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ABSTRACT. The aim of this paper is to prove fixed point and mean convergence
theorems for a sequence of A\-hybrid mappings in Hilbert spaces.
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1. INTRODUCTION

In this paper, we show fixed point and mean convergence theorems for a se-
quence of A\-hybrid mappings in Hilbert spaces. Particularly, we focus on pointwise
convergent sequences of such mappings.

According to [2] and §2, every nonexpansive mapping [5, 6, 10] is a 1-hybrid map-
ping and every nonspreading mapping introduced by Kohsaka and Takahashi [7]
is a 0-hybrid mapping. Thus our results may be regarded as generalizations of
results of [1] and [8]. Akatsuka, Aoyama, and Takahashi [1] showed a mean con-
vergence theorem for a pointwise convergent sequence of nonexpansive mappings;
Kurokawa and Takahashi [8] proved some mean convergence theorems for non-
spreading mappings in Hilbert spaces.

Moreover, since the convex combination of the identity mapping and a strictly
pseudononspreading mapping introduced by Osilike and Isiogugu [9] is A-hybrid
for some real number )\, our mean convergence theorem is a generalization of [9].
Osilike and Isiogugu [9] showed some mean convergence theorems for strictly
pseudononspreading mappings in Hilbert spaces.
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2. PRELIMINARIES

Throughout the present paper, H denotes a real Hilbert space with the inner
product (-,-) and the norm || - ||, C' a nonempty closed convex subset of H, I the
identity mapping on H, and N the set of positive integers. Strong convergence of a
sequence {z,} in H to x is denoted by z,, — x and weak convergence by z,, — .
The metric projection of H onto C' is denoted by Pc, that is, for each x € H, Pcx
is the unique point in C such that ||Pcz — z|| = min{|ly — z|| : y € C'}. It is known
that Pc is nonexpansive and

(y — Pex,x — Pox) <0 2.1

forallz € H and y € C; see [10].

Let D be a nonempty subset of /. The set of fixed points of a mapping 7': D —
H is denoted by F(T). Amapping T: D — H is said to be quasi-nonexpansive if
F(T) is nonempty and [Tz — z|| < ||t — z|| forall z € D and z € F(T). Let A be a
real number. A mapping 7: D — H is said to be A\-hybrid [2] if

2Tz — Tyl* < ||z = Tyl* + |y — Tz|* — 2X\z — T2,y — Ty)
or equivalently
1T = Tyl* < llz — y)|* +2(1 = N)(z — Ta,y — Ty)

for all z,y € D. Let k be a real number with k € [0,1). Amapping T: D — H is
said to be k-strictly pseudononspreading [9] if

1Tz = Ty||* < |lo — ylI* + 2(x — Tz,y — Ty) + sl — Tz — (y — Ty)||?
for all z,y € D. It is known that
e T is A-hybrid for every A € [0,1] if T is a firmly nonexpansive mapping
[3, 4, 5, 6];
T is 1-hybrid if and only if T' is nonexpansive;
T is 0-hybrid if and only if T" is nonspreading in the sense of [7];
T is 1/2-hybrid if and only if T is hybrid in the sense of [11];
F(T) is closed and convex if T: C — H is a quasi-nonexpansive map-
ping;
e T is quasi-nonexpansive if 7" is a A\-hybrid mapping with a fixed point.

The following lemma plays an important role in the present paper.

Lemma 2.1. Let H be a Hilbert space, D a nonempty subset of H, v and k real
numbers, and T': D — H a mapping such that

Tz — Ty|* < |l —ylI* + 2v(x — T,y — Ty) + sz — Tz — (y — Ty)|>  2.2)
forallz,y € D. LetT,: D — H be a mapping defined by T,, = ol + (1 — a)T,
where « is a real number with a < 1. Then

a—K
IToz = Toy|* + T— Iz = Taz = (y = Tuy)|®

2y (2.3)
<o =yl? + 7= (o = Taz,y — Tuy)

forallz,y € D. Moreover, ifk < «, thenT,, is (1 — o — ) /(1 — a)-hybrid.

Proof. Letz,y € D be fixed. Since l —a > 0and I —T = (I —T,)/(1—«a), it follows
from (2.2) that

(1—a)|Tz - Tyl
<1 =a)(|z—yll* +2v(x — T,y — Ty) + 6|z — Tz — (y — Ty)||*)
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=(1-a)llz —y|?

2 K
7Taa 7Ta
ot~ Tat,y = Tay) + 7——

+ |z — Toz — (y — Tay) ||

and hence
1Tz — Toyl®
=allz —y|* + 1 - )Tz = Ty|* — a(l = a)|Ja = Tz — (y - Ty)|?
=allz —y|* + (1 - )| Tz — Ty|* —

—— o — Toz — (y - Top)

2 a—K
< lle =yl + ;= (& = Towyy = Toy) = T |l = Tz = (y = Tuy)|I*.
Thus (2.3) holds. Now we suppose that £ < . Then (a — k)/(1 —a) > 0, and (2.3)
yields that

l—a—v
l1—«

Therefore, T, is (1 — o — ) /(1 — a)-hybrid. O

I Tu — Toyll? < fle — ylI? + 2 (1 - ) (& = Tuz,y — Tag).

Lemma 2.1 implies the following lemma.

Lemma 2.2. Let H be a Hilbert space, D a nonempty subset of H, A a real number,
and T: D — H a A-hybrid mapping. Let T,: D — H be a mapping defined
by T, = al + (1 — a)T, where a a real number with 0 < o < 1. Then T, is
(A —a)/(1 — a)-hybrid.

Proof. Assuming that y = 1— X and x = 0 in Lemma 2.1, we obtain the conclusion.
(]

Using Lemma 2.2, we can show the following corollary.

Corollary 2.3. Let H be a Hilbert space and D a nonempty convex subset of H.
Suppose that every nonspreading self-mapping on D has a fixed point. If A € [0,1),
then every A\-hybrid mapping T: D — D has a fixed point.

Proof. Let A € [0,1) and let T: D — D be a A-hybrid mapping. Then it follows
from Lemma 2.2 that T\ = Al +(1— )T is a nonspreading mapping of D into itself.
Hence, by assumption, we know that F'(T)) is nonempty. On the other hand, it
obviously holds that F(Ty) = F(T'). Thus F(T) is nonempty. O

Remark 2.4. It is known that every nonspreading self-mapping on C has a fixed
point if C is a nonempty bounded closed convex subset of H; see [7, Theorem 4.1].

Lemma 2.1 also implies the following lemma, which was essentially proven in

[9].

Lemma 2.5. Let H be a Hilbert space, D a nonempty subset of H, k and (3 real
numbers with0 < k < < 1,T: D — H a k-strictly pseudononspreading map-
ping, and Tg: D — H the mapping defined by T = 31 + (1 — 3)T. Then 1p is
—58/(1 — B)-hybrid.

Proof. Assuming that @« = fand -y = 1 in Lemma 2.1, we obtain the conclusion. [J

We need the following lemmas in order to prove our results in the remainder
sections.
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Lemma 2.6. Let {z,} and {y,} be sequences in a Hilbert space H and {n,} a
sequence of real numbers. Suppose that {x,} is bounded and both {y,} and {n,}

are convergent. Then
n

> {@rs =z, k) — 0
k=1

S|

asn — oQ.

Proof. Let y and 7 be the limits of {y,} and {7,}, respectively. Since {x,} is
bounded, it follows that (2,41 — Zn,yn —y) — 0 and hence

n

1O 1O 1

- > (whir =z yp) = - D @k — koY) + - > (wrir — T,y — y)
k=1 k=1 k=1

n

1 1
= E(anrl —r1,y) + E;@"kﬂ —Tg, Y —y) — 0

as n — 00. Therefore, since {(Z,4+1 — Tn, yn)} is bounded, it follows that

n

1 & 1 & 1
— — = — — — — — e — O
- kglnk<$k+1 Tk, Yk) - k§7177<33k+1 xk,yk>+n kgl(% N){(Tht1—Tk, Yk)

as n — o0. O

The following lemma was essentially shown in [1, Lemma 3.1], where {§n} was
assumed to be convergent to 0. For the sake of completeness, we give the proof.

Lemma 2.7. Let H be a Hilbert space, C a nonempty closed convex subset of H,
and T: C — H a mapping. Let {z,} be a sequence in C, {£,} a sequence of real
numbers, {z,} a sequence in C defined by z, = (1/n) Y ,_, zx forn € N, and z a
weak cluster point of {2, }. Suppose that
€n < llzn = 2lI* = llznss — T2
Joreveryn € Nand (1/n) Y }_, & — 0 as n — oo. Then z is a fixed point of T
Proof. By assumption, it is clear that
T e e &

=l — T2+ T2 — 2|2  [lzgar — T

— = T2 — s — T2 + 2ap — T2, Tz — 2) + T2 — 2]
for every k € N. Summing these inequalities from k£ = 1 to n and dividing by n, we
have

k=1

1 n
9l 2 _ _ 2
+ <n Za:k Tz,Tz z> +||Tz — 2|
k=1

1
< EHxl —T2||? +2(zp — T2, Tz — 2) + | Tz — z||?
for every n € N. Since z is a weak cluster point of {z,}, there is a subsequence
{#n,;} of {z,} such that z,, — z. Replacing n by n; in the above inequality, we
obtain

1 & 1

— ng < n—||x1 —T2|? +2(zn, — T2, Tz — 2) + | Tz — z||*.

(2 k=1 (2
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Since (1/n;) >_yL, & — 0 and z,, — 2, we conclude that
0<2(z—Tz,Tz—2)+||Tz — z||* = —||Tz — z|?

and hence Tz = z. U

Lemma 2.8 (Takahashi and Toyoda [12]). Let F' be a nonempty closed convex subset

of a Hilbert space H, P the metric projection of H onto F, and {x,,} a sequence in H

such that ||xp4+1 — ul| < ||@n — ul| forallu € F andn € N. Then {Px,} converges
strongly to some point in F'.

3. FIXED POINT THEOREMS

In this section, we study existence of fixed points of A\-hybrid mappings.
The following theorem is a generalization of [1, Theorem 3.2] and [2, Theorem
4.1].

Theorem 3.1. Let H be a Hilbert space, C' a nonempty closed convex subset of H,
{A\n} a sequence of real numbers such that \,, — X\, and T,,: C — C a \,-hybrid
mapping forn € N. Let {z,,} and {z,} be sequences in C defined by z1 € C,

1 n
Tn+1 = Inxyn, and z, = - g Tk
k=1

forn € N. Suppose that {T,,} is pointwise convergent and T' denotes the pointwise
limit of {T},}, that is, Tz = lim,,_,o, T,z for x € C. Then the following hold:
(i) The mapping T is \-hybrid and (., F(T},) C F(T);
(i) if {x,} is bounded, then T' has a fixed point and every weak cluster point
of {zn} is a fixed point of T .

Proof. We first prove (1). Let z,y € C be fixed. Since each T,, is \,-hybrid, it
follows that

[Thz — Tny||2 <z - y”2 +2(1 = Ap)(z — Thx,y — Toy)
for every n € N. Taking the limit n — oo, we have
1T = Ty|* < llo = ylI* + 21 = \){& — Tz,y — Ty).

Thus T is A-hybrid. Furthermore, let u € (\ —, F(T},). Since T, is pointwise
convergent, Tu = lim,,__, T,,u = u and hence u € F(T).

We next prove (2). Assume that {z,} is bounded. Then {z,} is also bounded
and thus there exists a subsequence {z,,} of {z,} such that z,, — z € C. Itis
enough to show that z is a fixed point of T'. Since 7, is A\,-hybrid and z,,+1 = T, 2,
we have

[@nt1 = T2l* = [|znt1 — Toz + Tnz — T2|
= ||pi1 — Tnz|?> + | Tz — T2||* + 2{xps1 — Tz, Tz — T2)
<Nam = 2|2 +2(1 = M) (@ — Tpy1, 2 — Toz)
+ | Thz = T2 (|1 Thz = Tz|| + 2[|zn 41 — Tnz]).
Therefore, we conclude that
pin + e < |l — 2|7 = llepsr — T2
for every n € N, where p,, = 2(1 — \,)(p41 — T, 2 — Tpz) and
en =~ Tz = To|(ITaz — T2 + 2rnsr — Tz,
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Since {z, } is bounded and both {\, } and {T;,z} are convergent, Lemma 2.6 shows
that (1/n) Y ;_; s — 0, and hence (1/n) >_}_, (1 +€x) — 0. Thus Lemma 2.7
implies that z is a fixed point of 7. O

A direct consequence of Theorem 3.1 is as follows:

Corollary 3.1. Let H be a Hilbert space, C a nonempty closed convex subset of H,
A a real number, T: C — C a A\-hybrid mapping, and {«,} a sequence in [0, 1)
such that «, — 0. Let {x,,} and {z,} be sequences in C defined by =1 € C,

1 n
Tpt1 = @nZpn + (1 — )Tz, and z, = - kz_lxk
Jorn € N. Suppose that {x,} is bounded. Then T has a fixed point and every weak
cluster point of {2z, } is a fixed point of T.

Proof. PutT,, = o, I+ (1— )T for n € N. Then Lemma 2.2 shows that T,,: C —
Cis (A —ay)/(1— ay,)-hybrid. Itis clear that (A — a,,)/(1 —ay) — A and T is the
pointwise limit of {7}, }. Therefore, Theorem 3.1 implies the conclusion. O

In particular, assuming that «,, = 0 for each n € N in Corollary 3.1, we obtain
the following:

Corollary 3.2. ([2, Theorem 4.1]). Let H, C, A\, and T be the same as in Corollary 3. 1.
Let x be a point in C and {z,} a sequence in C defined by

1 n
Zp = — E T+ 1z
n
k=1

Jforn € N, where TV is the identity mapping on C. Suppose that {T"x} is bounded.
Then T has a fixed point and every weak cluster point of {z,, } is a fixed point of T'.

4. MEAN CONVERGENCE THEOREMS

In this section, we prove some mean convergence theorems for a family of A-
hybrid mappings.

We first prove the following lemma, which is a variant of [2, Lemma 5.1].
Lemma 4.1. Let H be a Hilbert space, C a nonempty closed convex subset of H,
and T,,: C — C a quasi-nonexpansive mapping for n € N. Suppose that {T,}
has a common fixed point. Let F' be the set of common fixed points of {T,,} and P

the metric projection of H onto F'. Let {z,} and {z,} be sequences in C' defined by
xr1 € C,

1 n
Tpt1 = Ipxy, and z, = -~ E T,
k=1

Sorn € N. Then the following hold:

(i) The sequence {x,} is bounded and { Pz, } converges strongly;
(i) if each weak cluster point of {z, } belongs to F, then {z, } converges weakly
to the strong limit of { Pz, }.

Proof. We first prove (1). Since T}, is quasi-nonexpansive,
[2nt1 — ul| = [[Thzn —ull < [lzn — ull

forallw € F and n € N. Thus {x,} is bounded and Lemma 2.8 implies that { Pz, }
converges strongly.
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We next prove (2). Since {zn} is bounded by (1), there exists a weak cluster point
z of {z,}. Let {z,,} be a subsequence of {z,} such that z,, — z and w the strong
limit of { Pz, }. It is enough to show that z = w. Since P is the metric projection
of H onto F' and z € F, it follows from (2.1) that

(z — Pz, xp — Pxg) <0
for every k € N. Since each T}, is quasi-nonexpansive and Pz € F, it follows from
the definition of P that
k41 = Prrsall < |2esr — Pawll = | Thwr — Pl < [[ox — Pagl]
for every k € N. Therefore
(z —w,x, — Pxy) = (2 — Py, v, — Pay) + (Pxy — w,z — Pxy)
< (Pzxj —w,zy — Pxy)
< [[Pay — wllllzx — Pay||
< [Pk — wllllzy — Pyl
for every k£ € N. Summing these inequalities from k = 1 to n; and dividing by n;,

we have

Kz

1 & 1
<z — W, Zp, — o Zka> < - Z [Pz — w||||lx1 — Px1]|.
k=1 k=1

Since z,, — zas i — oo and Px,, — w as n — 00, we obtain (z —w,z—w) <0
and hence z = w. This completes the proof. O

Using Theorem 3.1 and Lemma 4.1, we obtain the following:

Theorem 4.1. Let H be a Hilbert space, C' a nonempty closed convex subset of H,
{A\n} a sequence of real numbers such that \,, — X\, and T,,: C — C a \,-hybrid
mapping forn € N. Let {z,,} and {z,} be sequences in C defined by x1 € C,

n
1
Tpt1 = Inxy, and z, = - E Tp
k=1

forn € N. Suppose that {T,,} is pointwise convergent, T' denotes the pointwise limit
of {T,}. and F(T) = ,_, F(T,) # 0. Then {z,} converges weakly to the strong

limit of { Px.,, }, where P is the metric projection of H onto F(T).

Proof. Since T}, is \,,-hybrid and (,—, F(T,,) # 0, each T;, is quasi-nonexpansive.
Thus it follows from Lemma 4.1 that {z,} is bounded. Hence Theorem 3.1 shows
that every weak cluster point of {2, } belongs to F(T) = (', F(T},). Therefore,
Lemma 4.1 implies the conclusion. O

The following corollary is a direct consequence of Theorem 4.1.

Corollary 4.2. Let H be a Hilbert space, C a nonempty closed convex subset of H,
A a real number, T: C — C a A\-hybrid mapping with a fixed point, and {a,} a
sequence in [0, 1) such that o, — 0. Let {x,,} and {z,,} be sequences in C defined
byz, € C,

1 n
Tpi1 = @y + (1 — )Ty, and 2, = — Zxk
"o

forn € N. Then {z,} converges weakly to the strong limit of { Px,,}, where P is the
metric projection of H onto F(T).
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Proof. Put T,, = a,I + (1 — a,)T for n € N. Then Lemma 2.2 shows that each
T,: C — Cis (A\—ay,)/(1—ay,)-hybrid. Itis clear that (A—a,,)/(1—a,) — A and
T is the pointwise limit of {7}, }. It is also clear that F(T,,) = F(T) for every n € N
and hence F(T) = (.2, F(T,,). Therefore, Theorem 4.1 implies the conclusion. []

n=1

Using Corollary 4.2, we immediately obtain the following weak convergence the-
orem for a strictly pseudononspreading mapping, which is a generalization of [8,
Theorem 3.1].

Corollary 4.3. (Osilike and Isiogugu [9, Theorem 3.1]) Let H, C, {a,}, and P be
the same as in Corollary 4.2. Let k and (3 be real numbers with0 < x < f < 1 and
T: C — C a k-strictly pseudononspreading mapping with a fixed point. Let {x,}
and {z,} be sequences in C' defined by x; € C,

1
n = Gpdn 1—a, n 1-8)T n)s dz, =—
Tng1 = oy + (1= an) (Ban + (1 = B)Tay), and z n;xk

Jorn € N. Then {z,} converges weakly to the strong limit of { Px,,}.

Proof. Set Tg = I + (1 — B)T. Then it follows from Lemma 2.5 that —(/(1 — §)-
hybrid. Obviously, F(T') = F(Tg). Thus Corollary 4.2 implies the conclusion. [

Assuming that a,, = 0 for each n € N in Corollary 4.2, we obtain the following:

Corollary 4.4. ([2, Theorem 5.2]) Let H, C, A, T, and P be the same as in Corol-
lary 4.2. Let x be a point in C' and {z,} a sequence in C defined by
1 n
Zn = — Tkt
n= 2T e
k=1

Jorn € N, where T is the identity mapping on C. Then {zn} converges weakly to
the strong limit of { PT"z}.
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