u € C such that ¢(y) > ¢(u), Vy e C. (1.7)

We denote the set of solutions of (1.7) by MP(C, ¢).

In 1994, Blum and Oettli showed that the formulation of (1.4) covered monotone
inclusive problems, saddle point problems, variational inequality problems, mini-
mization problems, optimization problems, variational inequality problems, vector
equilibrium problems and Nash equilibria in noncooperative games. Several prob-
lems in physics, optimization and economics can be reduced to find solutions of
(1.4). The existence of equilibrium problems has been discovered by many authors
(see, for example, [1, 6, 8, ] and the references therein). Also, some solution
methods have been studied by some authors (see, for example, [6, , 13] and the
references therein).

In 2003, Takahashi and Toyoda [16] introduced the method for finding an ele-
ment of F(S)NVI(C, A) in real Hilbert spaces, where C C H is closed and convex,
S : C — H is a nonexpansive mapping and A : C — H is an inverse-strongly
monotone mapping. Their iteration is the following:

Tna1 = QnTp + (1 — ap)SPo(x, — AnAxy,),n > 0,

where z¢ € C,{a,} is a sequence in (0,1), {\,} is a sequence in (0,2a) and P is
the metric projection from H onto C. They proved that, if F(S)NVI(C, A) # 0, {z,}
converges weakly to a point z € F/(S)NVI(C, A), where z = lim,, oo Pr(s)nvi(c,4)Tn-
Later, Takahashi and Takahashi [15] studied the contraction method for finding
F(S)NEP(f)in real Hilbert spaces, where C' C H is closed and convex, S : C — H
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is a nonexpansive mapping, f is a bifunction from C' x C' to R with some specific
conditions. Their algorithm is the following:

IC1€H,

1
f(Ynsu) + r

n

<u_yn7yn_$n>207 VUEC,
Tn+1 = a"fl(xn) + (1 - an)Syn Vn > 1,

where {a,,} C [0,1], {r,} C (0, 00) and some appropriate conditions. They proved
that, if F(S)NEP(f) # 0, {z,} and {y,} converge strongly to a point z € F(S) N
EP(f), where z = PF(S)HEP(f)f(Z)-

Recently, Cho et al. [4] introduced a hybrid projection method for finding F' :=
F(S)NVI(C,B)NGEP(f,A) in real Hilbert spaces, where C' C H is closed and
convex, S : C — C( is a k-strict pseudo-contraction with a fixed point, f is a
bifunction from C' x C to R with some specific conditions, A : C — H is an
a-inverse-strongly monotone mapping and B : C' — H is an (-inverse-strongly
monotone mapping. Their iterative scheme is the following:

1‘160,
C,=C,

1
J(un,y) + (Azn, y — up) + 7<y — U, Up — Ty) >0, VyeC,

n

zn = Po(un — A Buy,),

Yn = @y + (1 — @) Skzn,

Cni1={w € Cp: |lyn —wl| < ||zn —wll},
Tny1 = Po,,, 71, Vn2>1,

where Spx = kx + (1 — k)Sz for all z € C, {a,} C [0,1), {\,} C (0,28) and
{rn} C (0,2«) and some appropriate conditions. They proved that, if F # 0, {z,}
converges strongly to a point = Ppx, where Pr is the metric projection of H onto
F.

In this paper, motivated by the above result, we prove a strong convergent the-
orem of a hybrid projection iterative method defined by (3.1) for finding a com-
mon element of the set of fixed points of an infinite family of Lipschitzian quasi-
nonexpansive mappings, the set of solutions of the general system of the variational
inequality and the set of solutions of the generalized mixed equilibrium problem in
the framework of real Hilbert spaces. Our main result can be deduced for nonex-
pansive mappings applied for strict pseudo-contraction mappings. It is clear that
our result generalizes the work by [4].

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -} and norm || - || and let C
be a nonempty closed convex subset of H. Let B: C — H. x, — x means {z,}
converges strongly to z and z,, — x implies {z,,} converges weakly to z. We denote
the set of fixed points of T' by F(T), i.e. F(T)={zx € C:Tx = x}.

Recall the following definitions:

(1) Amapping T : C' — C is said to be nonexpansive if

1Tz =Tyl <z —yl, Va,yeC.
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(2) Amapping T : C' — (' is said to be quasi-nonexpansive if
[Tz = pl| < [lz —pll, Vpe F(P).

(3) Amapping T : C — (' is said to be Lipschitzian if there is a positive constant L
such that

[Te =Tyl < Lllz —yll, Va,yeC.

(4) Amapping T : C' — C'is said to be strictly pseudo-contractive with the coefficient
ke [0,1)if

1Tz =Ty < o = y|* + k(I - T)z — (I = T)yll*, Va,yeC.
(5) B is said to be monotone if
(Bx — By,x —y) >0, Vr,yeC.
(6) B is said to be a-strongly monotone if there exists a constant a > 0 such that
(Bx — By,x —y) > allz —y||>, Vaz,yeC.

(7) B is said to be a-inverse-strongly monotone if there exists a constant a > 0
such that

(Br — By,x —y) > a| Bz — By|*, Vx,yeC.
(8) A set-valued mapping T : H — 2H is said to be monotone if, for all z,y € H, f €
Tz and g € Ty imply (x —y, f — g) > 0.
(9) A monotone mapping T : H — 2% is said to be maximal if the graph G(T) of T
is not properly contained in the graph of any other monotone mapping.

In the other words, a monotone mapping T is maximal if and only if, for (z, f) €
Hx H,{x—y,f—g)>0forall (y,g) € G(T) implies f € Tz. Let B: C — H be
a monotone mapping and N.v be the normal cone to C at v € C, i.e., Nov = {w €
H: (v—u,w) >0, Yué€ C}. Define a mapping T on C by

Bv+ N ifveC
0 ifvécC.

Then T is maximal monotone and 0 € T'v if and only if (Bv,u —v) > 0 forall u € C
(see [14]).

Let B be a 3-inverse-strongly monotone mapping of C' into H. It is easy to show
that B is %-Lipschitz. For A € (0,204], it is known that I — AB is a nonexpansive
mapping of C' into H.

Let C be a nonempty closed convex subset of H. Therefore, for any « € H, there
exists a unique nearest point in C, denoted by Pox, such that ||z — Poz|| < ||z —y||
for all y € C. The mapping P¢ is called the metric projection of H on C. We know
that for x € H and z € C,z = Pox is equivalent to (x — z,z —y) > 0 forally € C.
It is also known that a Hilbert space H satisfies the Opial condition, i.e., for any
sequence {z,} C H with z,, — z, the inequality

Tv = (2.1)

liminf ||z, — z|| < liminf ||z, — y||
n—oo n—oo

holds for every y € H and x # y.
Let A be a monotone mapping from C' into H. In the context of the variational
inequality problem, it is known that
u € VI(C, A) = u = Po(u — MNAu), for all A > 0,

and
u = Po(u — AAu), for some A > 0= u € VI(C, A).
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Let C be a nonempty closed subset of a Hilbert space H. Let {T;,} and I" be two
families of nonlinear mappings of C into itself such that F(T') = (", F(T,) # 0,
where F/(T') = (ycp F(T). {1} is said to satisfy the NST-condition ([9]) with I if
for each bounded sequence {z,} C C,

lim ||z, — Thzu||=0 = lim ||z, —T%,||=0forallT €T.

n—oo n—oo
In the case I' € {T'}, i.e., " consists of one mapping 7', {7} is said to satisfy the
NST-condition with 7.

For solving the generalized mixed equilibrium problem, we may assume the fol-
lowing conditions for the bifunction f, the function ¢ and the set C"

(Al) f(z,z) =0forall z € C;

(A2) f is monotone, i.e., f(x,y) + f(y,x) <0forall z,y € C;

(A3) for each z € C,y — f(x,y) is convex and lower semi-continuous;

(A4) for each z € C,y — f(z,y) is weakly upper semicontinuous;

(B1) for each x € H and r > 0, there exists a bounded subset D, C C and
y» € C'(dom(p) such that for any z € C\D,,

8 8

F(ora) + 90e) + (e = 77— ) < (o)

(B2) C is a bounded set.

The following lemmas are useful for proving some convergence results in next
two sections.

Lemma 2.1. ([10, s 1). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let f be a bifunction from C' x C to R satisfying (A1)-(A4) and let
@ : C — R|J{+o0} be a proper lower semicontinuous and convex function. Assume
that either (B1) or (B2) holds. Forr > 0 and x € H, define a mapping T, : H — C
as follows:

To(@) = {z € C: fo) + o) + 1+ ly — 52— ) > plz), Wy eC)

for allx € H. Then the following conclusions hold:

(1) T, is single-valued;
(2) T, is firmly nonexpansive, i.e., forany x,y € H,

I3 () = To()I” < (T (@) = To(y), = — y)3

3) In(Tr) = MEP (Fv 90)7
(4) MEP (F, ) is closed and convex.

Lemma 2.2. ([7]). Let A : C — H be a-inverse-strongly monotone. If r € (0,2aq),
then we have I — r A is nonexpansive.

Lemma 2.3. ([17]). Let C' be a nonempty closed convex subset of a real Hilbert space
H and T : C — C be a k-strict pseudo-contraction. Define a mapping S : C — C
by Sz = ax + (1 — )Tz forallz € C and « € [k,1). Then S is a nonexpansive
mapping such that F(S) = F(T).

We would like to mention the following remark since our result is very inter-
esting. It shows that a monotone mapping maps all points in a generalized mixed
equlibrium problem to the same point.
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Remark 2.4. Let C be a closed convex subset of a real Hilbert space H, f : C'x(C —
R be a bifunction satisfying (A2) and ¢ : C — R U {400} be a function. Let A be a
monotone mapping of C into H. Then Au = Av for all u,v € GMEP(f,p, A).

Proof. Letu,v € GMEP(f,p, A). We then get

Fluy) + o(y) + (Au,y —u) > p(u), Vyel 2.2)
and
f(0,y) +o(y) + (Av,y —v) 2 p(v), VyeC. 2.3)
By letting y = v in (2.2) and y = u in (2.3), we get
flu,v) + o(v) + (Au,v — u) > p(u) (2.4)
and
flv,u) + p(u) + (Av,u — v) > @(v). (2.5)
By (2.4), (2.5) and the condition (A2), we have
(Av — Au,u —v) > f(u,v) + f(v,u) + (Au,v — u) + (Av,u —v) > 0. (2.6)

From A is a a-inverse-strongly monotone mapping,
0 < allAu — Av||2 < (Au— Av,u—v) <0.
That is Au = Av. O
By letting f = 0 and ¢ = 0 in Lemma 2.4, we obtain the following remark.

Remark 2.5. Let C be a closed convex subset of a real Hilbert space H and A be
a monotone mapping of C into H. Then Au = Av for all u,v € VI(C, A).

3. MAIN RESULT

In this section, we show a strong convergent theorem of hybrid methods for
finding a common element of the set of fixed points of an infinite family of Lip-
schitzian quasi-nonexpansive mappings, the set of solutions of the general system
of the variational inequality and the set of solutions of the generalized mixed equi-
librium problem in the framework of real Hilbert spaces under some appropriate
conditions.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H, f :
C x C — R be a bifunction satisfying (A1)-(A4) and ¢ : C — R U {400} be a
proper lower semicontinuous and convex function. Let A be an a-inverse-strongly
monotone mapping of C into H and B be a (-inverse-strongly monotone mapping of C'
into H, respectively. Let {S,} and S be families of Lipschitzian quasi-nonexpansive
mappings of C into itself such that lim,, .« ||Spz— Sy < Ly ||z —y|| forallz,y € C,
sup,, L, = L. )2, F(Sy) = F(S)and F = F(S)NVI(C, B)NGMEP(f,p, A) # 0.
Suppose that {S,,} satisfies the NST-condition with S. Assume that either (B1) or
(B2) holds. Let {x,,} be a sequence generated by the algorithm:

T € C7

Cl = C>

f(unay) + @(y) + <A$n7y - un> + %<y — Un, Up — xn> 2 @(un)a Vy € C7

Zn = PC(UTL - AnBun)7 (38.1)

Yn = ATy + (]- - an)Snzn7
Crns1={w e Cy:lyn —wl| < [lzn —wll},
Tn1 = PC,,L+1x1a n Z 1’
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where {a, } C [0,1),{\,} € (0,25), {rn} C (0,2a),
0<a,<a<l, 0<b< A, <c<28, and 0<d<r,<e<2aq,
for some a,b,c,d,e € R. Then the sequence {x,} defined by the algorithm (3.1)

converges strongly to a point * = Prx1, where Pr is the metric projection of H onto
F.

Proof. We divide our proof into 5 steps.
Step 1: We show that F' C (), and C,, is closed and convex for all n > 1.

From the assumption, C; = C'is closed and convex. Suppose that C,, is closed
and convex for some m > 1. Next, we show that C,,; is closed and convex. For
any w € C,,, we see that

[ym — wll < [lem — w]|
is equivalent to
1 = 1Ym* = 2(w, T = Ym) > 0.
Therefore, C),41 is closed and convex.

Since A is a-inverse-strongly monotone and B is (-inverse-strongly monotone,
by Lemma 2.2, we get that [ — r, A and I — \,, B are nonexpansive.

By nonexpansiveness of 7, and I — r, A, we have

lun =plI* = |7, (20 — rnAzn) = Tr, (p — rn Ap)||?

< |z —rpdzn) — (p— TnAp)”z

= |[I(zn —p) = ru(Az, — Ap)|?

= |lzn = pl? = 2rn(@n —p, Av, — Ap) + ri[| Az, — Apl|?

< ln - p”2 = 2rpal| Az, — Ap||2 + riHAxn - Ap||2

= |zn —p||2 + 1 (rn — 2a)|| Az, — Ap||2

< llan —pll”. (3.2)

We are now ready to show that F' C C,, for each n > 1. From the assumption,
we have that F' C CC;. Suppose F C C,, for some m > 1. Forany w € F' C C,,,
by nonexpansiveness of I — \,,, B, we have

[ym —wl| = |lam@Zm + (1 — am)Smzm — wl|

IN

W [T — w| + (1 = o) ||zm — w]|
am||Tm — w| + (1 — am)||Pc(I — A B)tum — Po(I — A B)w||

( )
A || T — wl| + (1 = )|t — w||
( )

INIA

am[|Tm — w|| + (1 = am)||zm — |

[ —w][.

That is w € C),+1. By mathematical induction, we conclude that F' C C,, for each
n>1.

Step 2: We show that {z,,} is bounded.

Since z, = Po, 21 and 41 = Po, 21 € Cpy1 C C,,, we get

n+1
0 < (21— Zn,Tn — Tpy1) (3.3)

(1 — @n, Ty — T1 + &1 — Tpg1)

IA

My = @l + a1 = zalllzr = 2ol
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Thus

[z1 = za] < ler = zppa . (3-4)

Since x,, = Pc, z1, for any w € F' C C,,, we have

In particular, we obtain

|1 — zn|| < |21 — w]. (3.5)

lx1 — zn|| < ||z1 — Praq]]. (3.6)

By (3.4) and (3.6), we get that lim,,_, ||z, — 1| exists. It implies that {z,} is

bounded.

Step 3: We show that lim,,_, |2, — S2,|| =0forall S € S.

By using (3.3), we obtain that

20 = Znia]® =

IA

and so

Since r,41 = Fc, .,

and then

lern — 21 + 21 — $n+1||
[2n — 21 ]* + 2(zp — 21,21 — Tpg1) + |71 — Tga |12
lzn — 371||2 — 2|z, — $1||2 + 2<xn — L1, Tn — xn+l>

+z1 = Tnar|?

lz1 = @npa|® = [l — 21
lim ||, — Zp41] = 0. (3.7
n—oo

1 € Cp41, we have

1yn = @niall < l[2n = nga ]

lyn — Zoll < llyn = Togrll + |70 — Tnga || < 2/|z0 — Tpga -

By (3.7), we get

lim ||z, — yn] = 0. (3.8)

On the other hand, we have

2 = Ynl = [[Tn — anzn — (1 = an)Spzn|l = (1 — an)||lzn — Snzall-

It follows from (3.8) and the assumption 0 < a,, < a < 1 that

For any w € F, we have

1y — w]?

From (3.2), we obtain

lim ||z, — Spz.|| = 0. (3.9

”anmn + (1 - an)SnZn - w”2

|2y — wH2 + (1 —an) [ Snzn — w||2

<
< oz, —w|]?+ (1= ap)|lzn — w|?. (3.10)

lyn —wl® < anllan —wl|® + (1 = an)|Pe(I = AnB)uy — w|®

S O‘n”xn -

anlln = wl? + (1 = @) (lun — wll” + 2| Bu, — Buw|?

wl + (1 = an)[(I = MB)un — (I = M B)uw|”

-2\, (u,, — w, Bu,, — Bw))

IN A

an”xn -
a2y —wl|® + (1 = an)(|zn — w|® + A (An — 28)| Buy, — Buwlf?)

wl? + (1 = an)(|lun = wl* + An(An = 26)[| Bun — Buw|?)
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< ln = w[? + (1 = an) A (An — 28)|| Bun, — Buw|®.
We then have

(1= a)b(28 — ¢)||Buy, — Bwl* < lzp —wl* = |y — w]?
= (lzn —wll = llyn — wl)(lzn — wll + [lyn — wl)
< lzn = ynll(len = wll + lyn — wl]).
By (3.8), we obtain that
nhﬁngo || Bu,, — Bw|| = 0. (3.11)

On the other hand, since P¢ is firmly nonexpansive and I — A, B is nonex-
pansive, we have

lon —wl? = IPe(T = AuB)uy — Po(l - A B)ul?
< ((I-=M\Bu, — (I - \,B)w, z,, — w)
= ST = A\uBy — (1= A B)ul + 20 — wl?
T = ABYun — (1= M BJw — (20— w)|}
< g llun —wl? + 70— wl?

—|[tt, — 2n — An(Bu, — Bw)|*} (3.12)
=l wl? + llzn — 0] ~ fun — zall?
+2X (Up, — 2, By, — Bw) — \2||Bu,, — Bw||*}.
From (3.2), it implies that
lzn —wl* < lun —w]|* = [lun = 2znl* + 220 (up = 2, Bup, — Bw)
—A2||Buy, — Bw||?
2n — w||* = |t — 2a||* + 22X ||t — 20 ||| Btr, — Bw]|.(3.13)
By (3.10) and (3.13), we get

IN

IN

2 = wl* = [lyn — wl|®
+2(1 — an) A ||un — 2zn]||| Bun — Bwl|
< len = yall(llen — wll + llyn — wl])
+2(1 — an) Anl|tn — zn||| Bun — Bw||.
By (3.8), (3.11) and the assumption 0 < a,, < a < 1, we get

(1 — ap)llun — Zn||2

lim ||Ju, — 2] = 0. (3.14)
n—oo

Also, by (3.10) and (3.12), we obtain that

lyn —wl* < anllan —wl® + (1 = ap)|lu, —w|? (3.15)
= apllz, —w|?+ (1 = )Ty, (20 — 1 Azy) — Ty, (w0 — rp Aw) ||?
< apllzn — w”2 + (1 = an)l(@n — rnAzy) — (w— TnAw)HQ
< apllen —wl* + (1= an)(|lzn —w||* = 2r, (2, — w, Az, — Aw)

+rp || Az, — Aw)||?)
< anllen —w]? + (1 = an)(|zn — w|®
+7n(rn — 20) || Az, — Aw||?)
< o — w|? + (1 = an)rn(rn — 20)|| Az, — Awl|?.
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From the assumptions 0 < a,, <a < land 0 <d <r, <e < 2a, we have
(1 - a)d(2a — e)|| Az, — Aw|* < lzn —w[* = Jyn — w]?
< len = ynll(llzn — wll + llyn — wl])-
By (3.8), we obtain
lim ||Az, — Aw|| = 0. (3.16)
n—00

On the other hand, by using Lemma 2.1, we have 7, is firmly nonexpansive. Then
we get

llun — wH2 = |1, —rpA)zn =T, (1 - TnA)w”Q
< AT —rpA)z, — (I —rpAd)w, u, — w)
1
= ST =rad)zn = (I = rad)w|* + [un — w]|?
(I =rnA)zn — (I —rpA)w — (un — w)H2)
1
< Slllzn = wl® + flun = wl* = [(@n = un) = ra(Azn — Aw)[?)
1
= lllwn —wl* + fun = wll* = 2n = un]®
+2rp (T — Up, Ay — Aw) — 72 || Az, — Aw||?)
and so
[un —w|? < lzg —wl? = |an = uall® + 2rp (@0 — un, Az, — Aw)
—r2|| Az, — Awl?
< lan — w)? = |zn — unl? + 27020 — un ||| Az, — Aw|.(3.17)

By (3.15) and (3.17), we get
lyn —wl® < lzn —w]?* = (1 = an)llzn — ual®
+2(1 — an)rnl|zn — unl||| Az, — Aw||,
which implies that
lzn = wl? = llyn = wl|* + 2|2 — un|| [ Az — Aw]
[2n = ynll(lzn — wll + lyn — w])
121 ||xn — un ||| Az, — Aw]|.

(1 —an)llzn — “n||2 <
<

From the assumptions 0 < o, <a<1,0<d <r, <e < 2aq, (3.8) and (3.16), we
obtain

lim (|2, — uy| = 0. (3.18)

n—oo

On the other hand, we have

|Sn@n — Snznll + |Snzn — xul|

Ll|zy — zn|| 4+ |Sn2n — 2all

Lllzn, — unll + Lllun — 2|l + [[Sn2zn — @al|-

Using (3.9), (3.14) and (3.18), we conclude that
lim ||, — Spx,|| = 0. (3.19)
n—o0

lZn — Snzn |l

IN A IA

From the assumption {S,,} satisfies the NST-condition with S, we have

lim |z, — Sz,||=0, VSe€S. (3.20)
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Since {z,} is bounded, we assume that a subsequence {x,, } of {z,,} converges
weakly to €.

Step 4: We show that { € F'= F(S)NVI(C,BYNGMEP(f, ¢, A).

First, we show that £ € F(S). Suppose that £ # S¢ for some S € S. From
Opial’s condition and (3.20), we obtain

liminf |2, — ¢ < limint ||z, - S¢|
1— 00 1— 00

liminf ||z, — Sxn, + Sz, — SE|
71— 00

71— 00

which give us a contradiction. Hence, £ € F(S).
Now, we prove that £ € VI(C,B). Let T be the maximal monotone mapping
defined by (2.1):
T — Bx + N x ifx e C
0 ife ¢ C.
For any given (z,y) € G(T), we get y — Bx € N¢x. By z, € C and the definition of
N¢, we have

(x — zp,y — Bz) > 0. (3.21)
On the other hand, since z,, = Po(I — A, B)u,, we obtain
(x = 2ny2n — (I — AnB)uy) >0

and then

Z”/\_i“” + Buy) > 0. (3.22)

Since u,, — z, — 0 as n — 00, we have that

(x — zn,

Bu,, — Bz, — 0asn — oco. (3.23)
From (3.21), (3.22) and the -inverse monotonicity of B, we obtain

<$—Zn“y> > <x_zntl‘>

> (x— zpn,, Bx) — (x — 2zn,, zn)\;un + Buy,)
g
= (xr — zn,, Bx — Bzy,) + (x — zp,, Bzp, — Buy,)
Zn; — Un,
> (x — zn;, Bzn, — Bun,) — (x — 2n,, w>
n;
Zn, — Unp,
= <(£,an1 7Bun7:>7<zntZm 7Buni>7<x7’znw%>
n;
> (x’ani - Buni> - ”Zm IBZTLL - Bu’ﬂi
1
= e = znallllzn: = wnl. (3.24)
n;
By (3.14) and (3.18), we get
lim ||z, — z,|| = 0.

n—oo
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Since z,, — £, we obtain z,, — . From (3.14), (3.23) and (3.24), we obtain
<(E - £7y> = lim <£C - any> Z 0.
Mn;— 00

Since T is maximal monotone, we obtain that 0 € T¢. It follows that { € VI(C, B).
Next, we show that £ € GMEP(f, ¢, A). Forany y € C,

s )+ 00) + (A = )+~ = s = ) 2 o).

n

From the condition (A2), we get that

1
o(y) + <Axmy — Up) + 7“7<y = Upy Up — Tp) > f(Y, un) + o(tn).

n
Replacing n by n;, we obtain
Un, — T,
B > () + plun). (325
ng
For any t with0 < ¢ < landy € C, put p; =ty + (1 — t)£. Since y € C and £ € C,
we obtain p; € C. It follows from (3.25) and the monotonicity of A that

‘P(y) + <Awnia Y- unz> + <y = Un,,

(o = in Ape) > (pe =ty Api) = (A, po = ttn) = (1 = i, =2 0%
+f(pts un,) + o(un;) — ©(pt)
= (pt — Un,;, Apt — Aup,) + (pt — Un,, Auy, — Axy,)
~(p1 — tun,, &> + Fprytn,) + lun,) — (p)
> {pt — Un,, Aup, — Axy,) — (Pt — Un,, unr;xn>
(P tn,) + 9 (1in,) — 9(p1): 'L (3.26)

Since A is Lipschitzian, by (3.18), we get Au,, — Az,, — 0 as { — co. From (A3)
and (3.26), we arrive at

(pr — & Apt) > f(pi, &) + (&) — w(pr)- (3.27)
From (Al), (A3), (3.27) and convexity of ¢, we have that
0 F(pespe) < tf(pe,y) + (1 —1)f(pe, &)
tf(pey) + (1 =) ((pe — & Ape) + @(pr) — (€))
tf(pe,y) + (1 =0ty — & Ape) + o(y) — ¢(€)),

IN N

which implies that
floe,y) + (1 =) ({y — & Apr) + (y) — 9(§)) = 0.
Letting ¢ — 0, by (A4), we arrive at

F(&y)+ Yy — & A + o(y) — ¢(§) > 0.
This shows that £ € GMEP(f, ¢, A).

Step 5: We show that z,, — Prz;.

Let T = Ppx; Since T = Prxy C Cpyq and 41 = Po, 1, We get

n+1
|21 = Znp || < flzy — 2|
On the other hand, we have

ey =zl < fler =&
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< liminf ||z — 2y,
1—00

< limsup ||z — @y,
1—00

<l ==

Therefore, we get
[y =&l = lim 2y — 2, = [lz1 — =]
11— 00

This implies that ¥ = £. Since H has the Kadec-Klee property and z; —z,, — 1 —7,
it follows that z,, — Z. Since {x,,} is an arbitrary subsequence of {z,}, we
conclude that z,, — T as n — oo. The proof is now complete. (]

4. DEDUCED THEOREMS AND APPLICATIONS

Theorem 3.1 can be reduced to many different results. By putting S,, = S for
all n > 1 in Theorem 3.1, we obtain the following theorem:

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H, f :
C x C — R be a bifunction satisfying (A1)-(A4) and ¢ : C — R U {+oc0} be a proper
lower semicontinuous and convex_function. Let A be an a-inverse-strongly monotone
mapping of C' into H and B be a (3-inverse-strongly monotone mapping of C' into H,
respectively. Let S : C' — C' be a L-Lipschitzian quasi-nonexpansive mapping such
that F = F(S)NVI(C,B)NGMEP(f,p,A) # 0. Assume that either (B1) or (B2)
holds. Let {z,} be a sequence generated by the following algorithm:

x1 € C,

Cl = Ca

f(un,y) +@(y) + (Azn, y — un) + %@/ — Up, Un — Tn) = p(Un),Vy € C,

2n = Po(un — AnBuy,), 4.1)

Yn = QpTp + (]- - Oén)SZna
Crns1={w e Cy:|lyn —wl| < [lzn —wl|},
Tni1 = Po, 71, Yn2>1,

where {a, } C [0,1),{\,} € (0,25), {rn} C (0,2a),
0<a,<a<l, 0<b< A, <c<28, and 0<d<r,<e<2aq,

for some a,b,c,d,e € R. Then the sequence {x,} defined by the algorithm (4.1)

converges strongly to a point ¥ = Prx1, where Pr is the metric projection of H onto
F.

When {5, } and S are families of nonexpansive mappings, we get the following
theorem:

Theorem 4.2. Let C be a closed convex subset of a real Hilbert space H, f :
C x C — R be a bifunction satisfying (A1)-(A4) and ¢ : C' — R U {+oc0} be a proper
lower semicontinuous and convex function. Let A be an a-inverse-strongly monotone
mapping of C' into H and B be a (3-inverse-strongly monotone mapping of C' into H,
respectively. Let {S,} and S be families of nonexpansive mappings of C into itself
such that (),—, F(S,) = F(S8) and F = F(S)NVI(C,B) NGMEP(f,p,A) # 0.
Suppose that {S,} satisfies the NST-condition with S. Assume that either (B1)
or (B2) holds. Let {x,} be a sequence generated by the algorithm (3.1), where
{an} C[0,1), {An} C (0,28). {rn} C (0, 20),

0<a,<a<l, 0<b<)A, <c<28, and 0<d<r,<e<2aq,
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Jor some a,b,c,d,e € R. Then the sequence {x,} defined by the algorithm (3.1)
converges strongly to a point T = Prx1, where Pr is the metric projection of H onto
F.

Now we show how to apply Theorem 4.2 for families of strict pseudo-contraction
mappings.

Theorem 4.3. Let C be a closed convex subset of a real Hilbert space H, f :
C x C — R be a bifunction satisfying (A1)-(A4) and ¢ : C — R U {+c0} be a
proper lower semicontinuous and convex function. Let A be an a-inverse-strongly
monotone mapping of C' into H and B be a 3-inverse-strongly monotone mapping of
C into H, respectively. Let {R,} and R be families of k—strict pseudo-contraction
mappings of C into itself such that (- ; F(R,) = F(R) and F = F(R)NVI(C,B)N
GMEP(f,p,A) # 0. Define a mapping S, : C — C by Spz = kx + (1 — k)R,x
Jorallz € C. Suppose that {R,} satisfies the NST-condition with R. Assume that
either (B1) or (B2) holds. Let {x,} be a sequence generated by the algorithm (3.1),
where {a, } C [0,1),{\,} C (0,28), {rn} C (0,2a),

0<a,<a<l, 0<b<A, <c<28, and 0<d<r,<e<2a,

Jor some a,b,c,d,e € R. Then the sequence {x,} defined by the algorithm (3.1)
converges strongly to a point T = Prx1, where Pr is the metric projection of H onto
F.

Proof. By Lemma 2.3, we obtain that S, is nonexpansive for all positive integer n.
We also get that {S,,} satisfies the NST-condition with S = {kI+(1—k)T : T € R}.
The proof is now complete because of the direct result of Theorem 4.2. O

By putting S, = S for all n > 1 in Theorem 4.3, we obtain the following
corallary.

Corollary 4.4. Let C be a closed convex subset of a real Hilbert space H, f :
C x C — R be a bifunction satisfying (A1)-(A4) and ¢ : C — R U {+o0} be a
proper lower semicontinuous and convex function. Let A be an «a-inverse-strongly
monotone mapping of C' into H and B be a (3-inverse-strongly monotone mapping of
C into H, respectively. Let R : C' — C be a k—strict pseudo-contraction such that
F=FRNVI(C,ByNGMEP(f,p,A) # 0. Define a mapping S : C — C by
Sz =kx+(1—k)Rzx forallz € C. Assume that either (B1) or (B2) holds. Let {x,,} be
a sequence generated by the following algorithm (4.1), where {a,} C [0,1),{A\,} C
(0,28), {ra} C (0,2a),

0<a,<a<l, 0<b< A, <c<28, and 0<d<r,<e<2a,

Jor some a,b,c,d,e € R. Then the sequence {x,} defined by the algorithm (4.1)
converges strongly to a point T = Prx1, where Pr is the metric projection of H onto
F.

Remark 4.5. By letting ¢ = 0 in Corollary 4.4, we obtain Theorem 2.1 of [4].

Remark 4.6. Since Theorems 3.1, 4.1, 4.2, 4.3 and Corollary 4.4 are for finding
a common element of the set of fixed points, the set of solutions of the general
system of the variational inequality and the set of solutions of the generalized

mixed equilibrium problem, we can reduce each theorem or corollary by letting
B=0,A=0,¢p=00r f(z,y) =0.
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