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ABSTRACT. An alternative stochastic volatility model with jumps is proposed, in which
stock prices follow a jump diffusion model and their stochastic volatility follows a fractional
stochastic volatility model. By using an approximate method, we find a formulation for the
European-style option in terms of the characteristic function of tail probabilities.
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1. INTRODUCTION

Let (Ω,F , P) be a probability space with filtration F = (Ft)0≤t≤T . All processes
that we shall consider in Section 1 and 2 will be defined in this space.

For t ∈ [0, T ] and T < ∞, a geometric Brownian motion (gBm) model with jumps
and with fractional stochastic volatility is a model of the form

dSt = St (µdt +
√

vtdWt) + St−YtdNt, (1.1)

where µ ∈ <, S = (St)t∈[0,T ] is a process representing a price of the underlying
risky assets, W = (Wt)t∈[0,T ] is the standard Brownian motion, N = (Nt)t∈[0,T ] is
a Poisson process with intensity λ, and St−Yt represents the amplitude of the jump
which occurs at time t. We assume that the processes W and N are independent.
The volatility process vt := σ2

t in (1.1) is modeled by

dvt = (ω − θvt) dt + ξvtdBt, (1.2)

where ω > 0 is the mean long-term volatility, θ ∈ < is the rate at which the volatility
reverts toward its long-term mean, ξ > 0 is the volatility of the volatility process,
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and (Bt)t∈[0,T ] is a fractional Brownian motion. Assume that the proessess (St)
and (vt) are Ft-measurable.

The notation St− means that whenever there is a jump, the value of the process
before the jump is used on the left-hand side of the formula.

The fraction version of equation (1.1) is given by

dSt = St (µdt +
√

vtdBt) + St−YtdNt. (1.3)

Recently, Intarasit and Sattayatham [1] showed that the process St in (1.3)
can be approximated in L2(Ω) by a semimartingale Sε

t in the sense that ||Sε
t −

St||L2(Ω) → 0 as ε → 0, where Sε
t satisfies the following equation

dSε
t = Sε

t

(
µdt +

√
vε

t dWt

)
+ YtdNt.

The purpose of this paper is to consider the problem of option pricing for the
gBm model with jumps and with fractional stochastic volatility (1.1). But since
the process St is a fractional process, we cannot apply Ito calculus directly. We
shall thus work in another direction by finding a formula for option pricing for the
process Sε

t and using it as an approximation for pricing the model (1.1). In order
to find such a formula, we shall work in the space of a risk-neutral probability
measure. There are some authors who have investigated this problem before but
not in the fractional case, for example Heston [2] and Yan and Hanson [3].

Recall that the fractional Brownian motion with Hurst coeifficient is a Gaussian
process BH = (BH

t )t≥0 with zero mean, and the covariance function is given by

R(t, s) = E
[
BH

t BH
s

]
=

1
2

(
s2H + t2H − |t− s|2H

)
.

If H = 1/2, then R(t, s) = min(t, s) and BH
t is the usual standard Brownian

motion. In the case 1/2 < H < 1 the fractional Brownian motion exhibits statistical
long-range dependency in the sense that ρn := E[BH

1

(
BH

n+1 −BH
n

)
] > 0 for all

n = 1, 2, 3, ... and
∞∑

n=1
ρn = ∞ ([4], page 2). Hence, in financial modeling, one

usually assumes that H ∈ (1/2, 1). Put α = 1/2−H. It is known that a fractional
Brownian motion BH

t can be decomposed as follows:

BH
t =

1
Γ(1 + α)

{
Zt +

∫ t

0

(t− s)−αdWs

}
where Γ is the gamma function, Zt =

∫ 0

−∞ [(t− s)−α − (s)−α] dWs.
We suppose from now on that 0 < α < 1/2. The process Zt has absolutely

continuous trajectories, so it suffices to consider only the term

Bt =
∫ t

0

(t− s)−αdWs, (1.4)

that has a long-range dependence.
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Note that Bt can be approximated by

Bε
t =

∫ t

0

(t− s + ε)−αdWs (1.5)

in the sense that Bε
t converges to Bt in L2(Ω) as ε → 0, uniform with respect to

t ∈ [0, T ] (see [5]).
Since (Bε

t )t∈[0,T ] is a continuous semimartingale then Itô calculus can be applied
to the following stochastic differential equation (SDE)

dSε
t = Sε

t (µdt + σdBε
t ), 0 ≤ t ≤ T.

Let Sε
t be the solution of the above equation. Because of the convergence of Bε

t

to Bt in L2(Ω) when ε → 0, we shall define the solution of a fractional stochastic
differential equation of the form

dSt = St(µdt + σdBt), 0 ≤ t ≤ T,

to be a process S∗t defined on the probability space (Ω,F , P) such that the process
Sε

t converges to S∗t in L2(Ω) as ε → 0 and the convergence is uniform with respect
to t ∈ [0, T ]. This definition will be applied to the other similar fractional stochastic
differential equations which will appear later.

The rest of the paper is organized as follows. A risk-neutral for gBm model with
a compound Poisson process and stochastic volatility model is described in section
2. The risk-neutral for gBm model with a compound Poisson process and fractional
stochastic volatility model is also introduced in this section. The relationship be-
tween the stochastic differential equation and the partial differential equation for
the jump diffusion process with stochastic volatility is presented in section 3. In
section 4, an option price formula is given. Finally the closed-form solution for a
European call option in terms of characteristic function is given in section 5.

2. RISK-NEUTRAL FOR A GBM WITH JUMPS

In this section, a risk-neutral for a gBm model combining jumps with stochastic
volatility is introduced. Its solution will also be discussed in this section.

Firstly, let us rewrite the model (1.1) into an integral form as follows:

St = S0 +

t∫
0

µSsds +

t∫
0

√
vsSsdWs +

t∫
0

Ss−YsdNs. (2.1)

Note that the last term on the right hand side of equation (2.1) is defined by
t∫

0

Ss−YsdNs =
Nt∑

n=1

∆Sn,

where
∆Sn := STn

− STn− = Sn−Yn.

The assumption Yn > 0 always leads to positive values of the stock prices. The
process (Yn)n∈N is assumed to be independently identically distributed (i.i.d.) with
density φY (y) and (Tn)n∈N is a sequence of jump time.

In order to solve equation (2.1) with an initial condition St(t=0) = S0, we assume
that E[

∫ T

0
vsS

2
sds] < ∞. Then, by an application of Itô’s formula for the jump
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process ([6], Theorem 8.14, page 275) on equation (2.1) with f(St, t) = log(St), we
get

log St = log S0 + µt− 1
2

t∫
0

vsds +

t∫
0

√
vsdWs +

t∫
0

log (1 + Ys) dNs,

or, equivalently,

St = S0 exp

µt− 1
2

t∫
0

vsds +

t∫
0

√
vsdWs +

t∫
0

log (1 + Ys) dNs

 .

It is assumed that a risk-neutral probability measure M exists; the asset price
St, under this risk-neutral measure, follows a jump-diffusion process, with zero-
mean, risk-free rate r, and stochastic variance vt,

dSt = St ((r − λEM [Yt]) dt +
√

vtdWt) + St−YtdNt. (2.2)

It is only necessary to know that the risk-neutral measure exists (see, [6] page
321). Hence, all processes to be discussed after this will be the processes under
the risk-neutral probability measure M.

Using an initial condition St(t=0) = S0 ∈ L2 (Ω), its solution is given by

St = S0 exp

 t∫
0

(r − λEM (Ys)) ds− 1
2

t∫
0

vsds +

t∫
0

√
vsdWs +

t∫
0

log (1 + Ys) dNs

 ,

where vt satisfies the following fractional SDE

dvt = (ω − θvt) dt + ξvtdBt, (2.3)

with an initial condition vt(t=0) = v0 ∈ L2 (Ω).
For each ε > 0, consider an approximation model of equation (2.3);

dvε
t = (ω − θvε

t ) dt + ξvε
t dBε

t . (2.4)

By using the same initial condition as in equation (2.3), one can show that the
solution vε

t of equation (2.4) converges in L2(Ω) to the process

vt =

v0 + ω

t∫
0

exp (γs− ξBs) ds

 exp (ξBt − γt)

for some real constant γ. ([1], Lemma 2). Hence, by definition, vt is the solution of
equation (2.3).

Now we consider an approximation model of equation (2.2);

dSε
t = Sε

t

(
(r − λEM [Yt]) dt +

√
vε

t dWt

)
+ Sε

t−YtdNt, (2.5)

and by using the same initial condition as in equation (2.2), we have

Sε
t = S0 exp

 t∫
0

(r − λEM (Ys)) ds− 1
2

t∫
0

vε
sds +

t∫
0

√
vε

sdWs +

t∫
0

log (1 + Ys) dNs

 .

(2.6)
Again, we can prove that ([1], Theorem 3) Sε

t converges to St in L2(Ω) as ε → 0 and
uniformly on t ∈ [0, T ].



OPTION PRICING FOR A JUMP DIFFUSION MODEL WITH FRACTIONAL STOCHASTIC VOLATILITY 243

3. PARTIAL INTEGRO-DIFFERENTIAL EQUATION FOR JUMP DIFFUSION
MODEL WITH STOCHASTIC VOLATILITY

Consider the process
−→
X t =

(
X1

t , X2
t

)
where X1

t and X2
t are processes in < and

satisfy the following equations:

dX1
t = f1 (t) dt + g1 (t) dWt + X1

t−YtdNt, (3.1)

dX2
t = f2 (t) dt + g2 (t) dW t,

where f1, g1, f2, and g2 are all continuous functions from [0, T ] into <.

Since every compound Poisson process can be represented as an integral form
of Poisson random measure ([6], page 77) then the last term on the right hand side
of equation (3.1) can be written as follows

t∫
0

X1
s−YsdNs =

Nt∑
n=1

X1
n−Yn =

Nt∑
n=1

[
X1

Tn
−X1

Tn−
]

=

t∫
0

∫
<

X1
s−zJZ(ds dz)

where Yn are i.i.d random variables with density φY (y) and JZ is a Poisson random
measure of the process Zt =

∑Nt

n=1 Yn with intensity measure λφY (dz)dt.
Let U(−→x ) be a bounded real function on <2 and twice continuously differentiable

in −→x = (x1, x2) ∈ <2 and

u(−→x , t) = E
[
U
(−→
XT

)
|
−→
X t = −→x

]
. (3.2)

By the two dimensional Dynkin’s formula ([7], Theorem 7.7, page 203), u is a
solution of the partial integro-differential equation (PIDE)

0 =
∂u(−→x , t)

∂t
+Au(−→x , t) + λ

∫
<

[u(−→x +−→y , t)− u(−→x , t)]φY (y)dy,

subject to the final condition u(−→x , T ) = U(−→x ) where−→y = (y, 0) ∈ <2. The notation
A is defined by

Au(−→x , t) = f1(t)
∂u(−→x , t)

∂x1
+ f2(t)

∂u(−→x , t)
∂x2

+
1
2
g2
1(t)

∂2u(−→x , t)
∂x2

1

+ ρg1(t)g2(t)
∂2u(−→x , t)
∂x1∂x2

+
1
2
g2
2(t)

∂2u(−→x , t)
∂x2

2

,

and the correlation ρ defined by ρ = Corr
[
dWt, dW t

]
.

4. PRICING A EUROPEAN CALL OPTION

Let C denote the price at time t of a European style call option on the current
price of the underlying asset St with strike price K and expiration time T .

The terminal payoff of a European call option on the underling stock S with strike
price K is

max (ST −K, 0) .

This means that the holder will exercise his right only if ST > K and then his
gain is ST − K. Otherwise, if ST ≤ K, then the holder will buy the underlying
asset from the market and the value of the option is zero.

Assuming the risk-free interest rate r is constant over the lifetime of the option,
the price of the European call at time t is equal to the discounted conditional
expected payoff

C (St, vt, t;K, T )
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= e−r(T−t)EM [max (ST −K, 0) | St, vt]

= e−r(T−t)

 ∞∫
K

ST PM (ST | St, vt) dST −K

∞∫
K

PM (ST | St, vt) dST


= St

 1
er(T−t)St

∞∫
K

ST PM (ST | St, vt) dST

−Ke−r(T−t)

∞∫
K

PM (ST | St, vt) dST

= St

 1
EM [ST | St, vt]

∞∫
K

ST PM (ST | St, vt) dST


−Ke−r(T−t)

∞∫
K

PM (ST | St, vt) dST

= StP1 (St, vt, t;K, T )−Ke−r(T−t)P2 (St, vt, t;K, T ) (4.1)

where EM is the expectation with respect to the risk-neutral probability measure,
PM (ST | St, vt) is the corresponding conditional density given (St, vt) , and

P1 (St, vt, t;K, T ) =

 ∞∫
K

ST PM (ST | St, vt) dST

 /EM [ST | St, vt] .

Note that P1 is the risk-neutral probability that ST > K (since the integrand is
nonnegative and the integral over [0,∞) is one), and finally, that

P2 (St, vt, t;K, T ) =

∞∫
K

PM (ST | St, vt) dST = Pr ob (ST > K | St, vt)

is the risk-neutral in-the-money probability. Moreover, EM [ST | St, vt] = er(T−t)St

for t ≥ 0.

Note that we do not have a closed form solution for these probabilities. However,
these probabilities are related to characteristic functions which have closed form
solutions as will be seen in Lemma 2.

We would like to compute the price of a European call option with strike price
K and maturity T of the model (2.2) for which its fractional stochastic volatility
satisfies equation (2.3).

To do this, consider the logarithm of Sε
t , namely Lε

t , i.e. Lε
t = log (Sε

t ) where
Sε

t satisfies equation (2.6) and its inverse Sε
t = exp (Lε

t ) . Denote κ = log (K) the
logarithm of the strike price.

We now refer to equation (2.4), since this approximate model is driven by a
semimartingale Bε

t and hence there is no opportunity of arbitrage. This is the
advantage of our approximate approach and we will use this model for pricing the
European call option instead of (2.3).

Note that we can write
dBε

t = αϕε
tdt + εαdWt (4.2)

where ϕε
t =

∫ t

0
(t− u + ε)1−αdWu, α = 1/2−H and 0 < α < 1/2 ([5], Lemma 2.1).

Substituting (4.2) into equation (2.4), we obtain

dvε
t = (ω + (αξϕε

t − θ) vε
t ) dt + ξεαvε

t dWt. (4.3)

Consider the SDE (2.2) and (4.3). Define a function U on <2 as follows:
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U(x1, x2) = e−r(T−t)max(ex1 − κ, 0).

By virtue of equation (3.2),

u(−→x , t) = E
[
U
(−→
XT

)
|
−→
X t = −→x

]
= e−r(T−t)EM [max (exp (Lε

t )− κ, 0) | Lε
t = `ε, vε

t = vε]

:= C (`ε, vε, t;κ, T )

satisfies the following PIDE:

0 =
∂C

∂t
+ f1

∂C

∂`ε
+ f2

∂C

∂vε
+

1
2
g2
1

∂2C

∂(`ε)2
+ ρg1g2

∂2C

∂`ε∂vε
+

1
2
g2
2

∂2C

∂(vε)2

−rC + λ

∫
<

[C (`ε + y, vε, t;κ, T )− C (`ε, vε, t;κ, T )]φY (y)dy. (4.4)

In the current state variable, the last line of equation (4.1) becomes

C (`ε, vε, t;κ, T ) = e`ε

P1 (`ε, vε, t;κ, T )− eκ−r(T−t)P2 (`ε, vε, t;κ, T ) . (4.5)

The following lemma shows the relationship between P1 and P2 in the option
value of the equation (4.5).

Lemma 4.1. The functions P1 and P2 in the option value of the equation (4.5) satisfy
the following PIDEs

0 =
∂P1

∂t
+ A [P1] (`ε, vε, t;κ, T ) + vε ∂P1

∂`ε
+ ρξεα(vε)3/2 ∂P1

∂vε

+ (r − λEM (Yt))P1 + λ

∫
<

[(ey − 1) P1 (`ε + y, vε, t;κ, T )]φY (y)dy,

subject to the boundary condition at expiration time t = T ;

P1 (`ε, vε, T ;κ, T ) = 1`ε>κ. (4.6)

Moreover, P2 satisfies the equation

0 =
∂P2

∂t
+ A [P2] (`ε, vε, t;κ, T ) + rP2,

subject to the boundary condition at expiration time t = T ;

P2 (`ε, vε, T ;κ, T ) = 1`ε>κ, (4.7)

where

A [f ] (`ε, vε, t;κ, T ) :=
(

r − λE (Yt)−
1
2
vε

)
∂f

∂`ε
+ (ω + (αξϕε

t − θ) vε)
∂f

∂vε

+
1
2
vε ∂2f

(∂`ε)2
+ ρξεα(vε)3/2 ∂2f

∂`ε∂vε
+

1
2
ξ2ε2α(vε)2

∂2f

∂(vε)2

− rf + λ

∫
<

[f (`ε + y, vε, t;κ, T )− f (`ε, vε, t;κ, T )]φY (y)dy.

(4.8)

Note that 1`ε>κ = 1 if `ε > κ and otherwise 1`ε>κ = 0.
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Proof. We plan to substitute equation (4.5) into equation (4.4). Firstly, we compute

∂C

∂t
= e`ε ∂P1

∂t
− eκ−r(T−t) ∂P2

∂t
− reκ−r(T−t)P2

∂C

∂`ε
= e`ε ∂P1

∂`ε
+ e`ε

P1 − eκ−r(T−t) ∂P2

∂`ε

∂C

∂vε
= e`ε ∂P1

∂vε
− eκ−r(T−t) ∂P2

∂vε

∂2C

(∂`ε)2
= e`ε ∂2P1

(∂`ε)2
+ 2e`ε ∂P1

∂`ε
+ P1e

`εε

− eκ−r(T−t) ∂2P2

(∂`ε)2

∂2C

∂`ε∂vε
= e`ε ∂2P1

∂`ε∂vε
+ e`ε ∂P1

∂vε
− eκ−r(T−t) ∂2P2

∂`ε∂vε

∂2C

∂(vε)2
= e`ε ∂2P1

∂(vε)2
− eκ−r(T−t) ∂2P2

∂(vε)2

and

C (`ε + y, vε, t;κ, T )− C (`ε, vε, t;κ, T )

=
[
e(`ε+y)P1 (`ε + y, vε, t;κ, T )− eκ−r(T−t)P2 (`ε + y, vε, t;κ, T )

]
−
[
e`ε P1 (`ε, vε, t;κ, T )− eκ−r(T−t)P2 (`ε, vε, t;κ, T )

]
=

[
e`ε (eyP1 (`ε + y, vε, t;κ, T )− P1 (`ε + y, vε, t;κ, T ))
+ (e`ε P1 (`ε + y, vε, t;κ, T )− e`ε P1 (`ε, vε, t;κ, T ))

]
−eκ−r(T−t) [P2 (`ε + y, vε, t;κ, T )− P2 (`ε, vε, t;κ, T )]

= e`ε (ey − 1) P1 (`ε + y, vε, t;κ, T ) + e`ε (P1 (`ε + y, vε, t;κ, T )− P1 (`ε, vε, t;κ, T ))

−eκ−r(T−t) [P2 (`ε + y, vε, t;κ, T )− P2 (`ε, vε, t;κ, T )] .

Substitute all terms above in equation (4.4) and separate it by assumed indepen-
dent terms P1 and P2. This gives two PIDEs for the risk-neutralized probability
Pj (`ε, vε, t;κ, T ), j = 1, 2 :

0 =
∂P1

∂t
+
(

r − λEM (Yt)−
1
2
vε

)(
∂P1

∂`ε
+ P1

)
+ (ω + (αξϕε

t − θ) vε)
∂P1

∂vε

+
1
2
vε

(
∂2P1

(`ε)2
+ 2

∂P1

∂`ε
+ P1

)
+ ρξεα(vε)3/2

(
∂2P1

∂`ε∂vε
+

∂P1

∂vε

)
+

1
2
ξ2ε2α(vε)2

∂2P1

∂(vε)2

− rP1 + λ

∫
<

[
(ey − 1) P1 (`ε + y, vε, t;κ, T )

+ (P1 (`ε + y, vε, t;κ, T )− P1 (`ε, vε, t;κ, T ))

]
φY (y)dy (4.9)

subject to the boundary condition at the expiration time t = T according to equation
(4.6).
By using the notation in equation (4.8), PIDE (4.9) becomes

0 =
∂P1

∂t
+

(
A [P1] (`ε, vε, t;κ, T ) + vε ∂P1

∂`ε + ρξεα(vε)3/2 ∂P1
∂vε + (r − λEM (Yt))P1

+λ
∫
<

[(ey − 1) P1 (`ε + y, vε, t;κ, T )]φY (y)dy)

)

:=
∂P1

∂t
+ A1 [P1] (`ε, vε, t;κ, T ) .

For P2 (`ε, vε, t;κ, T ) :

0 =
∂P2

∂t
+ rP2 +

(
r − λEM (Yt)−

1
2
vε

)(
∂P2

∂`ε

)
+ (ω + (αξϕε

t − θ) vε)
∂P2

∂vε
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+
1
2
vε ∂2P2

∂(`ε)2
+ ρξεα(vε)3/2 ∂2P1

∂`ε∂vε
+

1
2
ξ2ε2α(vε)2

∂2P1

∂(vε)2

− rP2 + λ

∫
<

[P2 (`ε + y, vε, t;κ, T )− P2 (`ε, vε, t;κ, T )]φY (y)dy (4.10)

subject to the boundary condition at expiration time t = T according to equation
(4.7).

Again, by using the notation (4.8), PIDE (4.10) becomes

0 =
∂P2

∂t
+ (A [P2] (`ε, vε, t;κ, T ) + rP2)

:=
∂P2

∂t
+ A2 [P2] (`ε, vε, t;κ, T )

The proof is now completed. �

5. A CLOSED-FORM SOLUTION FOR EUROPEAN CALL OPTIONS

For j = 1, 2, the characteristic functions for Pj (`ε, vε, t;κ, T ) , with respect to
the variable κ are defined by

fj (`ε, vε, t;x, T ) := −
∞∫

−∞

eixκdPj (`ε, vε, t;κ, T ) ,

with a minus sign to account for the negativity of the measure dPj . Note that fj also
satisfies similar PIDEs

∂fj

∂t
+ Aj [fj ] (`ε, vε, t;κ, T ) = 0, (5.1)

with the respective boundary conditions

fj (`ε, vε, T ;x, T ) = −
∞∫

−∞

eixκdPj (`ε, vε, T ;κ, T ) = −
∞∫

−∞

eixκ(−δ(`ε−κ)dκ) = eix`ε

,

since
dPj (`ε, vε, T ;κ, T ) = d1`ε>κ = dH(`ε − κ) = −δ(`ε − κ)dκ.

The following lemma shows how to calculate the functions P1 and P2 as they
appeared in Lemma 1.

Lemma 5.1. The functions P1 and P2 can be calculated by the inverse Fourier
transforms of the characteristic function, i.e.

Pj (`ε, vε, t;κ, T ) =
1
2

+
1
π

+∞∫
0+

Re

[
e−ixκfj (`ε, vε, t;x, T )

ix

]
dx,

for j = 1, 2, with Re[·] denoting the real component of a complex number.

By letting τ = T − t. (i) The characteristic function f1 is given by

f1 (`ε, vε, t;x, t + τ) = exp (g1 (τ) + vεh1 (τ) + ix`ε) ,

where

g1 (τ) = [(r − λE (Yt)) ix− λEM (Yt)] τ + τλ

∫
<

(
e(ix+1)y − 1

)
φY (y)dy
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− 2ω

ξ2ε2αvε

[
log

(
1−

(∆1 + η1) +
(
1− e∆1τ

)
2∆1

)
+ (∆1 + η1) τ

]
,

h1 (τ) =

(
η2
1 −∆2

1

) (
e∆1τ − 1

)
ξ2ε2αvε (η1 + ∆1 − (η1 −∆1)e∆1τ )

,

η1 = ρξεα
√

vε (1 + ix) + (αξϕε
t − θ) ,

and

∆1 =
√

η2
1 − ξ2ε2αvεix (ix + 1).

(ii) The characteristic function f2 is given by

f2 (`ε, vε, t;x, t + τ) = exp (g2 (τ) + vεh2 (τ) + ix`ε + rτ) ,

where

g2 (τ) = [(r − λEM (Yt)) iy − r] τ + τλ

∫
<

(
eixy − 1

)
φY (y)dy

− 2ω

ξ2ε2αvε

[
log

(
1−

(∆2 + η2) +
(
1− e∆2τ

)
2∆1

)
+ (∆2 + η2) τ

]
,

h2 (τ) =

(
η2
2 −∆2

2

) (
e∆2τ − 1

)
ξ2ε2αvε (η2 + ∆2 − (η2 −∆2)e∆2τ )

,

η2 = ρξεα
√

vεix + (αξϕε
t − θ) ,

and

∆2 =
√

η2
2 + ξ2ε2αvεix (ix− 1).

Proof. Proof of (i). To solve for the characteristic explicitly, letting τ = T − t be the
time-to-go, we conjecture that the function f1 is given by

f1 (`ε, vε, t;x, t + τ) = exp (g1 (τ) + vεh1 (τ) + ix`ε) , (5.2)

and the boundary condition g1 (0) = 0 = h1 (0) . This conjecture exploits the lin-
earity of the coefficient in PIDE (5.1).

Note that the characteristic function of f1 always exists. In order to substitute
(5.2) into (5.1), firstly, we compute

∂f1

∂t
= (−g′1 (τ)− vεh′1 (τ)) f1,

∂f1

∂`ε
= ixf1,

∂f1

∂vε
= h1(τ)f1,

∂2f1

(∂`ε)2
= −x2f1,

∂2f1

∂`ε∂vε
= ixh1(τ)f1,

∂2f1

∂(vε)2
= h2

1(τ)f1,

f1 (`ε + y, vε, t;x, t + τ)− f1 (`ε, vε, t;x, t + τ) =
(
eixy − 1

)
f1 (`ε, vε, t;x, t + τ) ,

and

(ey − 1) f1 (`ε + y, vε, t;x, t + τ) = (ey − 1) eg1(τ)+vεh1(τ)+ix(`ε+y)

= (ey − 1) eixyf1 (`ε, vε, t;x, t + τ) .

Substituting all the above terms into equation (5.1) and after canceling the common
factor of f1, we get a simplified form as follows:

0 = −g′1 (τ)− vεh′1 (τ) +
(

r − λEM (Yt) +
1
2
vε

)
ix

+
(
(ω + (αξϕε

t − θ) vε) + ρξεα(vε)3/2
)

h1(τ)
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−1
2
vεx2 + ρξεα(vε)3/2ixh1(τ) +

1
2
ξ2ε2α(vε)2h2

1(τ)

−λEM (Yt) + λ

∫
<

(
e(ix+1)y − 1

)
φY (y)dy.

By separating the order vε and ordering the remaining terms, we can reduce it to
two ordinary differential equations (ODEs),

h′1 (τ) =
1
2
ξ2ε2αvεh2

1(τ) +
(
ρξεα

√
vε (1 + ix) + (αξϕε

t − θ)
)

h1(τ) +
1
2
ix− 1

2
x2,

(5.3)

g′1 (τ) = ωh1(τ) + (r − λEM (Yt)) ix− λEM (Yt) + λ

∫
<

(
e(ix+1)y − 1

)
φY (y)dy.

(5.4)
Let η1 = ρξεα

√
vε (1 + ix) + (αξϕε

t − θ) and substitute it to equation (5.3). We get

h′1 (τ) =
1
2
ξ2ε2αvε

(
h2

1 (τ) +
2η1

ξ2ε2αvε
h1 (τ) +

1
ξ2ε2αvε

ix (ix + 1)
)

=
1
2
ξ2ε2α

(
h1 (τ) +

2η1 +
√

4η2
1 − 4ξ2ε2αvεix (ix + 1)

2ξ2ε2αvε

)

×

(
h1 (τ) +

2η1 −
√

4η2
1 − 4ξ2ε2αvεix (ix + 1)

2ξ2ε2αvε

)

=
1
2
ξ2ε2αvε

(
h1 (τ) +

η1 + ∆1

ξ2ε2αvε

)(
h1 (τ) +

η1 −∆1

ξ2ε2αvε

)
,

where ∆1 =
√

η2
1 − ξ2ε2αvεix (ix + 1).

By method of variable separation, we have

2dh1 (τ)(
h1 (τ) + η1+∆1

ξ2ε2αvε

)(
h1 (τ) + η1−∆1

ξ2ε2αvε

) = ξ2ε2αvεdτ.

Using partial fractions, we get

1
∆1

(
1

h1 (τ) + η1−∆1
ξ2ε2αvε

− 1
h1 (τ) + η1+∆1

ξ2ε2αvε

)
dh1 (τ) = dτ.

Integrating both sides, we obtain

log

(
h1 (τ) + η1−∆1

ξ2ε2αvε

h1 (τ) + η1+∆1
ξ2ε2αvε

)
= ∆1τ + C.

Using boundary condition h1 (τ = 0) = 0 we get C = log
(

η1−∆1
η1+∆1

)
.

Solving for h1, we obtain

h1 (τ) =

(
η2
1 −∆2

1

) (
e∆1τ − 1

)
ξ2ε2αvε (η1 + ∆1 − (η1 −∆1)e∆1τ )

.

In order to solve g1 (τ) explicitly, we substitute h1 into equation (5.4) and integrate
with respect to τ on both sides. Then we get

g1 (τ) = [(r − λEM (Yt)) ix− λE (Yt)] τ + τλ

∫
<

(
e(ix+1)y − 1

)
φY (y)dy
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− 2ω

ξ2ε2αvε

[
log

(
1−

(∆1 + η1) +
(
1− e∆1τ

)
2∆1

)
+ (∆1 + η1) τ

]
.

Proof of (ii). The details of the proof are similar to case (i). Hence, we have

f2 (`ε, vε, t; y, t + τ) = exp (g2 (τ) + vεh2 (τ) + iy`ε + rτ) ,

where g2 (τ) , h2 (τ) , η2 and ∆2 are as given in the Lemma.
We can thus evaluate the characteristic functions in closed form. However, we

are interested in the risk-neutral probabilities Pj . These can be inverted from the
characteristic functions by performing the following integration

Pj (St, v
ε
t , t;K, T ) = Pj (`ε, vε, t;κ, T )

=
1
2

+
1
π

+∞∫
0+

Re

[
e−ixκfj (`ε, vε, t;x, T )

ix

]
dx

for j = 1, 2, where `ε = log St, vε = log(vε
t ), and κ = log(K).

To verify the above equation, firstly we note that

EM

[
eix(log(St)−log(K)) | log(St) = Lε

t , v
ε
t = vε

]
= EM

[
eix(`ε−κ) | Lε

t = `ε, vε
t = vε

]
=

+∞∫
−∞

eix(`ε−κ)dPj (`ε, vε, t;κ, T )

= e−ixκ

+∞∫
−∞

eix`ε

dPj (`ε, vε, t;κ, T )

= e−ixκ

+∞∫
−∞

eixκ(−δ(`ε − κ)dκ)

= e−ixκfj (`ε, vε
t , t;x, T ) .

Then

1
2

+
1
π

+∞∫
0+

Re

[
e−ixκfj (`ε, vε

t , t;x, T )
ix

]
dx

=
1
2

+
1
π

+∞∫
0+

Re

[
EM

[
eix(log(Sε

t )−log(K)) | log(St) = Lε
t , v

ε
t = vε

]
ix

]
dx

= EM

1
2

+
1
π

+∞∫
0+

Re

[
eix(`ε−κ)

ix

]
dx | Lε

t = `ε, vε
t = vε


= EM

1
2

+
1
π

+∞∫
0+

sin(x (`ε − κ))
x

dx | Lε
t = `ε, vε

t = vε


= EM

1
2

+ sgn (`ε − κ)
1
π

+∞∫
0+

sin(x)
x

dx | Lε
t = `ε, vε

t = vε


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= EM

[
1
2

+
1
2
sgn (`ε − κ) | Lε

t = `ε, vε
t = vε

]
= EM[1`ε≥κ | Lε

t = `ε, vε
t = vε],

where we have used the Dirichlet formula
∫ +∞
−∞

sin(x)
x dx = 1, and the sgn function

is defined as sgn(x) = 1 if x > 0, 0 if x = 0 and −1 if x < 0. �

In summary, we have just proved the following main theorem.

Theorem 5.1. For each ε > 0, the value of a European call option of SDE (2.5) is

Ĉ (Sε
t , vε

t , t;K, T ) = Sε
t P1 (Sε

t , vε
t , t;K, T )−Ke−r(T−t)P2 (Sε

t , vε
t , t;K, T ) ,

where P1 and P2 are as given in Lemma 2, and

Ĉ (Sε
t , vε

t , t;K, T ) = C (log(Sε
t ), vε, t; log(K), T ) .

Remark 5.2. In numerical computation, we firstly choose a real number ε > 0 and
then compute the value of Ĉ (Sε

t , vε
t , t;K, T ) according to the formula as given in

Theorem 3. The solution that we get is the value of a call option of the approxi-
mation model (2.5) and this value can be used as an approximating value of a call
option of the fractional model (2.2) as ε approaches zero.
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