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Abstract. In this paper, we establish some fixed point theorems for generalized weakly contractive
condition in ordered partial metric spaces. The results extend the main theorems of Nashine and Altun
[17] on the class of ordered partial metric ones. Also, some applications are given to illustrate our
results.
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1. INTRODUCTION AND PRELIMINARIES

The concept of partial metric space was introduced by Matthews [16] in 1994. In
such spaces, the distance of a point to its self may not be zero. Specially, from the
point of sequences, a convergent sequence need not have unique limit. Matthews
[16] extended the well known Banach contraction principle to complete partial
metric spaces. After that, many interesting fixed point results were established in
such spaces. In this direction, we refer the reader to Valero [25], Oltra and Valero
[23], Altun et al. [4], Romaguera [24], Altun and Erduran [2] and Aydi [6, 7, 8].

First, we recall some definitions and properties of partial metric spaces (see
[2, 4, 16, 22, 23, 24, 25] for more details).

Definition 1.1. A partial metric on a non-empty setX is a function p : X×X → R+

such that for all x, y, z ∈ X:
(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
A partial metric space is a pair (X, p) such that X is a non-empty set and p is a
partial metric on X.
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Remark 1.2. It is clear that, if p(x, y) = 0, then from (p1) and (p2), x = y. But if
x = y, p(x, y) may not be 0.

A basic example of a partial metric space is the pair (R+, p), where p(x, y) =
max{x, y} for all x, y ∈ R+.

Each partial metric p on X generates a T0 topology τp on X which has as a base
the family of open p-balls {Bp(x, ε), x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X :
p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

If p is a partial metric on X, then the function ps : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y), (1.1)

is a metric on X.

Definition 1.3. Let (X, p) be a partial metric space and {xn} be a sequence in X.
Then
(i) {xn} converges to a point x ∈ X if and only if p(x, x) = lim

n→+∞
p(x, xn),

(ii) {xn} is called a Cauchy sequence if there exists (and is finite) lim
n,m→+∞

p(xn, xm).

Definition 1.4. A partial metric space (X, p) is said to be complete if every Cauchy
sequence (xn) in X converges, with respect to τp, to a point x ∈ X, such that
p(x, x) = lim

n,m→+∞
p(xn, xm).

Lemma 1.5. Let (X, p) be a partial metric space. Then
(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the
metric space (X, ps),
(b) (X, p) is complete if and only if the metric space (X, ps) is complete. Furthermore,
lim

n→+∞
ps(xn, x) = 0 if and only if

p(x, x) = lim
n→+∞

p(xn, x) = lim
n,m→+∞

p(xn, xm).

Definition 1.6. ([2]) Suppose that (X, p) is a partial metric space. A mapping
F : (X, p) → (X, p) is said to be continuous at x ∈ X, if for every ε > 0, there exists
δ > 0 such that F (Bp(x, δ)) ⊆ Bp(Fx, ε).

The following result is easy to check.

Lemma 1.7. Let (X, p) be a partial metric space. F : X → X is continuous if and
only if given a sequence {xn} ∈ N and x ∈ X such that p(x, x) = lim

n→+∞
p(x, xn),

then p(Fx, Fx) = lim
n→+∞

p(Fx, Fxn).

Remark 1.8. ([22]) Let (X, p) be a partial metric space and F : (X, p) → (X, p). If
F is continuous on (X, p), then F : (X, ps) → (X, ps) is continuous.

On the other hand, fixed point problems of contractive mappings in metric
spaces endowed with a partially order have been studied by many authors (see
[1, 3, 5, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21]). In particular, Nashine and Altun
[17] proved the following:

Theorem 1.9. Let (X,≤) be a partially ordered set and (X, d) be a complete metric
space. Suppose that T : X → X is a nondecreasing mapping such that for every
two comparable elements x, y ∈ X

ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)), (1.2)
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where

M(x, y) = ad(x, y) + bd(x, Tx) + cd(y, Ty) + e[d(y, Tx) + d(x, Ty)], (1.3)

with a > 0; b, c, e ≥ 0, a + b + c + 2e ≤ 1, and ψ,ϕ : [0,+∞) → [0,+∞), ψ is a
continuous, nondecreasing, ϕ is a lower semi-continuous functions and ψ(t) = 0 =
ϕ(t) if and only if t = 0. Also suppose, there exists x0 ∈ X with x0 ≤ Tx0. Assume
that :
(i) T is continuous, or
(ii) if a nondecreasing sequence {xn} converges to x, then xn ≤ x for all n.
Then, T has a fixed point.

The purpose of this paper is to extend Theorem 1.9 on the class of ordered partial
metric spaces. Also, a common fixed point result is given.

2. MAIN RESULTS

Our first result is the following.

Theorem 2.1. Let (X,≤) be a partially ordered set and (X, p) be a complete partial
metric space. Suppose that T : X → X is a nondecreasing mapping such that for
every two comparable elements x, y ∈ X

ψ(p(Tx, Ty)) ≤ ψ(θ(x, y))− ϕ(θ(x, y)), (2.1)

where

θ(x, y) = ap(x, y) + bp(x, Tx) + cp(y, Ty) + e[p(y, Tx) + p(x, Ty)], (2.2)

with a, e > 0; b, c ≥ 0, a + b + c + 2e ≤ 1, and ψ,ϕ : [0,+∞) → [0,+∞), ψ is
a continuous, nondecreasing, ϕ is lower semi-continuous functions and ψ(t) = 0 =
ϕ(t) if and only if t = 0. Also suppose, there exists x0 ∈ X with x0 ≤ Tx0. Assume
that :
(i) T is continuous, or
(ii) if a nondecreasing sequence {xn} converges to x in (X, p), then xn ≤ x for all n.
Then T has a fixed point, say z. Moreover, p(z, z) = 0.

Proof. If Tx0 = x0, then the proof is completed. Suppose Tx0 6= x0. Now since
x0 < Tx0 and T is nondecreasing we have

x0 < Tx0 ≤ T 2x0 ≤ ... ≤ Tnx0 ≤ Tn+1x0 ≤ ...

Put xn = Tnx0, hence xn+1 = Txn. If there exists n0 ∈ {1, 2, ...} such that
θ(xn0 , xn0−1) = 0 then by definition (2.2), it is clear that
p(xn0−1, xn0) = p(xn0 , Txn0−1) = 0, so xn0−1 = xn0 = Txn0−1 and so we are
finished. Now we can suppose

θ(xn, xn−1) > 0, (2.3)

for all n ≥ 1. Let us check that

lim
n→+∞

p(xn+1, xn) = 0. (2.4)

By (2.2), we have using condition (p4)

θ(xn, xn−1) =ap(xn, xn−1) + bp(xn, Txn) + cp(xn−1, Txn−1)

+e[p(xn−1, Txn) + p(xn, Txn−1)]

=(a+ c)p(xn, xn−1) + bp(xn, xn+1) + e[p(xn−1, xn+1) + p(xn, xn)]

≤(a+ c+ e)p(xn, xn−1) + (b+ e)p(xn, xn+1) [by (p4)].
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Now we claim that
p(xn+1, xn) ≤ p(xn, xn−1), (2.5)

for all n ≥ 1. Suppose this is not true, that is, there exists n0 ≥ 1 such that
p(xn0+1, xn0) > p(xn0 , xn0−1). Now since xn0 ≤ xn0+1, we can use the inequality
(2.1), then we have

ψ(p(xn0+1, xn0)) =ψ(p(Txn0 , Txn0−1))

≤ψ(θ(xn0 , xn0−1))− ϕ(θ(xn0 , xn0−1))

≤ψ((a+ c+ e)p(xn0 , xn0−1) + (b+ e)p(xn0 , xn0+1))

− ϕ(θ(xn0 , xn0−1))

≤ψ((a+ b+ c+ 2e)p(xn0 , xn0+1))− ϕ(θ(xn0 , xn0−1))

≤ψ(p(xn0 , xn0+1))− ϕ(θ(xn0 , xn0−1)),

which implies that ϕ(θ(xn0 , xn0−1)) ≤ 0, and by property of ϕ, giving that
θ(xn0 , xn0−1) = 0, this contradicts (2.3). Hence (2.5) holds, and so the sequence
{p(xn+1, xn)} is nonincreasing and bounded below. Thus there exists ρ ≥ 0 such
that
lim

n→+∞
p(xn+1, xn) = ρ. Assume that ρ > 0. By (2.2), we have

aρ = lim
n→+∞

ap(xn, xn−1) ≤ lim sup
n→+∞

θ(xn, xn−1)

= lim sup
n→+∞

[(a+ c)p(xn, xn−1) + bp(xn, xn+1)

+ e(p(xn−1, xn+1) + p(xn, xn))]

≤ lim sup
n→+∞

[(a+ c+ e)p(xn, xn−1) + (b+ e)p(xn, xn+1)].

This implies

0 < aρ ≤ lim sup
n→+∞

θ(xn, xn−1) ≤ (a+ b+ c+ 2e)ρ ≤ ρ,

and so there exist ρ1 > 0 and a subsequence {xn(k)} of {xn} such that

lim
k→+∞

θ(xn(k), xn(k)−1) = ρ1 ≤ ρ.

By the lower semi-continuity of ϕ we have

ϕ(ρ1) ≤ lim inf
k→+∞

ϕ(θ(xn(k), xn(k)+1)).

From (2.1), we have

ψ(p(xn(k)+1, xn(k))) = ψ(p(Txn(k), Txn(k)−1))

≤ ψ(θ(xn(k), xn(k)−1))− ϕ(θ(xn(k), xn(k)−1)),

and taking upper limit as k → +∞, we have using the properties of ψ and ϕ

ψ(ρ) ≤ψ(ρ1)− lim inf
k→+∞

ϕ(θ(xn(k), xn(k)+1))

≤ψ(ρ1)− ϕ(ρ1)

≤ψ(ρ)− ϕ(ρ1),

that is, ϕ(ρ1) = 0. Thus, by the property of ϕ, we have ρ1 = 0, which is a
contradiction. Therefore we have ρ = 0, that is (2.4) holds.
Now, we show that {xn} is a Cauchy sequence in the partial metric space (X, p).
From Lemma 1.5, it is sufficient to prove that {xn} is a Cauchy sequence in the
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metric space (X, ps). Suppose to the contrary. Then there is a ε > 0 such that for
an integer k there exist integers m(k) > n(k) > k such that

ps(xn(k), xm(k)) > ε. (2.6)

For every integer k, let m(k) be the least positive integer exceeding n(k) satisfying
(2.6) and such that

ps(xn(k), xm(k)−1) ≤ ε. (2.7)
Now, using (2.4)

ε < ps(xn(k), xm(k)) ≤ps(xn(k), xm(k)−1) + ps(xm(k)−1, xm(k))

≤ε+ ps(xm(k)−1, xm(k)).

Then by (2.4) it follows that

lim
k→+∞

ps(xn(k), xm(k)) = ε. (2.8)

Also, by the triangle inequality, we have

|ps(xn(k), xm(k)−1)− ps(xn(k), xm(k))| ≤ ps(xm(k)−1, xm(k)).

By using (2.4), (2.8) we get

lim
k→+∞

ps(xn(k), xm(k)−1) = ε. (2.9)

On the other hand, by definition of ps,

ps(xn(k), xm(k)) = 2p(xn(k), xm(k))− p(xn(k), xn(k))− p(xm(k), xm(k)),

ps(xn(k), xm(k)−1) = 2p(xn(k), xm(k)−1)− p(xn(k), xn(k))− p(xm(k)−1, xm(k)−1),
hence letting k → +∞, we find thanks to (2.8), (2.9) and the condition (p3) in (2.4)

lim
k→+∞

p(xn(k), xm(k)) =
ε

2
, (2.10)

lim
k→+∞

p(xn(k), xm(k)−1) =
ε

2
. (2.11)

In view of (2.2), we get
ap(xn(k), xm(k)−1) ≤θ(xn(k), xm(k)−1)

=ap(xn(k), xm(k)−1) + bp(xn(k), Txn(k)) + cp(xm(k)−1, Txm(k)−1)

+e[p(xm(k)−1, Txn(k)) + p(xn(k), Txm(k)−1)]

=ap(xn(k), xm(k)−1) + bp(xn(k), xn(k)+1) + cp(xm(k)−1, xm(k))

+e[p(xm(k)−1, xn(k)+1) + p(xn(k), xm(k))]

≤ap(xn(k), xm(k)−1) + bp(xn(k), xn(k)+1) + cp(xm(k)−1, xm(k))

+e[p(xm(k)−1, xn(k)) + p(xn(k), xn(k)+1) + p(xn(k), xm(k))].

Taking upper limit as k → +∞ and using (2.4), (2.10) and (2.11), we have

0 < a
ε

2
≤ lim sup

k→+∞
θ(xn(k), xm(k)−1) ≤ (a+ 2e)

ε

2
≤ ε

2
.

This implies that there exist ε1 > 0 and a subsequence {xn(k(p))} of {xn(k)} such
that

lim
p→+∞

θ(xn(k(p)), xm(k(p))−1) = ε1 ≤
ε

2
.

By the lower semi-continuity of ϕ we have

ϕ(ε1) ≤ lim inf
k→+∞

ϕ(θ(xn(k), xm(k)−1)).
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Now by (2.1) we get

ψ(
ε

2
) = lim sup

p→+∞
ψ(p(xn(k(p)), xm(k(p))))

≤ lim sup
p→+∞

ψ(p(xn(k(p)), xn(k(p))+1) + p(Txn(k(p)), Txm(k(p))−1))

= lim sup
p→+∞

ψ(p(Txn(k(p)), Txm(k(p))−1))

≤ lim sup
p→+∞

[ψ(θ(xn(k(p)), xm(k(p))−1))− ϕ(θ(xn(k(p)), xm(k(p))−1))]

=ψ(ε1)− lim inf
p→+∞

ϕ(θ(xn(k(p)), xm(k(p))−1))

≤ψ(ε1)− ϕ(ε1)

≤ψ(
ε

2
)− ϕ(ε1),

which is a contradiction. Therefore {xn} is a Cauchy sequence in the metric space
(X, ps). From Lemma 1.5, (X, ps) is a complete metric space. Then there is z ∈ X
such that

lim
n→+∞

ps(xn, z) = 0.

Again, from lemma 1.5, we have thanks to (2.4) and the condition (p2)

p(z, z) = lim
n→+∞

p(xn, z) = lim
n→+∞

p(xn, xn) = 0. (2.12)

We will prove that Tz = z.
1. Assume that (i) holds, that is, T is continuous. By (2.12), the sequence {xn}
converges in (X, p) to z, and since T is continuous, hence the sequence {Txn}
converges to Tz, that is

p(Tz, Tz) = lim
n→+∞

p(Txn, T z) (2.13)

Again, thanks to (2.12),

p(z, Tz) = lim
n→+∞

p(xn, T z) = lim
n→+∞

p(Txn−1, T z) = p(Tz, Tz). (2.14)

On the other hand, by (2.1), (2.14)

ψ(p(z, Tz)) = ψ(p(Tz, Tz)) ≤ ψ(θ(z, z))− ϕ(θ(z, z)),

where from (2.12) and the condition (p2)

θ(z, z) = ap(z, z) + (b+ c+ 2e)p(z, Tz) = (b+ c+ 2e)p(z, Tz) ≤ p(z, Tz).

Thus,

ψ(p(z, Tz)) ≤ψ(θ(z, z))− ϕ(θ(z, z))

≤ψ(p(z, Tz))− ϕ(θ(z, z)).

It follows that ϕ(θ(z, z)) = 0, so θ(z, z) = (b+c+2e)p(z, Tz) = 0, that is p(z, Tz) = 0
because e > 0. Hence z = Tz, that is, z is a fixed point of T .
2. Assume that (ii) holds. Then, we have xn ≤ z for all n. Therefore, for all n, we
can use the inequality (2.1) for xn and z. Since

θ(z, xn) =ap(z, xn) + bp(z, Tz) + cp(xn, Txn) + e[p(xn, T z) + p(z, Txn)]

=ap(z, xn) + bp(z, Tz) + cp(xn, xn+1) + e[p(xn, T z) + p(z, xn+1)],
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hence, from (2.4), (2.12), lim
n→+∞

θ(z, xn) = (b+ e)p(z, Tz). We have

ψ(p(Tz, z)) = lim sup
n→+∞

ψ(p(Tz, xn+1))

= lim sup
n→+∞

ψ(p(Tz, Txn))

≤ lim sup
n→+∞

ψ[(ψ(z, xn))− ϕ(θ(z, xn))]

≤ψ((b+ e)p(Tz, z))− ϕ((b+ e)p(Tz, z))

≤ψ(p(Tz, z))− ϕ((b+ e)p(Tz, z)).

Then, ϕ((b+ e)p(Tz, z)) = 0, and since e > 0, hence by the property of ϕ we have
p(Tz, z) = 0, so Tz = z. This completes the proof of Theorem 2.1. �

Remark 2.2. Theorem 2.1 holds for ordered partial metric spaces, so it is an
extension of the result of Nashine and Altun [17] given in Theorem 1.9 which is
verified just for ordered metric ones.

Corollary 2.3. Let (X,≤) be a partially ordered set and (X, p) be a complete partial
metric space. Suppose that T : X → X be a nondecreasing mapping such that for
every two comparable elements x, y ∈ X

p(Tx, Ty)) ≤ θ(x, y)− ϕ(θ(x, y)), (2.15)

where

θ(x, y) = ap(x, y) + bp(x, Tx) + cp(y, Ty) + e[p(y, Tx) + p(x, Ty)], (2.16)

with a, e > 0; b, c ≥ 0, a+ b+ c+ 2e ≤ 1, and ϕ : [0,+∞) → [0,+∞), ϕ is a lower
semi-continuous functions and ϕ(t) = 0 if and only if t = 0. Also suppose, there
exists x0 ∈ X with x0 ≤ Tx0. Assume that:
(i) T is continuous, or
(ii) if a nondecreasing sequence {xn} converges to x in (X, p), then xn ≤ x for all n.
Then T has a fixed point, say z. Moreover, p(z, z) = 0.

Proof. It suffices to take ψ(t) = t in Theorem. �

Corollary 2.4. Let (X,≤) be a partially ordered set and (X, p) be a complete partial
metric space. Suppose that T : X → X be a nondecreasing mapping such that for
every two comparable elements x, y ∈ X

p(Tx, Ty)) ≤ kθ(x, y), (2.17)

where

θ(x, y) = ap(x, y) + bp(x, Tx) + cp(y, Ty) + e[p(y, Tx) + p(x, Ty)], (2.18)

with k ∈ [0, 1), a, e > 0; b, c ≥ 0 and a+ b+ c+ 2e ≤ 1. Also suppose, there exists
x0 ∈ X with x0 ≤ Tx0. Assume that:
(i) T is continuous, or
(ii) if a nondecreasing sequence {xn} converges to x in (X, p), then xn ≤ x for all n.
Then T has a fixed point, say z. Moreover, p(z, z) = 0.

Proof. It suffices to take ϕ(t) = (1− k)t in Corollary 2.3. �

We give in the following a sufficient condition for the uniqueness of the fixed
point of the mapping T .
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Theorem 2.5. Let all the conditions of Theorem 2.1 be fulfilled and let the following
condition hold: for arbitrary two points x, y ∈ X there exists z ∈ X which is compa-
rable with both x and y. If (a+2b+2e) ≤ 1 or (a+2c+2e) ≤ 1, then the fixed point
of T is unique.

Proof. Let u and v be two fixed points of T , i.e., Tu = u and Tv = v. We have in
mind, p(u, u) = p(v, v) = 0. Consider the following two cases:
1. u and v are comparable. Then we can apply condition (2.1) and obtain that

ψ(p(u, v)) = ψ(p(Tu, Tv)) ≤ ψ(θ(u, v))− ϕ(θ(u, v)),

where
θ(u, v) =ap(u, v) + bp(u, Tu) + cp(v, Tv) + e[p(u, Tv) + p(v, Tu)]

=(a+ 2e)p(u, v) + bp(u, u) + cp(v, v)

≤(a+ b+ c+ 2e)p(u, v) ≤ p(u, v).

We deduce ψ(p(u, v)) ≤ ψ(p(u, v)) − ϕ(θ(u, v)), i,e, θ(u, v) = 0, so p(u, v) = 0,
meaning that u = v, that is the uniqueness of the fixed point of T .
2. Suppose now that u and v are not comparable. Choose an element w ∈ X
comparable with both of them. Then also u = Tnu is comparable with Tnw for
each n (since T is nondecreasing). Applying (2.1), one obtains that

ψ(p(u, Tnw)) =ψ(p(TTn−1u, TTn−1w))

≤ψ(θ(Tn−1u, Tn−1w))− ϕ(θ(Tn−1u, Tn−1w))

=ψ(θ(u, Tn−1w))− ϕ(θ(u, Tn−1w))

where
θ(u, Tn−1w) =ap(u, Tn−1w) + bp(u, TTn−1u) + cp(Tn−1w, TTn−1w)

+e[p(u, TTn−1w) + p(Tn−1w, Tu)]

=ap(u, Tn−1w) + bp(u, u) + cp(Tn−1w, Tnw)

+e[p(u, Tnw) + p(Tn−1w, u)]

=(a+ e)p(u, Tn−1w) + cp(Tn−1w, Tnw) + ep(u, Tnw)

≤(a+ c+ e)p(u, Tn−1w) + (c+ e)p(u, Tnw).

Similarly as in the proof of Theorem 2.1, it can be shown that, under the condition
(a+ 2c+ 2e) ≤ 1

p(u, Tnw) ≤ p(u, Tn−1w).
Note that when we consider

ψ(p(Tnw, u)) ≤ ψ(θ(Tn−1w, u))− ϕ(θ(Tn−1w, u))

where
θ(Tn−1w, u) =(a+ e)p(u, Tn−1w) + bp(Tn−1w, Tnw) + ep(u, Tnw)

≤(a+ b+ e)p(u, Tn−1w) + (b+ e)p(u, Tnw),

hence, one finds under (a+ 2b+ 2e) ≤ 1 that

p(Tnw, u) ≤ p(Tn−1w, u).

In each case, it follows that the sequence {p(u, fnw)} is nonincreasing and it has
a limit l ≥ 0. Adjusting again as in the proof of Theorem 2.1, one can finds that
l = 0. In the same way it can be deduced that p(v, Tnw) → 0 as n → +∞. Now,
passing to the limit in p(u, v) ≤ p(u, Tnw) + p(Tnw, v), it follows that p(u, v) = 0,
so u = v, and the uniqueness of the fixed point is proved. �
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Example 2.6. Let X = [0,+∞) endowed with the usual partial order (which is a
total order). Let p(x, y) = max(x, y). For any x, y ∈ X, we have ps(x, y) = |x − y|.
Then, (X, ps) is a complete metric space, and so for (X, p). Take T : X → X be
defined as

Tx =
1
5
x.

Letting x0 = 0, we have x0 = 0 ≤ 0 = Tx0. The mapping T is nondecreasing. Also,
take a = 1

2 , e = 1
8 and b = c = 0, so

θ(x, y) =
1
2
p(x, y)+

1
8
[p(x, Ty)+p(y, Tx)] =

1
2

max{x, y}+1
8
[max{x, Ty}+max{y, Tx}].

Moreover, define

ψ(t) = t, ϕ(t) =
t

2
.

Note that

ψ(p(Tx, Ty)) =
1
5

max{x, y} ≤ 1
4

max{x, y}

≤1
4

max{x, y}+
1
16

[max{x, Ty}+ max{y, Tx}] =
1
2
θ(x, y)

=ψ(θ(x, y))− ϕ(θ(x, y)).

Thus, the inequality (2.1) is verified for each comparable x and y. All the hypotheses
of Theorem 2.5 are verified. Here, T has a unique fixed point, which is z = 0.

Now we will give a common fixed point theorem for two maps. For this, we need
the following definition, which is given in [13].

Definition 2.7. Let (X,≤) be a partially ordered set. Two mappings S, T : X → X
are said to be weakly increasing if Sx ≤ TSx and Tx ≤ STx for all x ∈ X.

Note that, two weakly increasing mappings need not be nondecreasing. There
exist some examples to illustrate this fact in [3]

Theorem 2.8. Let (X,≤) be a partially ordered set and (X, p) be a complete partial
metric space. Suppose that T, S : X → X are two weakly increasing mappings such
that for every two comparable elements x, y ∈ X

ψ(p(Tx, Sy)) ≤ ψ(u(x, y))− ϕ(u(x, y)), (2.19)

where

u(x, y) = ap(x, y) + bp(x, Tx) + cp(y, Sy) + e[p(y, Tx) + p(x, Sy)], (2.20)

with a, e > 0; b, c ≥ 0, a + b + c + 2e ≤ 1, and ψ,ϕ : [0,+∞) → [0,+∞), ψ is a
continuous, nondecreasing, ϕ is a lower semi-continuous functions and ψ(t) = 0 =
ϕ(t) if and only if t = 0. Also suppose, there exists x0 ∈ X with x0 ≤ Tx0. Assume
that :
(i) T is continuous, or
(ii) S is continuous, or
(iii) if a nondecreasing sequence {xn} converges to x in (X, p), then xn ≤ x for all n.
Then, S and T have a common fixed point.

Proof. Let x0 be an arbitrary point of X. We can define a sequence {xn} in X as
follows:

x2n+1 = Sx2n and x2n+2 = Tx2n+1 for n ∈ N.
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Since S and T are weakly increasing, we have x1 = Sx0 ≤ TSx0 = Tx1 = x2 and
x2 = Tx1 ≤ STx1 = Sx2 = x3. Continuing this process we have

x1 ≤ x2 ≤ ... ≤ xn ≤ xn+1 ≤ ...

The terms x2n−1 and x2n are comparable then we can use the inequality (2.19) and
we have

ψ(p(Tx2n−1, Sx2n)) ≤ ψ(u(x2n−1, x2n))− ϕ(u(x2n−1, x2n)), (2.21)

where
u(x2n−1, x2n) = ap(x2n−1, x2n) + bp(x2n−1, Tx2n−1) + cp(x2n, Sx2n)

+ e[p(x2n, Tx2n−1) + p(x2n−1, Sx2n)]

= (a+ b)p(x2n−1, x2n) + cp(x2n, x2n+1) + e[p(x2n, x2n) + p(x2n−1, x2n+1)]

≤ (a+ b+ e)p(x2n−1, x2n) + (c+ e)p(x2n, x2n+1), using (p4).
(2.22)

Now, we claim that

p(xn+1, xn) ≤ p(xn, xn−1), ∀ n ∈ N∗. (2.23)

If p(x2n+1, x2n) > p(x2n, x2n−1) for some n ∈ {1, 2, ...}, then

u(x2n−1, x2n) ≤ (a+ b+ c+ 2e)p(x2n+1, x2n) ≤ p(x2n+1, x2n),

and so by (2.21) we have

ψ(p(x2n, x2n+1)) ≤ ψ(p(x2n+1, x2n))− ϕ(u(x2n−1, x2n)),

so u(x2n−1, x2n) = 0, then from (2.22), we get

(a+ b)p(x2n−1, x2n) + cp(x2n, x2n+1) + e[p(x2n, x2n) + p(x2n−1, x2n+1)] = 0.

Having in mind that e > 0 and a > 0, hence

p(x2n−1, x2n) = p(x2n, x2n) + p(x2n−1, x2n+1) = 0. (2.24)

Since p(x2n, x2n) ≤ p(x2n−1, x2n), then p(x2n, x2n) = 0, so by (2.24),

p(x2n−1, x2n+1) = 0. (2.25)

By assumption, we have p(x2n+1, x2n) > 0 = p(x2n, x2n−1). On the other hand, by
property (p4)

0 < p(x2n+1, x2n) ≤ p(x2n+1, x2n−1) + p(x2n−1, x2n)
= p(x2n+1, x2n−1) + 0 = p(x2n+1, x2n−1),

hence p(x2n+1, x2n−1) > 0, which is a contradiction with respect to (2.25). So we
have p(x2n+1, x2n) ≤ p(x2n, x2n−1) for all n ∈ N∗. Similarly, we have

p(x2n+1, x2n+2) ≤ p(x2n, x2n+1).

Therefore, (2.23) holds for any n ∈ N∗. Hence, the sequence {p(xn+1, xn)} is nonin-
creasing and bounded below. Thus there exists ρ ≥ 0 such that lim

n→+∞
p(xn+1, xn) =

ρ. In particular, we give

lim
n→+∞

p(x2n, x2n+1) = lim
n→+ii

p(x2n−1, x2n) = ρ.

Suppose that ρ > 0. Therefore, from (2.22)

lim sup
n→+∞

ap(x2n−1, x2n) ≤ lim sup
n→+∞

u(x2n−1, x2n)

≤ lim sup
n→+∞

{(a+ b+ e)p(x2n−1, x2n) + (c+ e)p(x2n, x2n+1)}.
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This implies 0 < aρ ≤ lim supn→+∞ u(x2n−1, x2n) ≤ (a + b + c + 2e)ρ ≤ ρ and so
there exist ρ1 > 0 and a subsequence {u(x2n(k)−1, x2n(k))} of {u(x2n−1, x2n)} such
that

lim
k→+∞

u(x2n(k)−1, x2n(k)) = ρ1 ≤ ρ.

By the lower semi-continuity of ϕ we have

ϕ(ρ1) ≤ lim inf
k→+∞

ϕ(u(x2n(k)−1, x2n(k))).

Now, by (2.19), we have

ψ(p(x2n(k), x2n(k)+1)) =ψ(p(Tx2n(k)−1, Sx2n(k)))

≤ψ(u(x2n(k)−1, x2n(k)))− ϕ(u(x2n(k)−1, x2n(k))),

and taking the upper limit as k → +∞, we have

ψ(ρ) ≤ψ(ρ1)− lim inf
k→+∞

ϕ(u(x2n(k)−1, x2n(k)))

≤ψ(ρ1)− ϕ(ρ1)

≤ψ(ρ)− ϕ(ρ1),

so ϕ(ρ1) = 0, which is a contradiction. Therefore, we have

lim
n→+∞

p(xn+1, xn) = ρ = 0. (2.26)

Now, we prove that {xn} is a Cauchy sequence in (X, p). Again, from Lemma 1.5,
we need to check that {xn} is Cauchy in (X, ps). To do this, it suffices to prove that
{x2n} is Cauchy in (X, ps). We proceed by contradiction. Then we can find an ε > 0
such that for each even integer 2k there exist even integers 2m(k) > 2n(k) > 2k
such that

ps(x2n(k), x2m(k)) ≥ ε. (2.27)

By choosing 2m(k) to be smallest number exceeding 2n(k) for which (2.27) holds,
we may also assume

ps(x2m(k)−2, x2n(k)) < ε. (2.28)

Now, (2.27) and (2.28) imply

0 < ε ≤ ps(x2n(k), x2m(k))

≤ ps(x2n(k), x2m(k)−2) + ps(x2m(k)−2, x2m(k)−1) + ps(x2m(k)−1, x2m(k))

< ε+ ps(x2m(k)−2, x2m(k)−1) + ps(x2m(k)−1, x2m(k)),

and so thanks to (2.26)

lim
k→+∞

ps(x2n(k), x2m(k)) = ε. (2.29)

Also, by the triangular inequality,

|ps(x2n(k), x2m(k)−1)− ps(x2n(k), x2m(k))| ≤ ps(x2m(k)−1, x2m(k)),

and

|ps(x2n(k)+1, x2m(k)−1)−ps(x2n(k), x2m(k))| ≤ ps(x2m(k)−1, x2m(k))+ps(x2n(k), x2n(k)+1).

Therefore we get
lim

k→+∞
ps(x2n(k), x2m(k)−1) = ε, (2.30)

and
lim

k→+∞
ps(x2n(k)+1, x2m(k)−1) = ε. (2.31)
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On the other hand, by definition of ps, as in (2.10) and (2.11), we get from (2.26),
(2.29), (2.30) and (2.31)

lim
k→+∞

p(x2n(k), x2m(k)) =
ε

2
, (2.32)

lim
k→+∞

p(x2n(k), x2m(k)−1) =
ε

2
, (2.33)

lim
k→+∞

p(x2n(k)+1, x2m(k)−1) =
ε

2
. (2.34)

On the other hand, since x2n(k) and x2m(k)−1 are comparable, we can use the
condition (2.19) for these points. By, (2.26), (2.32), (2.33) and (2.34)

lim
k→+∞

u(x2m(k)−1, x2n(k)) = lim
k→+∞

(
ap(x2m(k)−1, x2n(k)) + bp(x2m(k)−1, Tx2m(k)−1)

+ cp(x2n(k), Sx2n(k)) + e[p(x2n(k), Tx2m(k)−1)

+ p(x2m(k)−1, Sx2n(k))]

)

= lim
k→+∞

(
ap(x2m(k)−1, x2n(k)) + bp(x2m(k)−1, x2m(k))

+ cp(x2n(k), x2n(k)+1) + e[p(x2n(k), x2m(k))

+ p(x2m(k)−1, x2n(k)+1)]

)
= (a+ 2e)

ε

2
,

then we have

ψ(
ε

2
) = lim sup

k→+∞
ψ(p(x2n(k), x2m(k)))

≤ lim sup
k→+∞

ψ(p(x2n(k), x2n(k)+1) + p(x2n(k)+1, x2m(k)))

≤ lim sup
k→+∞

ψ(p(x2n(k), x2n(k)+1) + p(Sx2n(k), Tx2m(k)−1))

= lim sup
k→+∞

ψ(p(Sx2n(k), Tx2m(k)−1))

≤ lim sup
k→+∞

[ψ(u(x2m(k)−1, x2n(k)))− ϕ(u(x2m(k)−1, x2n(k)))]

=ψ((a+ 2e)
ε

2
)− lim inf

k→+∞
ϕ(u(x2m(k)−1, x2n(k)))

≤ψ((a+ 2e)
ε

2
)− ϕ((a+ 2e)

ε

2
)

≤ψ(
ε

2
)− ϕ((a+ 2e)

ε

2
).

This is a contradiction. Therefore {xn} is a Cauchy sequence in the metric space
(X, ps), which is complete from Lemma 1.5. Then there is z ∈ X such that

lim
n→+∞

ps(xn, z) = 0.

Again, from Lemma 1.5, we have thanks to (2.26) and the condition (p2)

p(z, z) = lim
n→+∞

p(xn, z) = lim
n→+∞

p(xn, xn) = 0. (2.35)
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We will prove that Tz = z.
1. Assume that (i) holds, that is T is continuous in (X, p). In view of Remark
1.8, we have T is continuous in (X, ps). Since the sequence {x2n+1} converges in
(X, ps) to z, hence {Tx2n+1} converges to Tz in (X, ps), that is from Lemma 1.5

p(Tz, Tz) = lim
n→+∞

p(Tx2n+1, T z) = lim
n→+∞

p(Tx2n+1, Tx2n+1)

= lim
n→+∞

p(x2n+2, x2n+2) = 0 [by (2.26)].

(2.36)

Again, thanks to (2.35)-(2.36),

p(z, Tz) = lim
n→+∞

p(x2n+2, T z) = lim
n→+∞

p(Tx2n+1, T z) = p(Tz, Tz). (2.37)

It follows that p(z, Tz) = 0. Hence z = Tz, that is, z is a fixed point of T .
2. Assume that S is continuous. The proof of Sz = z will be done similarly as in
the first case (i).
3. Assume that (iii) holds. Then, we have x2n ≤ z for all n. Therefore, we can use
the inequality (2.19) for x2n and z.

ψ(p(Tz, x2n+1)) =ψ(p(Tz, Sx2n))

≤ψ(u(z, x2n))− ϕ(u(z, x2n)),

where

u(z, x2n) =ap(z, x2n) + bp(z, Tz) + cp(x2n, Sx2n) + e[p(x2n, T z) + p(z, Sx2n)]

=ap(z, x2n) + bp(z, Tz) + cp(x2n, x2n+1) + e[p(x2n, T z) + p(z, x2n+1)].

Thanks to (2.35), we get

lim
n→+∞

u(z, x2n) = (b+ e)p(z, Tz) ≤ p(z, Tz).

Therefore, taking the upper limit as n → +∞, we obtain using the properties of ψ
and ϕ

ψ(p(Tz, z)) ≤ ψ(p(z, Tz))− ϕ((b+ e)p(z, Tz)),

giving that p(z, Tz) = 0, so Tz = z.
We have proved that z is a fixed point of a one mapping in each precedent case.

Now we show that, such z is also a common fixed point of S and T . Indeed, without
loss of generality, we take z be a fixed point of S. Now assume that p(z, Tz) > 0. If
we use the inequality (2.19), for x = y = z, we have

ψ(p(Tz, z)) =ψ(p(Tz, Sz))

≤ψ(u(z, z))− ϕ(u(z, z))

≤ψ(p(Tz, z))− ϕ((a+ c+ e)p(z, z) + (b+ e)p(Tz, z))

=ψ(p(Tz, z))− ϕ((b+ e)p(Tz, z)).

We have used (2.35) in the last identity, that is, p(z, z) = 0. It follows that ϕ((b +
e)p(Tz, z)) = 0, so by a property of ϕ, we have (b+ e)p(Tz, z) = 0 for e > 0, that is
p(Tz, z) = 0, which is a contradiction because we assumed that p(z, Tz) > 0. Thus
p(z, Tz) = 0 and so z is a common fixed point of S and T . The proof of Theorem
2.8 is completed. �
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3. APPLICATION

In this section, we present some applications of previous results and we obtain
some fixed point theorems for single mapping and pair of mappings satisfying a
general contractive condition of integral type in ordered partial metric spaces. Take
Γ to be the set of
v : R+ → R+ which are Lebesgue integrable mappings, summable, nonnegative
and satisfy ∫ ε

0

v(t)dt > 0 for each ε > 0.

Theorem 3.1. Let (X,≤) be a partially ordered set and (X, p) be a complete partial
metric space. Suppose that T : X → X be a nondecreasing mapping such that for
every two comparable elements x, y ∈ X∫ ψ(p(Tx,Ty))

0

v(t)dt ≤
∫ ψ(θ(x,y))

0

v(t)dt−
∫ ϕ(θ(x,y))

0

v(t)dt, (3.1)

where

θ(x, y) = ap(x, y) + bp(x, Tx) + cp(y, Ty) + e[p(y, Tx) + p(x, Ty)], (3.2)

with a, e > 0; b, c ≥ 0, a + b + c + 2e ≤ 1, and ψ,ϕ : [0,+∞) → [0,+∞), ψ is a
continuous, nondecreasing, ϕ is a lower semi-continuous functions and ψ(t) = 0 =
ϕ(t) if and only if t = 0. Also suppose, there exists x0 ∈ X with x0 ≤ Tx0. Assume
that :
(i) T is continuous, or
(ii) if a nondecreasing sequence {xn} converges to x in (X, p), then xn ≤ x for all n.
Then T has a fixed point.

Proof. Define 4 : R+ → R+ by 4(x) =
∫ x
0
v(t)dt, then 4 is continuous and

nondecreasing with 4(0) = 0. Thus, equation (3.1) becomes

4(ψ(p(Tx, Ty))) ≤ 4(ψ(θ(x, y)))−4(ϕ(θ(x, y)))

which further can be written as

ψ1(p(Tx, Ty)) ≤ ψ1(θ(x, y)− ϕ1(θ(x, y)),

where ψ1 = 4 ◦ ψ and ϕ1 = 4 ◦ ϕ. Hence, Theorem 2.1 yields a fixed point. �

Theorem 3.2. Let (X,≤) be a partially ordered set and (X, p) be a complete partial
metric space. Suppose that T, S : X → X are weakly increasing such that for every
two comparable elements x, y ∈ X∫ ψ(p(Tx,Sy))

0

v(t)dt ≤
∫ ψ(u(x,y))

0

v(t)dt−
∫ ϕ(u(x,y))

0

v(t)dt, (3.3)

where

u(x, y) = ap(x, y) + bp(x, Tx) + cp(y, Sy) + e[p(y, Tx) + p(x, Sy)], (3.4)

with a, e > 0; b, c ≥ 0, a + b + c + 2e ≤ 1, and ψ,ϕ : [0,+∞) → [0,+∞), ψ is a
continuous, nondecreasing, ϕ is a lower semi-continuous functions and ψ(t) = 0 =
ϕ(t) if and only if t = 0. Assume that :
(i) T is continuous, or
(ii) S is continuous, or
(iii) if a nondecreasing sequence {xn} converges to x in (X, p), then xn ≤ x for all n.
Then T and S have a common fixed point.
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Proof. Define 4 : R+ → R+ by 4(x) =
∫ x
0
v(t)dt, then 4 is continuous and

nondecreasing with 4(0) = 0. Thus, equation (3.3) becomes

4(ψ(p(Tx, Sy))) ≤ 4(ψ(u(x, y)))−4(ϕ(u(x, y)))

which further can be written as

ψ1(p(Tx, Sy)) ≤ ψ1(u(x, y)− ϕ1(u(x, y)),

where ψ1 = 4 ◦ ψ and ϕ1 = 4 ◦ ϕ. Hence, Theorem 2.8 yields a common fixed
point. �
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