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ABSTRACT. An alternative stochastic volatility model with jumps is proposed, in which
stock prices follow a jump diffusion model and their stochastic volatility follows a fractional
stochastic volatility model. By using an approximate method, we find a formulation for the
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1. INTRODUCTION

Let (9, F,P) be a probability space with filtration F = (F})o<;<7r. All processes
that we shall consider in Section 1 and 2 will be defined in this space.

For t € [0,T] and T < oo, a geometric Brownian motion (gBm) model with jumps
and with fractional stochastic volatility is a model of the form

dSt = St (/J/dt + \/Eth) + St—}/thta (1.1)

where 1 € R, S = (S¢)¢cjo,7] is a process representing a price of the underlying
risky assets, W = (W})¢[o,7) is the standard Brownian motion, N = (N¢):¢[o,1] iS
a Poisson process with intensity A, and S;_Y; represents the amplitude of the jump
which occurs at time ¢. We assume that the processes W and N are independent.
The volatility process v; := O't2 in (1.1) is modeled by

d’Ut = (w — G’Ut) dt + é.’UtdBt, (12)

where w > 0 is the mean long-term volatility, § € } is the rate at which the volatility
reverts toward its long-term mean, £ > 0 is the volatility of the volatility process,
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and (B;)icjo,7) is a fractional Brownian motion. Assume that the proessess (S;)
and (vt) are J;-measurable.

The notation S;_ means that whenever there is a jump, the value of the process
before the jump is used on the left-hand side of the formula.

The fraction version of equation (1.1) is given by
dSt = St (/Jdt + \/EdBt) + St,mdNt. (13)

Recently, Intarasit and Sattayatham [1] showed that the process S; in (1.3)
can be approximated in Ly(€2) by a semimartingale S{ in the sense that ||S] —
StllL,() — 0 as e — 0, where S; satisfies the following equation

dss = S¢ (udt + \/Edwt) + YydN,.

The purpose of this paper is to consider the problem of option pricing for the
¢Bm model with jumps and with fractional stochastic volatility (1.1). But since
the process S; is a fractional process, we cannot apply Ito calculus directly. We
shall thus work in another direction by finding a formula for option pricing for the
process S§ and using it as an approximation for pricing the model (1.1). In order
to find such a formula, we shall work in the space of a risk-neutral probability
measure. There are some authors who have investigated this problem before but
not in the fractional case, for example Heston [2] and Yan and Hanson [3].

Recall that the fractional Brownian motion with Hurst coeifficient is a Gaussian
process B = (B);>( with zero mean, and the covariance function is given by

R(t,s) = E [BI B] = % (32H + 20— |t — s|2H> .

If H = 1/2, then R(t,s) = min(t,s) and B} is the usual standard Brownian
motion. In the case 1/2 < H < 1 the fractional Brownian motion exhibits statistical
long-range dependency in the sense that p, := E[B¥ (Bf;[_H — B )] > 0 for all

oo
n =1,2,3,... and > p, = oo ([4], page 2). Hence, in financial modeling, one

n=1
usually assumes that H € (1/2,1). Put « = 1/2 — H. It is known that a fractional
Brownian motion B/’ can be decomposed as follows:

where T is the gamma function, Z; = f_ooo [(t—5)"% = (s)"*] dWs.

We suppose from now on that 0 < a < 1/2. The process Z; has absolutely
continuous trajectories, so it suffices to consider only the term

t
Btz/ (t —s)”“dWs, (1.4)
0

that has a long-range dependence.
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Note that B; can be approximated by

t
Bf:/ (t—s+e) “dW; (1.5)
0

in the sense that B converges to B; in Lo(f2) as & — 0, uniform with respect to
t € [0,T] (see [5]).

Since (B );c[o,r] is a continuous semimartingale then It6 calculus can be applied
to the following stochastic differential equation (SDE)

dSE = S5 (udt + 0dBS), 0 <t < T.

Let S§ be the solution of the above equation. Because of the convergence of By
to B; in Lo(2) when € — 0, we shall define the solution of a fractional stochastic
differential equation of the form

dSt = St(,udt + O'dBt), 0 § t S T,

to be a process S} defined on the probability space (€2, F,P) such that the process
S§ converges to S} in Ly(f2) as € — 0 and the convergence is uniform with respect
tot € [0, 7). This definition will be applied to the other similar fractional stochastic
differential equations which will appear later.

The rest of the paper is organized as follows. A risk-neutral for gBm model with
a compound Poisson process and stochastic volatility model is described in section
2. The risk-neutral for gBm model with a compound Poisson process and fractional
stochastic volatility model is also introduced in this section. The relationship be-
tween the stochastic differential equation and the partial differential equation for
the jump diffusion process with stochastic volatility is presented in section 3. In
section 4, an option price formula is given. Finally the closed-form solution for a
European call option in terms of characteristic function is given in section 5.

2. RISK-NEUTRAL FOR A GBM WITH JUMPS
In this section, a risk-neutral for a gBm model combining jumps with stochastic
volatility is introduced. Its solution will also be discussed in this section.
Firstly, let us rewrite the model (1.1) into an integral form as follows:
t t t
St = So +/,uSsds+/\/vsSdes+/Ss_stNs. (2.1)
0 0 0
Note that the last term on the right hand side of equation (2.1) is defined by
t N,
/Ss—stNs = Z ASTH
0 n=1
where
ASn = STn - STn— = Sn_Yn.

The assumption Y,, > 0 always leads to positive values of the stock prices. The
process (Y, )nen is assumed to be independently identically distributed (i.i.d.) with
density ¢y (y) and (T, )nen is a sequence of jump time.

In order to solve equation (2.1) with an initial condition St(t:O) = Sy, we assume

that E| fOT vsS52ds] < co. Then, by an application of It6’s formula for the jump
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process ([6], Theorem 8.14, page 275) on equation (2.1) with f(S,t) = log(St), we
get
. t ¢ t
log S; = log Sy + ut — 3 /vsds +/\/17de5 + /log(l +Y;) dNs,
0 0 0
or, equivalently,

t t
1
Sy = Spexp ,ut—i/vsds—&-/\/@dWS—|—/log(1+YS)dNS
0 0 0

t

It is assumed that a risk-neutral probability measure M exists; the asset price
S¢, under this risk-neutral measure, follows a jump-diffusion process, with zero-
mean, risk-free rate r, and stochastic variance v;,

It is only necessary to know that the risk-neutral measure exists (see, [6] page

321). Hence, all processes to be discussed after this will be the processes under
the risk-neutral probability measure M.

Using an initial condition Sy;—g) = So € L2 (£2), its solution is given by
t . t t t
S; = S exp /(7’ — AEM (Yy))ds — 3 /vsder/\/EdWs + /log(l +Ys)dNs |,
0 0 0 0

where v; satisfies the following fractional SDE
d?}t = (w — 91}15) dt + g’l}tdBt, (23)

with an initial condition v;;—g) = vo € L2 (£2).
For each € > 0, consider an approximation model of equation (2.3);

dv; = (w — 6v;) dt + &v;d By . 2.9
By using the same initial condition as in equation (2.3), one can show that the
solution v§ of equation (2.4) converges in Lo(2) to the process

t
vy = | v —l—w/exp (vs —&Bg) ds | exp (§B: — ~t)
0

for some real constant . ([1], Lemma 2). Hence, by definition, v, is the solution of
equation (2.3).

Now we consider an approximation model of equation (2.2);
ds: = S¢ ((7“ CAEM[Y)]) dt + \/vgth) + S5 Y,dN,, 2.5)

and by using the same initial condition as in equation (2.2), we have

t t t t

1
S; = Spexp /(T—)\EM (YS))dS—§/v§d8+/\/v§dWs—|—/log(1+Ys)st
0

0 0 0
(2.6)

Again, we can prove that ([1], Theorem 3) S{ converges to S; in L2(2) as ¢ — 0 and
uniformly on ¢ € [0, T].
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3. PARTIAL INTEGRO-DIFFERENTIAL EQUATION FOR JUMP DIFFUSION
MODEL WITH STOCHASTIC VOLATILITY

Consider the process X ; = (X}, X?) where X} and X7 are processes in it and
satisfy the following equations:

X} fi (@) dt+ g1 (t) dW; + X} YidNy, (3.1)
ax; f2 (t) dt + ga (t) AWy,

where f1, g1, f2, and go are all continuous functions from [0, T into .

Since every compound Poisson process can be represented as an integral form
of Poisson random measure ([6], page 77) then the last term on the right hand side
of equation (3.1) can be written as follows

t N, N, t
/lef'stS =3 Xp YVo=) [X5, —Xp | = //Xl,zJZ(ds dz)
0 n=1 n=1 0 R

where Y,, are i.i.d random variables with density ¢y (y) and Jz is a Poisson random
measure of the process Z; = 25;1 Y,, with intensity measure A¢y (dz)dt.

Let U(Z") be a bounded real function on 2 and twice continuously differentiable
in 7 = (z1,22) € R% and

W@, t)=E [U (JTT) X, = E’} . (3.2)

By the two dimensional Dynkin’s formula ([7], Theorem 7.7, page 203), u is a
solution of the partial integro-differential equation (PIDE)

ou(7,t

RER)

o0 b AT 1) + /\/ (T + T.8) — (T, )] dy (v)dy,

R

subject to the final condition u(7@,T) = U(7') where 3/ = (y,0) € R2. The notation
A is defined by

_ ou(@,t ou(,t
au(@ ) = fi()y 252 4 gy 24T
1, 0*u(@ ,t) 0%u(@ ,t) 1, 0%u(@ ,t)

and the correlation p defined by p = Corr [th, th] .

4. PRICING A EUROPEAN CALL OPTION

Let C denote the price at time ¢ of a European style call option on the current
price of the underlying asset S; with strike price K and expiration time 7.

The terminal payoff of a European call option on the underling stock S with strike
price K is

max (S — K,0).

This means that the holder will exercise his right only if ST > K and then his
gain is St — K. Otherwise, if Sp < K, then the holder will buy the underlying
asset from the market and the value of the option is zero.

Assuming the risk-free interest rate r is constant over the lifetime of the option,
the price of the European call at time ¢ is equal to the discounted conditional
expected payoff

C (S, v, t; K, T)
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e "IV Ey [max (Sp — K,0) | Sy, v]

= (T / S Pu (St | Sy, v,)dSr — K / Pr( (St | Sp,vp) dSt
K

= S eT(T 7g, /STPM (St | St,vt) dSt fKe*T(T*t)/PM (St | Sty vi) dSt
K K

s 1 75 Pt (S | Sy, v0) dS
= — e e 7’()

t EM [ST | St,'Ut] T M T ty Ut T

K
—Keir(T?t) /PM (ST | St,vt) dSt
K

= Stpl (St,Ut,t; K, T) — KE_T(T_t)PQ (St,vt,t; K, T) (4.1)

where /), is the expectation with respect to the risk-neutral probability measure,
P (St | St,vi) is the corresponding conditional density given (S, v;) , and

Py (Sh, 00, K, T) /STPM (Sr | Seyv0) dSt | /Esd [St | Sivi].

Note that P; is the risk-neutral probability that S > K (since the integrand is
nonnegative and the integral over [0, c0) is one), and finally, that
oo
PQ (St71)t,t;K7T) = /PM (ST ‘ St,’l)t) dST = Prob (ST > K | St,'l)t)
K

is the risk-neutral in-the-money probability. Moreover, Enq [St | S¢,v;] = e"(T=1 S,
for ¢t > 0.

Note that we do not have a closed form solution for these probabilities. However,

these probabilities are related to characteristic functions which have closed form
solutions as will be seen in Lemma 2.

We would like to compute the price of a European call option with strike price
K and maturity T of the model (2.2) for which its fractional stochastic volatility
satisfies equation (2.3).

To do this, consider the logarithm of S¢, namely L5, i.e. L = log (S§) where
S5 satisfies equation (2.6) and its inverse S = exp (Lf) . Denote x = log (K) the
logarithm of the strike price.

We now refer to equation (2.4), since this approximate model is driven by a
semimartingale B; and hence there is no opportunity of arbitrage. This is the
advantage of our approximate approach and we will use this model for pricing the
European call option instead of (2.3).

Note that we can write

dB; = apidt + *dW, 4.2)
where @f = fot(t —u+¢e)l7dW,, a=1/2 - Hand 0 < a < 1/2 ([5], Lemma 2.1).
Substituting (4.2) into equation (2.4), we obtain

dv; = (w + (a€p; — 0) vy) dt + v dWy. 4.3
Consider the SDE (2.2) and (4.3). Define a function U on %2 as follows:
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Ulzy, ) = e " T Dmaz(e™ — k,0).
By virtue of equation (3.2),
W@, t) = E[U(X7) X, = 7]
= "0 By [max (exp (L5) — ,0) | I = £, 0 = v°]
=C (0°,v%,t;k,T)
satisfies the following PIDE:
0_8 L +f80 1282C’+ 0%C +1 0%C
- 1(%8 2 291962 T P2 G050 T 2925002

—rC + )\/ [C (65 +y,v°, t;5,T) — C (£5,0%,t;k,T)] oy (y)dy.  (4.4)
R

In the current state variable, the last line of equation (4.1) becomes

C (5,0%, 4k, T) = el Py (5,05, 6k, T) — e (T=1) p, (5, v%, 6k, T) . (4.5)
The following lemma shows the relationship between P, and P» in the option
value of the equation (4.5).

Lemma 4.1. The functions P; and P> in the option value of the equation (4.5) satisfy
the following PIDEs

8P1 8P 3 apl
="+ AP Stk T 12—
0= b+ AP (6,0, 1, T) + 075 L 4 peec (v°) /2
+(r=ABm (Y1) P+ A/ [(er = 1) Py (€7 +y, 0%, t; 5, T)] ¢y (y)dy,
R
subject to the boundary condition at expiration timet = T,
Py (05,0°, T 5, T) = Lpes . (4.6)
Moreover, P, satisfies the equation
P
0= % + AP (£5,0°,t; 5, T) + 1Py,
subject to the boundary condition at expiration timet = T,
P2 (EE,UE,T; KJ,T) = 1gs>m (4.7)
where
0 0
AUNE n,T) = (1= AB (1) - 50°) 5L 4 0+ (gt - 0)07) 32
1 . O°f apeyase OF Loy on; cv2 O2f
5V e T ) g 2 () ez
—rf+A/[f (6 + .0 1, T) = (€0, 1, )] b () dy
R

4.8)
Note that 1y~ = 1 if ¢ > k and otherwise 1yc~, = 0.
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Proof. We plan to substitute equation (4.5) into equation (4.4). Firstly, we compute

oC

= OP; OP.
= = et L oppr(T-)922 _ k—r(T—t) p
ot ot ot ¢ 2
aC s 8P1 ¢ _ _ aPQ
— P — e" r(T—t) Y12
o=~ ¢ e ¢ e R
30 _ 6@6 3P1 . 7T(T7t) @
ove Ove OveE
820 Ve 3 P1 e 8P1 Al _ _ 82P2
= 2¢e P _ LK ’I‘(T t)
@~ C @re T e T e CBE
820 o Ve 3 P1 e 3P1 o K*T(Tft) 82P2
oledve 0Le Qv Ov® o0Le Qe
92C _ 92p, (T 02P,
O(ve)? O(ve)? d(v°)?

and
C (6 + 0", t;5,T) —
|:e(£€+y)P1 (fa + v, 'UE7 t; K, T) -

C(65,0%,t;k,T)
en—T(T—t)P2 (ZE +, v° K, T)}
— [6’55 Py (65,0%, 45, T) — e (T=1) p, (65, v%, t; K, T)]
er (eypl (Ee +v, UE’ LK, T) - P (EE + v, Ue’ t; K, T))
+ (e Py (05 +y,v%, t;k,T) — e Py (05,0°,¢;5,T))
—er (Tt [Py (65 + y,v°, t;k, T) — Py (£5,0°,t; 5, T)]
e (P (€ +y,v°,t;k,T) —

e* (ey - 1) Pl (66 + y,’l)e,t; ’ivT) +
Py (05,0°,t; K, T))] .

—efi—r(T=1) [Py (05 +y,v°, t;k,T) —

Pl (Es,vs,t;/q’T))

Substitute all terms above in equation (4.4) and separate it by assumed indepen-
dent terms P; and P,. This gives two PIDEs for the risk-neutralized probability
P; (65,v%,t;k,T), 5 =1,2:

op 1 oP; . P
0="" +<T—AEM(Yt> ><8€€+P1)+(w+(a€%— 0)v7) 5 2
€ 82P1 apl a(,e\3/2 a2P1 8Pl 2 2a/,.e\2 82P1
+50 <(ee)z 25 +P1> ) (azeaua avf) #5€ ) d(ve)?
(ev = 1) P (65 +y,v%, K, T)
—rh +A/ e ey SRy |y 6o

subject to the boundary condition at the expiration time ¢ = 7" according to equation
4.6).
By using the notation in equation (4.8), PIDE (4.9) becomes

e 0P

AP (65,0%,t; 5, T) +v° 572 + pfs“(va)?’/Q% +(r=AEm(Y2)) P
+ A [ [(er = 1) PL(€° + y, 0%, t:5,T)] by (y)dy)
R
[Py] (£°,0%, 85, T) .

on
ot

0P,
87 + Al

For Py (¢¢,v°,t;k,T) :
0P,

OZW+TP2+

0=

)

1

o

2

0P,
ore

0P,
ove

(r=2Eac ) - )+ o+ (gt —0))
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1582P2 @ 63/282P1 122a 5282P1
T3V e ) g 2t () e
—rPy + )\/ [Po (05 +y,v°,t;k,T) — Po (€°,0°,t; 5, T)] oy (y)dy (4.10)
R

subject to the boundary condition at expiration time ¢ = T according to equation
4.7).
Again, by using the notation (4.8), PIDE (4.10) becomes

P.
0= % + (A[P] (°,0°, t; 5, T) + rPs)
P.
- % + Ap [Po] (65,0, £, T)
The proof is now completed. O

5. A CLOSED-FORM SOLUTION FOR EUROPEAN CALL OPTIONS

For j = 1,2, the characteristic functions for P; (¢¢,v°,t;x,T'), with respect to
the variable  are defined by
o0
[ (0% tx,T) == — / erdP; (05,v°, t; K, T)
—o00
with a minus sign to account for the negativity of the measure dP;. Note that f; also
satisfies similar PIDEs

of.
% + Aj[f5] (¢°,0%, 45, T) = 0, 5.1)
with the respective boundary conditions
fj (€E7U67T;xaT) = - / eimﬁdpj (EE,”UE,T;I{,T) = — / eim”(fé(gsfﬁ)dﬂ) _ eizf‘g’

since
dP; (0°,v°,T;k,T) = dlyesy = dH(° — k) = —=6(£° — K)dk.
The following lemma shows how to calculate the functions P, and P, as they

appeared in Lemma 1.

Lemma 5.1. The functions P; and P, can be calculated by the inverse Fourier
transforms of the characteristic function, i.e.

+oo

1 —iTK £ E E 4. T
—|—/Re[e fj(é,’v’t’x’ ) dz,

1
2 7 T

P; (6°,v°,t;k,T) =
0+
for j = 1,2, with Re[-] denoting the real component of a complex number.
By letting 7 = T — t. (i) The characteristic function f| is given by
fi e v et + 1) =exp (g1 (1) + v°hy (1) +ixl®),

where

B (r) = (=B (V)i = AEs (V)] 7+ 7 [ (0400 1) oy (y)dy
Rid
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[log (1_ (Al +771)+ (1€A17)> +(A1 +771)T] ,

_5252%,5 2A,

_ (i — AD) (7 —1)
§2e2v® (m + Ay — (m — Ar)eT)’
m = p€e® Ve (1 +ix) + (akpf — 0),

hl (T)

and

A = \/77% — £2e2%ix (ix + 1).
(ii) The characteristic function fs is given by

fo (05,05 szt +7) = exp (go (T) + vho (T) +ixl® +7r7T),

where
2(7) = = AEm )iy —rlr 7 [ (€70 =1) oy (o)dy
R
2 (Ao +m2) + (1 —eB2m
_7525;:1)5 llog <1 - =2 : QAE )> + (A, +772)T] ,
_ (n3 — A3) (27 —1)
ha (1) = €2e200° (g + Ay — (12 — AQ)GAQT)a

2 = p€e®Vvtiz + (alpi — 0)

and

Ay = \/773 + 2e2fiz (iz — 1).
Proof. Proof of (i). To solve for the characteristic explicitly, letting 7 = 7' — ¢ be the
time-to-go, we conjecture that the function f; is given by
fr vt t+ 1) =exp (g1 (1) + v°hy (1) +ixlf), (5.2)
and the boundary condition g; (0) = 0 = hy (0) . This conjecture exploits the lin-
earity of the coefficient in PIDE (5.1).

Note that the characteristic function of f; always exists. In order to substitute
(5.2) into (5.1), firstly, we compute

) 0 0

O (i ()~ )y S =iy, P =),
Pho_ ., PH Ph o
@iy ~ T grger — M g = M

fllE+y, 05 tat+7) = fL (65,05, at+7) = (€9 = 1) fo (05,0%, 2,0+ 7)
and
(V=) fi(E +y v it 7)) = (& — 1) MO
= (¥ —1)e™f (£5,0°, t,t + 7).
Substituting all the above terms into equation (5.1) and after canceling the common
factor of f1, we get a simplified form as follows:

1
0 = —gy(r)—v°h} (1) + (r —AEMm (V3) + 21)8) i

+ (@ + (g = 0)v%) + pee(v)*/2) hu(r)
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1
€,.2 « 3/2 2 _2c(,€\272
—5vta? + pge® (v°)* Piwha (r) + S €22 (v°)*hi (1)

“AEMm (Vi) + A / (=49 — 1) gy (y)dy.
Rid

By separating the order v* and ordering the remaining terms, we can reduce it to
two ordinary differential equations (ODEs),

1 1 1
’HU)=§€8%ﬂﬁﬁ%%@&“¢EU+4@4%a&f—@)M@)+§m_Qma
(5.3)
G5 (7) = ol () + (7 = \Eaa (¥0)) i = ABaq (V) A [ (4507 = 1) oy )y
(5.4)
Let 71 = p€e“Vve (1 +iz) + (a€ps — 6) and substitute it to equation (5.3). We get
oy 2n o
hll (’7’) = 4‘2 2 % (T) + 5252701(”8]11 (T) + mllﬁ (Z.Z‘ + 1))
N ST 21 + /An? — 4€2e200%ix (iz + 1)
n 25 ¢ (hl (T) + 252620‘1}5

(h (r) 2171 Van} — 452520‘7)52'36(2'96—1—1))
1

2§2€2ave
1 m + Aq m — A
= 5625207}6 (hl (T) + 62520‘1)5) <h1 (T) + 7&'252&@6 5

where Ay = /07 — £2e200%iz (iz + 1).
By method of variable separation, we have

2dhy (1)
(m () + g2 ) (m () + =2

Using partial fractions, we get

1 1 1
— — dh =dr.
Ay ( hi (1) + &52L by (1) + g’;;ﬁule ) r)=dr

€2 20g)€

= 2 v%dr.

Integrating both sides, we obtain

hi (1) + N
log | — =20 ) = Ayr+ C.
& (hl (1) + mt+A; 1

52 g2aye

Using boundary condition h; (7 = 0) = 0 we get C' = log (:’]1+ﬁi>
Solving for h;, we obtain
(= A7) (27— 1)
2220 (m + Ap — (m — Ar)etT)’
In order to solve g; (7) explicitly, we substitute h; into equation (5.4) and integrate
with respect to 7 on both sides. Then we get

hl(T)Z

p(r) = (= AEa ()iz = AE ()] 77 [ (0400 1) oy )y
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_ QAT
_5252;;1}5 llog (1 A+ (e )> + (A +771)T] .

24
Proof of (ii). The details of the proof are similar to case (i). Hence, we have
fo (0% ty, t+7) = exp (g2 (7) + vho (7) + iyl® +r7),
where g5 (7), ha () ,72 and Ay are as given in the Lemma.

We can thus evaluate the characteristic functions in closed form. However, we
are interested in the risk-neutral probabilities P;. These can be inverted from the
characteristic functions by performing the following integration

P (S, v;,t; K, T) = Pj(65,0%,t;k,T)
+oo X
1 1 —1TK . ,66 £ t T
= +/Re|:e fJ( ,7/07 7(1;, ):|d£L'
2 7 1T
o+

for j = 1,2, where ¢¢ = log S, v© = log(v§), and k = log(K).
To verify the above equation, firstly we note that

Enm {emaog(st)flog(m) | log(S,) = L5, v = Ue]

= Eum {eim(ﬁ_“) | L = 05,0 = o°

400
= /em(ég*“)de (5,05, t; 8, T)
+00
= e_i‘m/e”éade (5,05t 8, T)
— 00
+00
= e_im/em“(—cS(Zs—m)dﬁ)

e_i"mfj (5 v, 2, T) .

Then
1 1 e —izTK 05 et T
+/Re[e f]( .avt7 3 L, ):|dl'
2 ™ 10
o+
+oo . .
= 51 [Re By [10oD 150 | log(Sy) = L0 = 7] ] -
2 1T
o0+
_ oo _
1 1 iz (L5 —K)
= Enm +/Re[e‘}de§=€E,vf=vf
2 ™ 1
L o+ |
—1 1 +o00 ) ea -
= E/Vl 7+f/wdx|[§:£€’v§:ve
2 s T
L o0+ ]
_1 ) oo
= Enm 5"'59”(56_’%); / Sm(w)dm|L§:£E,vf:vs
L o+
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1 1
Enm §+§sgn( k)| Lf = 5,05 =v°

= Emlleesy | L = 05,0 =07,

where we have used the Dirichlet formula f _+OO§ Wdaz = 1, and the sgn function
is defined as sgn(z) = 1ifz > 0,0ifz =0and —1 ifz < 0. O

In summary, we have just proved the following main theorem.

Theorem 5.1. For eache > 0, the value of a European call option of SDE (2.5) is
C(S;, v, t: K, T) = ScPy (S5, 05,6 K, T) — Ke "T=9 Py (88,05, t; K, T)
where P; and P, are as given in Lemma 2, and
C (55,05, t; K, T) = C (log(S5), v°, t; log(K), T) .

Remark 5.2. In numerical computation, we firstly choose a real number € > (0 and
then compute the value of C (S, v5,t; K, T) according to the formula as given in
Theorem 3. The solution that we get is the value of a call option of the approxi-
mation model (2.5) and this value can be used as an approximating value of a call
option of the fractional model (2.2) as € approaches zero.
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