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ABSTRACT. In the previous paper [4] we show Takahashi’s and Fan-Browder’s
fixed point theorems in a vector lattice and in the previous paper [5] we show
Schauder-Tychonoff’s fixed point theorem using Fan-Browder’s fixed point theorem.
The purpose of this paper is to introduce a topology in a vector lattice and to show
a fixed point theorem for a nonexpansive mapping and also common fixed point
theorems for commutative family of nonexpansive mappings in a vector lattice.
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1. INTRODUCTION

There are many fixed point theorems in a topological vector space, for instance,
Kirk’s fixed point theorem in a Banach space, and so on; see for example [3].

In this paper we consider fixed point theorems in a vector lattice. As known well
every topological vector space has a linear topology. On the other hand, although
every vector lattice does not have a topology, it has two lattice operators, which are
the supremum V and the infimum A, and also an order is introduced from these
operators; see also [6, 9] about vector lattices. There are some methods how to
introduce a topology to a vector lattice. One method is to assume that the vector
lattice has a linear topology [1]. On the other hand, there is another method to
make up a topology in a vector lattice, for instance, in [2] one method is introduced
in the case of the vector lattice with unit.
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In the previous paper [4] we show Takahashi’s and Fan-Browder’s fixed point
theorems in a vector lattice and in the previous paper [5] we show Schauder-
Tychonoff’s fixed point theorem using Fan-Browder’s fixed point theorem. The
purpose of this paper is to introduce a topology in a vector lattice and to show
a fixed point theorem for a nonexpansive mapping and also common fixed point
theorems for commutative family of nonexpansive mappings in a vector lattice.

2. TOPOLOGY IN A VECTOR LATTICE

First we introduce a topology in a vector lattice introduced by [2]; see also [4, 5].

Let X be a vector lattice. e € X is said to be an unitife Az > 0 forany r € X
with x > 0. Let Kx be the class of units of X. In the case where X is the set of
real numbers R, KR is the set of positive real numbers. Let X be a vector lattice
with unit and let Y be a subset of X. Y is said to be open if for any z € Y and for
any e € Kx there exists € € Cr such that [z —ee,z +ee] C Y. Let Ox be the class
of open subsets of X. Y is said to be closed if Y € Ox. For e € Kx and for an
interval [a, b] we consider the following subset

[a,b]¢ = {x | there exists some ¢ € g such thatz —a > ce and b — = > ce}.

By the definition of [a, b]° it is easy to see that [a, b]® C [a,b]. Every mapping from
X X Kx into (0, 00) is said to be a gauge. Let Ax be the class of gauges in X. For
x € X and § € Ax, O(z,9) is defined by

O(z,0) = U [x —d(z,e)e,x + d(x, e)e].
eckx
O(z,d) is said to be a §-neighborhood of x. Suppose that for any € X and for
any ¢ € Ax there exists U € Ox such that z € U C O(z, ).

For a subset Y of X we denote by cl(Y') and int(Y"), the closure and the interior
of Y, respectively. Let X and Y be vector lattices with unit, 2o € Z C X and f
a mapping from Z into Y. f is said to be continuous in the sense of topology at
xg if for any V' € Oy with f(z¢) € V there exists U € Ox with zy € U such that
fUnz)ycv.

Let X be a vector lattice with unit. X is said to be Hausdorff if for any z1, 22 € X
with 1 # x5 there exists 01,02 € Ox such that 1 € O1, 5 € O3 and O1NO, = (.
A subset Y of X is said to be compact if for any open covering of Y there exists a
finite sub-covering. A subset Y of X is said to be normal if for any closed subsets
Iy and F, with I3 N F5, NY = () there exists 01,05 € Ox such that I} C Oy,
Fy C Oy andOlﬂOgﬂY:@.

A vector lattice is said to be Archimedean if it holds that £ = 0 whenever there
exists y € X with y > 0 such that 0 < rx < y for any r € Kg.

Let X be a vector lattice with unit and Y a vector lattice, zp € Z C X and f a
mapping from Z into Y. f is said to be continuous at x if there exists {v, | e € Kx }
satisfying the conditions (U1), (U2)? and (U3)® such that for any e € Kx there exists
0 € Kgr such that for any x € Z if |z — z¢| < Je, then |f(z) — f(zo)| < v.; where

(Ul) v, € Y with v, > 0;

(U2)¢ ve, > v, if e1 > e

(U3)°® For any e € Kx there exists 0(e) € Kr such that vg(e)e < %ve.

Let X be an Archimedean vector lattice. Then there exists a positive homomor-
phism f from X into R, that is, f satisfies the following conditions:

(H1) f(az+ By) = af(x)+ Bf(y) for any z,y € X and for any «, 8 € R;
(H2) f(z) >0 for any z € X with z > 0;
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see [5]*Example 3.1. Suppose that there exists a homomorphism f from X into R
satisfying the following condition instead of (H2):

(H2)* f(x) > 0 for any € X with x > 0.
Example 2.1. We consider of a sufficient condition to satisfy (H2)°. Let X be a
Hilbert lattice with unit, that is, X has an inner product (-, -) and for any z,y € X

if |z| < |y|, then (z,z) < (y,y). For any e € Kx let f be a function from X into R
defined by f(z) = (z,¢e). Then f satisfies (H1) and (H2)® clearly.

3. FIXED POINT THEOREM FOR A NONEXPANSIVE MAPPING

Let X be a vector lattice and Y a subset of X. A mapping f from Y into Y is
said to be nonexpansive if | f(x) — f(y)| < |z — y| for any z,y € Y. In this section
we consider a fixed point theorem for a nonexpansive mapping.

Lemma 3.1. Let X be a Hausdorff Archimedean vector lattice with unit and K a
non-empty compact convex subset of X. Then

c(K)=qz|eeK \[|lz—y= N\ V lz—yl

yeK zeK yeK
is non-empty compact convex.

Proof. For any x € K and for any e € Kx let

F(r,e)=Sy|lyeKlz—y < \ \/ lz—yl+e
rzeK yeK
Then F(z,e) is non-empty compact convex. Let C(e) = (), cx F(x,¢e). Since
Ni_, F(zi,e) # 0 for any z1,...,2, € K, C(e) is non-empty compact convex.
Since C'(e1) D C(eq) for any e1,e2 € Kx with e; > eo, ﬂeelcx C(e) is non-empty
compact convex. Moreover ¢(K) = (), C(e). Indeed ¢(K) C [, Cle) is
clear. Let x € C(e) for any e € Kx. Then
z—yl< N\ Viz—yl+e
rzeK yeK
for any y € K. Therefore

Vie—=yl< A Vie—yl+ N\ e= A\ VIz—yl

yeK zeK yeK eelx zeK yeK

By definition
Vie=y>= A Vlz—yl
yeK rceK yeK

Therefore
Vie=yl= AV lz—yl
yeK reK yeK

that is, x € ¢(K). O

Let X be a Hausdorff Archimedean vector lattice with unit and Y a subset of
X. We say that Y has the normal structure if for any compact convex subset K,
which contains two points at least, of Y there exists z € K such that

Vie—yl< \/ le—yl

yeK r,ycK
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Lemma 3.2. Let X be a Hausdorff Archimedean vector lattice with unit and K a
non-empty compact convex subset, which contains two points at least, of X. Suppose
that K has the normal structure. Then

Vo ole—yl< \ le—yl

z,y€c(K) z,yeK

Proof. Since K has the normal structure, there exists z € K such that
w—y <\ lz—yl= A\ VIe—yl<VIz=yl< \ lz—yl
yeK zeK yeK yeK z,ye K
for any z,y € ¢(K). Therefore
V olz—yl< \ 2=yl
z,y€c(K) z,yeK
g

Theorem 3.1. Let X be a Hausdorff Archimedean vector lattice with unit and K a
non-empty compact convex subset of X. Suppose that K has the normal structure.
Then every nonexpansive mapping from K into K has a fixed point.

Proof. Let f be a nonexpansive mapping from K into K and {K), | A € A} the
family of non-empty compact convex subsets of K satisfying that f(K)) C K. By
Zorn’s lemma there exists a minimal element Ky of { K | A € A}. Assume that Ky
contains two points at least. By Lemma 3.1 ¢(K)) is non-empty compact convex.
Let © € ¢(Kp). For any y € K, we obtain that

f@) = f)l <le—y <\ lz—yl= A\ V lz—yl
yE€Ko z€Ko yeKo
Let

M={ylyeKl|f@x)-y< \ V lz—yl
z€Ko yeKo

Then f(Ky) C M and hence f(KoNM) C KoN M. Since K is a minimal element,
it holds that Ky C M. Therefore

\V lf@—yl< AV lz—yl
y€Ko €Ky yeKo

By definition, we have

V Ir@-y= AV lz—yl

yeKo zeKo yeKop
Therefore

Vi@ -yl= AV -yl

yeKo zeKo yeKop

thatis, f(z) € ¢(Kp). Since K| is a minimal element, it holds that ¢(K() = K and

hence
Vo olz—yl=\ lz—yl

z,y€c(Ko) z,ye Ko

Vo olz—y< \ lz—yl

z,y€c(Ko) z,y€Ko

However by Lemma 3.2
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It is a contradiction. Therefore K, only contains a unique point. The point is a
fixed point. U

4. FIXED POINT THEOREM FOR THE COMMUTATIVE FAMILY
OF NONEXPANSIVE MAPPINGS

For any nonexpansive mapping f from K into K let Fx(f) be the set of fixed
points of f.

Lemma 4.1. Let X be a Hausdorff Archimedean vector lattice with unit, Y a subset
of X and f a nonexpansive mapping from Y into Y. Suppose that there exists a
homomorphism from X into R satisfying the condition (H2)®. Then Fy (f) is closed.

Proof. Assume that Fy (f) is not closed. Then for any § € Ax there exists z €
Fy(f)¢ such that O(z,8) ¢ Fy(f)C. Take ys € O(z,8) N Fy(f). Then f(ys) = ys.
Note that every nonexpansive mapping is continuous and hence by [5]*Lemma 3.2
it is also continuous in the sense of topology. Since {ys | 6 € Ax} is convergent to
x in the sense of topology, {f(ys) | 0 € Ax} is convergent to f(x) in the sense of
topology. Since X is Hausdorff, f(z) = x. It is a contradiction. Therefore Fy (f) is
closed. (]

Lemma 4.2. Let X be a vector lattice. If |z — z| = |z — w
|z — z| + |y — z| = |z — y|, then z = w.

y—zl=ly—wl and

’

Proof. Note that |a + b| = |a — b| if and only if |a| A |b| = 0. Since

1 1
|z — z] = z2(z+w)2(zw)‘
and
1 1
o —wl = |z~ 5(z+w) + 5z ~w)|,

it holds that |z — 4(z+ w)| A 3|z — w| = 0. In the same way it holds that
ly — 3(z+w)| A 3]z — w| = 0. Note that (a +b) Ac < aAc+bAc for any
a,b,c > 0. Therefore

|a:—y\/\1|z—w| < (a:—1(z—w)’—|—‘1(z—w)—y‘>/\1z—w|
2 - 2 2 2
< x—l(z—w)‘/\lz—w|—|—‘y—1(z+w)‘/\1|z—w|
- 2 2 2 2

= 0.

Assume that z # w. Note that, if |b|A|c| = 0, then ||a| — ||| A|¢| = |a|A|c|. Therefore
1 1
(o —2l+ly— =D Agle—wl > |o—zlAglz—ul

>

1
= —|lz—w|>0.
Sl — vl
It is a contradiction. Therefore z = w. O

Lemma 4.3. Let X be a Hausdorff Archimedean vector lattice with unit, Y a subset
of X and f a nonexpansive mapping fromY intoY. Then Fy (f) is convex.
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Proof. Letz,y € Fy(f) and 0 < a < 1. Then
lz— f(1—a)z+ay)| = [f(z)— f((1-a)z+ay)l

< Jz— (- o)z +ay)| =alz—yl,
y=f(A-a)z+ay)l = [fy)— f(Q-a)r+ay)
< y-((1-a)z+tay)=(1-a)lz—yl|
Since
loe—yl < |z—f(1-a)z+ay)+|y— f((1-a)z+ay)
< lp—(1-a)z+ay)|+ly— (1 - )z +ay)| = |z -yl
it holds that
lz— f(1-)z+ay)| = |z—((1-a)z+ay)
ly—f(A-a)z+ay)| = [y—(1-a)z+ay)
and hence
|z — f(1—a)z+ay)|+ |y — f(1 - a)z+ay)| = |z -yl
By Lemma 4.2 f((1 — o)z 4+ ay) = (1 — a)x + ay, that is, Fy (f) is convex. O

Theorem 4.1. Let X be a Hausdorff Archimedean vector lattice with unit, K a
compact convex subset of X and {f; | i = 1,...,n} the finite commutative family of
nonexpansive mappings from K into K. Suppose that there exists a homomorphism
Jrom X into R satisfying the condition (H2)° and K has the normal structure. Then

Ni_, Fr(f:) is non-empty.

Proof. Let {K | A € A} be the family of non-empty compact convex subsets of K
satisfying that f;(K,) C K, for any i¢. By Zorn’s lemma there exists a minimal
element Ky of {K) | A € A}. Assume that K, contains two points at least. By
Theorem 3.1 Fk, (f10- - -of,) is non-empty. Moreover by Lemma 4.1 and Lemma 4.3
Fr,(fio---o f,) is compact convex. It holds that f;(Fk,(fio-- 0 fn)) = Fk,(f10
.-+ o f,) for any i. It is shown as follows. Let x € Fi,(f1 0--- 0 f,). Since

file) = fi((fro--- o fu)(@)) = (fro---o fu)(fi(x))

forany i, fi(z) € Fic,(fio-++0 f). thatis, fi(Fic,(fio+--0 fn)) C Ficy(fio---0 fy).
Nextlet 2; = (fio- -0 fi_10 fix10---0 f,)(x). Since

(fro---o fu)(xs) = (fro---0o ficr0 fiy10---0 fn)(x) = x4,

it holds that x; € Fg,(f1 0o f,). Moreover f;(x;) = x. Therefore F, (f1 0o
fn) C fi(Fr,(fio---0fy)). Since K has the normal structure, there exists zy € Ky

such that
\/ 2o — y| < \/ |z —yl.
yeKo z,yeKo
Let
A=<z |z € Ky, \/ |z —y| < \/ |0 — ¥
yGFKO(flo"'Ofn) yGFKO(flo'“Ofn)

A is non-empty and convex clearly. Moreover since X is Archimedean, A is closed
and hence compact. Let © € A. Then for any ¢ and for any y € Fk,(f10---0 f,)

|fi(z) =yl = [fi(x) = filyi)] < |z —wil
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< \/ |z —y|

YEFicy (fro-0fn)

< \/ lzo — yl

yEFKO(flo"'Ofn)

and hence f;(a) € A, thatis, f;(A) C A. Since K| is minimal, A = K. Therefore

\ z —y| < \ |20 —y| < \V jz — yl.
z,yEFK, (f10--0fn) yEFK, (f10--0fn) z,yEFK, (f10--0fn)

It is a contradiction. Therefore K, only contains a unique point. The point is a
common fixed point of {f; | i =1,...,n}. O

Theorem 4.2. Let X be a Hausdorff Archimedean vector lattice with unit, K a
compact convex subset of X and { f; | i € I} the commutative family of nonexpansive
mappings from K into K. Suppose that there exists a homomorphism from X into R
satisfying the condition (H2)* and K has the normal structure. Then (\;.; Fr (f;) is
non-empty.

Proof. By Theorem 4.1 (,_, Fk(f;,) is non-empty for any finite set iy,...,i, € I.
Since K is compact, (,; Fx(f;) is non-empty. O
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