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ABSTRACT. The aim of this paper is to prove fixed point and mean convergence
theorems for a sequence of λ-hybrid mappings in Hilbert spaces.
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1. INTRODUCTION

In this paper, we show fixed point and mean convergence theorems for a se-
quence of λ-hybrid mappings in Hilbert spaces. Particularly, we focus on pointwise
convergent sequences of such mappings.

According to [2] and §2, every nonexpansive mapping [5, 6, 10] is a 1-hybrid map-
ping and every nonspreading mapping introduced by Kohsaka and Takahashi [7]
is a 0-hybrid mapping. Thus our results may be regarded as generalizations of
results of [1] and [8]. Akatsuka, Aoyama, and Takahashi [1] showed a mean con-
vergence theorem for a pointwise convergent sequence of nonexpansive mappings;
Kurokawa and Takahashi [8] proved some mean convergence theorems for non-
spreading mappings in Hilbert spaces.

Moreover, since the convex combination of the identity mapping and a strictly
pseudononspreading mapping introduced by Osilike and Isiogugu [9] is λ-hybrid
for some real number λ, our mean convergence theorem is a generalization of [9].
Osilike and Isiogugu [9] showed some mean convergence theorems for strictly
pseudononspreading mappings in Hilbert spaces.
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2. PRELIMINARIES

Throughout the present paper, H denotes a real Hilbert space with the inner
product 〈·, ·〉 and the norm ‖ · ‖, C a nonempty closed convex subset of H, I the
identity mapping on H, and N the set of positive integers. Strong convergence of a
sequence {xn} in H to x is denoted by xn −→ x and weak convergence by xn ⇀ x.
The metric projection of H onto C is denoted by PC , that is, for each x ∈ H, PCx
is the unique point in C such that ‖PCx− x‖ = min{‖y− x‖ : y ∈ C}. It is known
that PC is nonexpansive and

〈y − PCx, x− PCx〉 ≤ 0 (2.1)

for all x ∈ H and y ∈ C; see [10].
Let D be a nonempty subset of H. The set of fixed points of a mapping T : D −→

H is denoted by F (T ). A mapping T : D −→ H is said to be quasi-nonexpansive if
F (T ) is nonempty and ‖Tx− z‖ ≤ ‖x− z‖ for all x ∈ D and z ∈ F (T ). Let λ be a
real number. A mapping T : D −→ H is said to be λ-hybrid [2] if

2‖Tx− Ty‖2 ≤ ‖x− Ty‖2 + ‖y − Tx‖2 − 2λ〈x− Tx, y − Ty〉
or equivalently

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 2(1− λ)〈x− Tx, y − Ty〉
for all x, y ∈ D. Let κ be a real number with κ ∈ [0, 1). A mapping T : D −→ H is
said to be κ-strictly pseudononspreading [9] if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 2〈x− Tx, y − Ty〉+ κ‖x− Tx− (y − Ty)‖2

for all x, y ∈ D. It is known that
• T is λ-hybrid for every λ ∈ [0, 1] if T is a firmly nonexpansive mapping

[3, 4, 5, 6];
• T is 1-hybrid if and only if T is nonexpansive;
• T is 0-hybrid if and only if T is nonspreading in the sense of [7];
• T is 1/2-hybrid if and only if T is hybrid in the sense of [11];
• F (T ) is closed and convex if T : C −→ H is a quasi-nonexpansive map-

ping;
• T is quasi-nonexpansive if T is a λ-hybrid mapping with a fixed point.

The following lemma plays an important role in the present paper.

Lemma 2.1. Let H be a Hilbert space, D a nonempty subset of H , γ and κ real
numbers, and T : D −→ H a mapping such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 2γ〈x− Tx, y − Ty〉+ κ‖x− Tx− (y − Ty)‖2 (2.2)

for all x, y ∈ D. Let Tα : D −→ H be a mapping defined by Tα = αI + (1 − α)T ,
where α is a real number with α < 1. Then

‖Tαx− Tαy‖2 +
α− κ

1− α
‖x− Tαx− (y − Tαy)‖2

≤ ‖x− y‖2 +
2γ

1− α
〈x− Tαx, y − Tαy〉

(2.3)

for all x, y ∈ D. Moreover, if κ ≤ α, then Tα is (1− α− γ)/(1− α)-hybrid.

Proof. Let x, y ∈ D be fixed. Since 1−α > 0 and I−T = (I−Tα)/(1−α), it follows
from (2.2) that

(1− α)‖Tx− Ty‖2

≤ (1− α)
(
‖x− y‖2 + 2γ〈x− Tx, y − Ty〉+ κ‖x− Tx− (y − Ty)‖2

)
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= (1− α)‖x− y‖2

+
2γ

1− α
〈x− Tαx, y − Tαy〉+

κ

1− α
‖x− Tαx− (y − Tαy)‖2

and hence

‖Tαx− Tαy‖2

= α‖x− y‖2 + (1− α)‖Tx− Ty‖2 − α(1− α)‖x− Tx− (y − Ty)‖2

= α‖x− y‖2 + (1− α)‖Tx− Ty‖2 − α

1− α
‖x− Tαx− (y − Tαy)‖2

≤ ‖x− y‖2 +
2γ

1− α
〈x− Tαx, y − Tαy〉 − α− κ

1− α
‖x− Tαx− (y − Tαy)‖2.

Thus (2.3) holds. Now we suppose that κ ≤ α. Then (α− κ)/(1− α) ≥ 0, and (2.3)
yields that

‖Tαx− Tαy‖2 ≤ ‖x− y‖2 + 2
(

1− 1− α− γ

1− α

)
〈x− Tαx, y − Tαy〉.

Therefore, Tα is (1− α− γ)/(1− α)-hybrid. �

Lemma 2.1 implies the following lemma.

Lemma 2.2. Let H be a Hilbert space, D a nonempty subset of H , λ a real number,
and T : D −→ H a λ-hybrid mapping. Let Tα : D −→ H be a mapping defined
by Tα = αI + (1 − α)T , where α a real number with 0 ≤ α < 1. Then Tα is
(λ− α)/(1− α)-hybrid.

Proof. Assuming that γ = 1−λ and κ = 0 in Lemma 2.1, we obtain the conclusion.
�

Using Lemma 2.2, we can show the following corollary.

Corollary 2.3. Let H be a Hilbert space and D a nonempty convex subset of H.
Suppose that every nonspreading self-mapping on D has a fixed point. If λ ∈ [0, 1),
then every λ-hybrid mapping T : D −→ D has a fixed point.

Proof. Let λ ∈ [0, 1) and let T : D −→ D be a λ-hybrid mapping. Then it follows
from Lemma 2.2 that Tλ = λI+(1−λ)T is a nonspreading mapping of D into itself.
Hence, by assumption, we know that F (Tλ) is nonempty. On the other hand, it
obviously holds that F (Tλ) = F (T ). Thus F (T ) is nonempty. �

Remark 2.4. It is known that every nonspreading self-mapping on C has a fixed
point if C is a nonempty bounded closed convex subset of H; see [7, Theorem 4.1].

Lemma 2.1 also implies the following lemma, which was essentially proven in
[9].

Lemma 2.5. Let H be a Hilbert space, D a nonempty subset of H , κ and β real
numbers with 0 ≤ κ ≤ β < 1, T : D −→ H a κ-strictly pseudononspreading map-
ping, and Tβ : D −→ H the mapping defined by Tβ = βI + (1 − β)T . Then Tβ is
−β/(1− β)-hybrid.

Proof. Assuming that α = β and γ = 1 in Lemma 2.1, we obtain the conclusion. �

We need the following lemmas in order to prove our results in the remainder
sections.
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Lemma 2.6. Let {xn} and {yn} be sequences in a Hilbert space H and {ηn} a
sequence of real numbers. Suppose that {xn} is bounded and both {yn} and {ηn}
are convergent. Then

1
n

n∑
k=1

ηk〈xk+1 − xk, yk〉 −→ 0

as n −→∞.

Proof. Let y and η be the limits of {yn} and {ηn}, respectively. Since {xn} is
bounded, it follows that 〈xn+1 − xn, yn − y〉 −→ 0 and hence

1
n

n∑
k=1

〈xk+1 − xk, yk〉 =
1
n

n∑
k=1

〈xk+1 − xk, y〉+
1
n

n∑
k=1

〈xk+1 − xk, yk − y〉

=
1
n
〈xn+1 − x1, y〉+

1
n

n∑
k=1

〈xk+1 − xk, yk − y〉 −→ 0

as n −→∞. Therefore, since {〈xn+1 − xn, yn〉} is bounded, it follows that

1
n

n∑
k=1

ηk〈xk+1−xk, yk〉 =
1
n

n∑
k=1

η〈xk+1−xk, yk〉+
1
n

n∑
k=1

(ηk−η)〈xk+1−xk, yk〉 −→ 0

as n −→∞. �

The following lemma was essentially shown in [1, Lemma 3.1], where {ξn} was
assumed to be convergent to 0. For the sake of completeness, we give the proof.

Lemma 2.7. Let H be a Hilbert space, C a nonempty closed convex subset of H ,
and T : C −→ H a mapping. Let {xn} be a sequence in C, {ξn} a sequence of real
numbers, {zn} a sequence in C defined by zn = (1/n)

∑n
k=1 xk for n ∈ N, and z a

weak cluster point of {zn}. Suppose that

ξn ≤ ‖xn − z‖2 − ‖xn+1 − Tz‖2

for every n ∈ N and (1/n)
∑n

k=1 ξk −→ 0 as n −→∞. Then z is a fixed point of T .

Proof. By assumption, it is clear that

ξk ≤ ‖xk − z‖2 − ‖xk+1 − Tz‖2

= ‖xk − Tz + Tz − z‖2 − ‖xk+1 − Tz‖2

= ‖xk − Tz‖2 − ‖xk+1 − Tz‖2 + 2〈xk − Tz, Tz − z〉+ ‖Tz − z‖2

for every k ∈ N. Summing these inequalities from k = 1 to n and dividing by n, we
have

1
n

n∑
k=1

ξk ≤
1
n

(
‖x1 − Tz‖2 − ‖xn+1 − Tz‖2

)
+ 2

〈
1
n

n∑
k=1

xk − Tz, Tz − z

〉
+ ‖Tz − z‖2

≤ 1
n
‖x1 − Tz‖2 + 2〈zn − Tz, Tz − z〉+ ‖Tz − z‖2

for every n ∈ N. Since z is a weak cluster point of {zn}, there is a subsequence
{zni

} of {zn} such that zni
⇀ z. Replacing n by ni in the above inequality, we

obtain
1
ni

ni∑
k=1

ξk ≤
1
ni
‖x1 − Tz‖2 + 2〈zni − Tz, Tz − z〉+ ‖Tz − z‖2.



FAMILY OF λ-HYBRID MAPPINGS 91

Since (1/ni)
∑ni

k=1 ξk −→ 0 and zni
⇀ z, we conclude that

0 ≤ 2〈z − Tz, Tz − z〉+ ‖Tz − z‖2 = −‖Tz − z‖2

and hence Tz = z. �

Lemma 2.8 (Takahashi and Toyoda [12]). Let F be a nonempty closed convex subset
of a Hilbert space H , P the metric projection of H onto F , and {xn} a sequence in H
such that ‖xn+1 − u‖ ≤ ‖xn − u‖ for all u ∈ F and n ∈ N. Then {Pxn} converges
strongly to some point in F .

3. FIXED POINT THEOREMS

In this section, we study existence of fixed points of λ-hybrid mappings.
The following theorem is a generalization of [1, Theorem 3.2] and [2, Theorem

4.1].

Theorem 3.1. Let H be a Hilbert space, C a nonempty closed convex subset of H ,
{λn} a sequence of real numbers such that λn −→ λ, and Tn : C −→ C a λn-hybrid
mapping for n ∈ N. Let {xn} and {zn} be sequences in C defined by x1 ∈ C,

xn+1 = Tnxn, and zn =
1
n

n∑
k=1

xk

for n ∈ N. Suppose that {Tn} is pointwise convergent and T denotes the pointwise
limit of {Tn}, that is, Tx = limn−→∞ Tnx for x ∈ C. Then the following hold:

(i) The mapping T is λ-hybrid and
⋂∞

n=1 F (Tn) ⊂ F (T );
(ii) if {xn} is bounded, then T has a fixed point and every weak cluster point

of {zn} is a fixed point of T .

Proof. We first prove (1). Let x, y ∈ C be fixed. Since each Tn is λn-hybrid, it
follows that

‖Tnx− Tny‖2 ≤ ‖x− y‖2 + 2(1− λn)〈x− Tnx, y − Tny〉

for every n ∈ N. Taking the limit n −→∞, we have

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 2(1− λ)〈x− Tx, y − Ty〉.

Thus T is λ-hybrid. Furthermore, let u ∈
⋂∞

n=1 F (Tn). Since Tn is pointwise
convergent, Tu = limn−→∞ Tnu = u and hence u ∈ F (T ).

We next prove (2). Assume that {xn} is bounded. Then {zn} is also bounded
and thus there exists a subsequence {zni} of {zn} such that zni ⇀ z ∈ C. It is
enough to show that z is a fixed point of T . Since Tn is λn-hybrid and xn+1 = Tnxn,
we have

‖xn+1 − Tz‖2 = ‖xn+1 − Tnz + Tnz − Tz‖2

= ‖xn+1 − Tnz‖2 + ‖Tnz − Tz‖2 + 2〈xn+1 − Tnz, Tnz − Tz〉
≤ ‖xn − z‖2 + 2(1− λn)〈xn − xn+1, z − Tnz〉

+ ‖Tnz − Tz‖(‖Tnz − Tz‖+ 2‖xn+1 − Tnz‖).

Therefore, we conclude that

µn + εn ≤ ‖xn − z‖2 − ‖xn+1 − Tz‖2

for every n ∈ N, where µn = 2(1− λn)〈xn+1 − xn, z − Tnz〉 and

εn = −‖Tnz − Tz‖(‖Tnz − Tz‖+ 2‖xn+1 − Tnz‖).
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Since {xn} is bounded and both {λn} and {Tnz} are convergent, Lemma 2.6 shows
that (1/n)

∑n
k=1 µk −→ 0, and hence (1/n)

∑n
k=1(µk + εk) −→ 0. Thus Lemma 2.7

implies that z is a fixed point of T . �

A direct consequence of Theorem 3.1 is as follows:

Corollary 3.1. Let H be a Hilbert space, C a nonempty closed convex subset of H ,
λ a real number, T : C −→ C a λ-hybrid mapping, and {αn} a sequence in [0, 1)
such that αn −→ 0. Let {xn} and {zn} be sequences in C defined by x1 ∈ C,

xn+1 = αnxn + (1− αn)Txn, and zn =
1
n

n∑
k=1

xk

for n ∈ N. Suppose that {xn} is bounded. Then T has a fixed point and every weak
cluster point of {zn} is a fixed point of T .

Proof. Put Tn = αnI +(1−αn)T for n ∈ N. Then Lemma 2.2 shows that Tn : C −→
C is (λ−αn)/(1−αn)-hybrid. It is clear that (λ−αn)/(1−αn) −→ λ and T is the
pointwise limit of {Tn}. Therefore, Theorem 3.1 implies the conclusion. �

In particular, assuming that αn = 0 for each n ∈ N in Corollary 3.1, we obtain
the following:

Corollary 3.2. ([2, Theorem 4.1]). Let H , C, λ, and T be the same as in Corollary 3.1.
Let x be a point in C and {zn} a sequence in C defined by

zn =
1
n

n∑
k=1

T k−1x

for n ∈ N, where T 0 is the identity mapping on C. Suppose that {Tnx} is bounded.
Then T has a fixed point and every weak cluster point of {zn} is a fixed point of T .

4. MEAN CONVERGENCE THEOREMS

In this section, we prove some mean convergence theorems for a family of λ-
hybrid mappings.

We first prove the following lemma, which is a variant of [2, Lemma 5.1].

Lemma 4.1. Let H be a Hilbert space, C a nonempty closed convex subset of H ,
and Tn : C −→ C a quasi-nonexpansive mapping for n ∈ N. Suppose that {Tn}
has a common fixed point. Let F be the set of common fixed points of {Tn} and P
the metric projection of H onto F . Let {xn} and {zn} be sequences in C defined by
x1 ∈ C,

xn+1 = Tnxn, and zn =
1
n

n∑
k=1

xn

for n ∈ N. Then the following hold:

(i) The sequence {xn} is bounded and {Pxn} converges strongly;
(ii) if each weak cluster point of {zn} belongs to F , then {zn} converges weakly

to the strong limit of {Pxn}.

Proof. We first prove (1). Since Tn is quasi-nonexpansive,

‖xn+1 − u‖ = ‖Tnxn − u‖ ≤ ‖xn − u‖
for all u ∈ F and n ∈ N. Thus {xn} is bounded and Lemma 2.8 implies that {Pxn}
converges strongly.
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We next prove (2). Since {zn} is bounded by (1), there exists a weak cluster point
z of {zn}. Let {zni

} be a subsequence of {zn} such that zni
⇀ z and w the strong

limit of {Pxn}. It is enough to show that z = w. Since P is the metric projection
of H onto F and z ∈ F , it follows from (2.1) that

〈z − Pxk, xk − Pxk〉 ≤ 0

for every k ∈ N. Since each Tk is quasi-nonexpansive and Pxk ∈ F , it follows from
the definition of P that

‖xk+1 − Pxk+1‖ ≤ ‖xk+1 − Pxk‖ = ‖Tkxk − Pxk‖ ≤ ‖xk − Pxk‖

for every k ∈ N. Therefore

〈z − w, xk − Pxk〉 = 〈z − Pxk, xk − Pxk〉+ 〈Pxk − w, xk − Pxk〉
≤ 〈Pxk − w, xk − Pxk〉
≤ ‖Pxk − w‖‖xk − Pxk‖
≤ ‖Pxk − w‖‖x1 − Px1‖

for every k ∈ N. Summing these inequalities from k = 1 to ni and dividing by ni,
we have 〈

z − w, zni
− 1

ni

ni∑
k=1

Pxk

〉
≤ 1

ni

ni∑
k=1

‖Pxk − w‖‖x1 − Px1‖.

Since zni
⇀ z as i −→∞ and Pxn −→ w as n −→∞, we obtain 〈z−w, z−w〉 ≤ 0

and hence z = w. This completes the proof. �

Using Theorem 3.1 and Lemma 4.1, we obtain the following:

Theorem 4.1. Let H be a Hilbert space, C a nonempty closed convex subset of H ,
{λn} a sequence of real numbers such that λn −→ λ, and Tn : C −→ C a λn-hybrid
mapping for n ∈ N. Let {xn} and {zn} be sequences in C defined by x1 ∈ C,

xn+1 = Tnxn, and zn =
1
n

n∑
k=1

xk

for n ∈ N. Suppose that {Tn} is pointwise convergent, T denotes the pointwise limit
of {Tn}, and F (T ) =

⋂∞
n=1 F (Tn) 6= ∅. Then {zn} converges weakly to the strong

limit of {Pxn}, where P is the metric projection of H onto F (T ).

Proof. Since Tn is λn-hybrid and
⋂∞

n=1 F (Tn) 6= ∅, each Tn is quasi-nonexpansive.
Thus it follows from Lemma 4.1 that {xn} is bounded. Hence Theorem 3.1 shows
that every weak cluster point of {zn} belongs to F (T ) =

⋂∞
n=1 F (Tn). Therefore,

Lemma 4.1 implies the conclusion. �

The following corollary is a direct consequence of Theorem 4.1.

Corollary 4.2. Let H be a Hilbert space, C a nonempty closed convex subset of H ,
λ a real number, T : C −→ C a λ-hybrid mapping with a fixed point, and {αn} a
sequence in [0, 1) such that αn −→ 0. Let {xn} and {zn} be sequences in C defined
by x1 ∈ C,

xn+1 = αnxn + (1− αn)Txn, and zn =
1
n

n∑
k=1

xk

for n ∈ N. Then {zn} converges weakly to the strong limit of {Pxn}, where P is the
metric projection of H onto F (T ).
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Proof. Put Tn = αnI + (1 − αn)T for n ∈ N. Then Lemma 2.2 shows that each
Tn : C −→ C is (λ−αn)/(1−αn)-hybrid. It is clear that (λ−αn)/(1−αn) −→ λ and
T is the pointwise limit of {Tn}. It is also clear that F (Tn) = F (T ) for every n ∈ N
and hence F (T ) =

⋂∞
n=1 F (Tn). Therefore, Theorem 4.1 implies the conclusion. �

Using Corollary 4.2, we immediately obtain the following weak convergence the-
orem for a strictly pseudononspreading mapping, which is a generalization of [8,
Theorem 3.1].

Corollary 4.3. (Osilike and Isiogugu [9, Theorem 3.1]) Let H , C, {αn}, and P be
the same as in Corollary 4.2. Let κ and β be real numbers with 0 ≤ κ ≤ β < 1 and
T : C −→ C a κ-strictly pseudononspreading mapping with a fixed point. Let {xn}
and {zn} be sequences in C defined by x1 ∈ C,

xn+1 = αnxn + (1− αn)
(
βxn + (1− β)Txn

)
, and zn =

1
n

n∑
k=1

xk

for n ∈ N. Then {zn} converges weakly to the strong limit of {Pxn}.

Proof. Set Tβ = βI + (1 − β)T . Then it follows from Lemma 2.5 that −β/(1 − β)-
hybrid. Obviously, F (T ) = F (Tβ). Thus Corollary 4.2 implies the conclusion. �

Assuming that αn = 0 for each n ∈ N in Corollary 4.2, we obtain the following:

Corollary 4.4. ([2, Theorem 5.2]) Let H , C, λ, T , and P be the same as in Corol-
lary 4.2. Let x be a point in C and {zn} a sequence in C defined by

zn =
1
n

n∑
k=1

T k−1x

for n ∈ N, where T 0 is the identity mapping on C. Then {zn} converges weakly to
the strong limit of {PTnx}.
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