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A TOPOLOGY IN A VECTOR LATTICE AND FIXED POINT
THEOREMS FOR NONEXPANSIVE MAPPINGS
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ABSTRACT. In the previous paper [4] we show Takahashi’s and Fan-Browder’s
fixed point theorems in a vector lattice and in the previous paper [5] we show
Schauder-Tychonoff’s fixed point theorem using Fan-Browder’s fixed point theorem.
The purpose of this paper is to introduce a topology in a vector lattice and to show
a fixed point theorem for a nonexpansive mapping and also common fixed point
theorems for commutative family of nonexpansive mappings in a vector lattice.
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1. INTRODUCTION

There are many fixed point theorems in a topological vector space, for instance,
Kirk’s fixed point theorem in a Banach space, and so on; see for example [8].

In this paper we consider fixed point theorems in a vector lattice. As known well
every topological vector space has a linear topology. On the other hand, although
every vector lattice does not have a topology, it has two lattice operators, which are
the supremum ∨ and the infimum ∧, and also an order is introduced from these
operators; see also [6, 9] about vector lattices. There are some methods how to
introduce a topology to a vector lattice. One method is to assume that the vector
lattice has a linear topology [1]. On the other hand, there is another method to
make up a topology in a vector lattice, for instance, in [2] one method is introduced
in the case of the vector lattice with unit.

∗Corresponding author.
Email address : toshiharu.kawasaki@nifty.ne.jp (T. Kawasaki).
Article history : Received December 6 2010. Accepted January 25 2011.



62 T. KAWASAKI/JNAO : VOL. 2, NO. 1, (2011), 61-67

In the previous paper [4] we show Takahashi’s and Fan-Browder’s fixed point
theorems in a vector lattice and in the previous paper [5] we show Schauder-
Tychonoff’s fixed point theorem using Fan-Browder’s fixed point theorem. The
purpose of this paper is to introduce a topology in a vector lattice and to show
a fixed point theorem for a nonexpansive mapping and also common fixed point
theorems for commutative family of nonexpansive mappings in a vector lattice.

2. TOPOLOGY IN A VECTOR LATTICE

First we introduce a topology in a vector lattice introduced by [2]; see also [4, 5].
Let X be a vector lattice. e ∈ X is said to be an unit if e ∧ x > 0 for any x ∈ X

with x > 0. Let KX be the class of units of X. In the case where X is the set of
real numbers R, KR is the set of positive real numbers. Let X be a vector lattice
with unit and let Y be a subset of X. Y is said to be open if for any x ∈ Y and for
any e ∈ KX there exists ε ∈ KR such that [x− εe, x+ εe] ⊂ Y . Let OX be the class
of open subsets of X. Y is said to be closed if Y C ∈ OX . For e ∈ KX and for an
interval [a, b] we consider the following subset

[a, b]e = {x | there exists some ε ∈ KR such that x− a ≥ εe and b− x ≥ εe}.
By the definition of [a, b]e it is easy to see that [a, b]e ⊂ [a, b]. Every mapping from
X ×KX into (0,∞) is said to be a gauge. Let ∆X be the class of gauges in X. For
x ∈ X and δ ∈ ∆X , O(x, δ) is defined by

O(x, δ) =
⋃

e∈KX

[x− δ(x, e)e, x + δ(x, e)e]e.

O(x, δ) is said to be a δ-neighborhood of x. Suppose that for any x ∈ X and for
any δ ∈ ∆X there exists U ∈ OX such that x ∈ U ⊂ O(x, δ).

For a subset Y of X we denote by cl(Y ) and int(Y ), the closure and the interior
of Y , respectively. Let X and Y be vector lattices with unit, x0 ∈ Z ⊂ X and f
a mapping from Z into Y . f is said to be continuous in the sense of topology at
x0 if for any V ∈ OY with f(x0) ∈ V there exists U ∈ OX with x0 ∈ U such that
f(U ∩ Z) ⊂ V .

Let X be a vector lattice with unit. X is said to be Hausdorff if for any x1, x2 ∈ X
with x1 6= x2 there exists O1, O2 ∈ OX such that x1 ∈ O1, x2 ∈ O2 and O1∩O2 = ∅.
A subset Y of X is said to be compact if for any open covering of Y there exists a
finite sub-covering. A subset Y of X is said to be normal if for any closed subsets
F1 and F2 with F1 ∩ F2 ∩ Y = ∅ there exists O1, O2 ∈ OX such that F1 ⊂ O1,
F2 ⊂ O2 and O1 ∩O2 ∩ Y = ∅.

A vector lattice is said to be Archimedean if it holds that x = 0 whenever there
exists y ∈ X with y ≥ 0 such that 0 ≤ rx ≤ y for any r ∈ KR.

Let X be a vector lattice with unit and Y a vector lattice, x0 ∈ Z ⊂ X and f a
mapping from Z into Y . f is said to be continuous at x0 if there exists {ve | e ∈ KX}
satisfying the conditions (U1), (U2)d and (U3)s such that for any e ∈ KX there exists
δ ∈ KR such that for any x ∈ Z if |x− x0| ≤ δe, then |f(x)− f(x0)| ≤ ve; where

(U1) ve ∈ Y with ve > 0;
(U2)d ve1 ≥ ve2 if e1 ≥ e2;
(U3)s For any e ∈ KX there exists θ(e) ∈ KR such that vθ(e)e ≤ 1

2ve.
Let X be an Archimedean vector lattice. Then there exists a positive homomor-

phism f from X into R, that is, f satisfies the following conditions:
(H1) f(αx + βy) = αf(x) + βf(y) for any x, y ∈ X and for any α, β ∈ R;
(H2) f(x) ≥ 0 for any x ∈ X with x ≥ 0;
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see [5]*Example 3.1. Suppose that there exists a homomorphism f from X into R
satisfying the following condition instead of (H2):

(H2)s f(x) > 0 for any x ∈ X with x > 0.

Example 2.1. We consider of a sufficient condition to satisfy (H2)s. Let X be a
Hilbert lattice with unit, that is, X has an inner product 〈·, ·〉 and for any x, y ∈ X
if |x| ≤ |y|, then 〈x, x〉 ≤ 〈y, y〉. For any e ∈ KX let f be a function from X into R
defined by f(x) = 〈x, e〉. Then f satisfies (H1) and (H2)s clearly.

3. FIXED POINT THEOREM FOR A NONEXPANSIVE MAPPING

Let X be a vector lattice and Y a subset of X. A mapping f from Y into Y is
said to be nonexpansive if |f(x) − f(y)| ≤ |x − y| for any x, y ∈ Y . In this section
we consider a fixed point theorem for a nonexpansive mapping.

Lemma 3.1. Let X be a Hausdorff Archimedean vector lattice with unit and K a
non-empty compact convex subset of X. Then

c(K) =

x

∣∣∣∣∣∣ x ∈ K,
∨

y∈K

|x− y| =
∧

x∈K

∨
y∈K

|x− y|


is non-empty compact convex.

Proof. For any x ∈ K and for any e ∈ KX let

F (x, e) =

y

∣∣∣∣∣∣ y ∈ K, |x− y| ≤
∧

x∈K

∨
y∈K

|x− y|+ e

 .

Then F (x, e) is non-empty compact convex. Let C(e) =
⋂

x∈K F (x, e). Since⋂n
i=1 F (xi, e) 6= ∅ for any x1, . . . , xn ∈ K, C(e) is non-empty compact convex.

Since C(e1) ⊃ C(e2) for any e1, e2 ∈ KX with e1 ≥ e2,
⋂

e∈KX
C(e) is non-empty

compact convex. Moreover c(K) =
⋂

e∈KX
C(e). Indeed c(K) ⊂

⋂
e∈KX

C(e) is
clear. Let x ∈ C(e) for any e ∈ KX . Then

|x− y| ≤
∧

x∈K

∨
y∈K

|x− y|+ e

for any y ∈ K. Therefore∨
y∈K

|x− y| ≤
∧

x∈K

∨
y∈K

|x− y|+
∧

e∈KX

e =
∧

x∈K

∨
y∈K

|x− y|.

By definition ∨
y∈K

|x− y| ≥
∧

x∈K

∨
y∈K

|x− y|.

Therefore ∨
y∈K

|x− y| =
∧

x∈K

∨
y∈K

|x− y|,

that is, x ∈ c(K). �

Let X be a Hausdorff Archimedean vector lattice with unit and Y a subset of
X. We say that Y has the normal structure if for any compact convex subset K,
which contains two points at least, of Y there exists x ∈ K such that∨

y∈K

|x− y| <
∨

x,y∈K

|x− y|.
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Lemma 3.2. Let X be a Hausdorff Archimedean vector lattice with unit and K a
non-empty compact convex subset, which contains two points at least, of X. Suppose
that K has the normal structure. Then∨

x,y∈c(K)

|x− y| <
∨

x,y∈K

|x− y|.

Proof. Since K has the normal structure, there exists z ∈ K such that

|x− y| ≤
∨

y∈K

|x− y| =
∧

x∈K

∨
y∈K

|x− y| ≤
∨

y∈K

|z − y| <
∨

x,y∈K

|x− y|

for any x, y ∈ c(K). Therefore∨
x,y∈c(K)

|x− y| <
∨

x,y∈K

|x− y|.

�

Theorem 3.1. Let X be a Hausdorff Archimedean vector lattice with unit and K a
non-empty compact convex subset of X. Suppose that K has the normal structure.
Then every nonexpansive mapping from K into K has a fixed point.

Proof. Let f be a nonexpansive mapping from K into K and {Kλ | λ ∈ Λ} the
family of non-empty compact convex subsets of K satisfying that f(Kλ) ⊂ Kλ. By
Zorn’s lemma there exists a minimal element K0 of {Kλ | λ ∈ Λ}. Assume that K0

contains two points at least. By Lemma 3.1 c(K0) is non-empty compact convex.
Let x ∈ c(K0). For any y ∈ K0, we obtain that

|f(x)− f(y)| ≤ |x− y| ≤
∨

y∈K0

|x− y| =
∧

x∈K0

∨
y∈K0

|x− y|.

Let

M =

y

∣∣∣∣∣∣ y ∈ K, |f(x)− y| ≤
∧

x∈K0

∨
y∈K0

|x− y|

 .

Then f(K0) ⊂ M and hence f(K0∩M) ⊂ K0∩M . Since K0 is a minimal element,
it holds that K0 ⊂ M . Therefore∨

y∈K0

|f(x)− y| ≤
∧

x∈K0

∨
y∈K0

|x− y|.

By definition, we have ∨
y∈K0

|f(x)− y| ≥
∧

x∈K0

∨
y∈K0

|x− y|.

Therefore ∨
y∈K0

|f(x)− y| =
∧

x∈K0

∨
y∈K0

|x− y|,

that is, f(x) ∈ c(K0). Since K0 is a minimal element, it holds that c(K0) = K0 and
hence ∨

x,y∈c(K0)

|x− y| =
∨

x,y∈K0

|x− y|.

However by Lemma 3.2 ∨
x,y∈c(K0)

|x− y| <
∨

x,y∈K0

|x− y|.
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It is a contradiction. Therefore K0 only contains a unique point. The point is a
fixed point. �

4. FIXED POINT THEOREM FOR THE COMMUTATIVE FAMILY
OF NONEXPANSIVE MAPPINGS

For any nonexpansive mapping f from K into K let FK(f) be the set of fixed
points of f .

Lemma 4.1. Let X be a Hausdorff Archimedean vector lattice with unit, Y a subset
of X and f a nonexpansive mapping from Y into Y . Suppose that there exists a
homomorphism from X into R satisfying the condition (H2)s. Then FY (f) is closed.

Proof. Assume that FY (f) is not closed. Then for any δ ∈ ∆X there exists x ∈
FY (f)C such that O(x, δ) 6⊂ FY (f)C . Take yδ ∈ O(x, δ) ∩ FY (f). Then f(yδ) = yδ.
Note that every nonexpansive mapping is continuous and hence by [5]*Lemma 3.2
it is also continuous in the sense of topology. Since {yδ | δ ∈ ∆X} is convergent to
x in the sense of topology, {f(yδ) | δ ∈ ∆X} is convergent to f(x) in the sense of
topology. Since X is Hausdorff, f(x) = x. It is a contradiction. Therefore FY (f) is
closed. �

Lemma 4.2. Let X be a vector lattice. If |x − z| = |x − w|, |y − z| = |y − w| and
|x− z|+ |y − z| = |x− y|, then z = w.

Proof. Note that |a + b| = |a− b| if and only if |a| ∧ |b| = 0. Since

|x− z| =
∣∣∣∣x− 1

2
(z + w)− 1

2
(z − w)

∣∣∣∣
and

|x− w| =
∣∣∣∣x− 1

2
(z + w) +

1
2
(z − w)

∣∣∣∣ ,

it holds that
∣∣x− 1

2 (z + w)
∣∣ ∧ 1

2 |z − w| = 0. In the same way it holds that∣∣y − 1
2 (z + w)

∣∣ ∧ 1
2 |z − w| = 0. Note that (a + b) ∧ c ≤ a ∧ c + b ∧ c for any

a, b, c ≥ 0. Therefore

|x− y| ∧ 1
2
|z − w| ≤

(∣∣∣∣x− 1
2
(z − w)

∣∣∣∣ +
∣∣∣∣12(z − w)− y

∣∣∣∣) ∧ 1
2
|z − w|

≤
∣∣∣∣x− 1

2
(z − w)

∣∣∣∣ ∧ 1
2
|z − w|+

∣∣∣∣y − 1
2
(z + w)

∣∣∣∣ ∧ 1
2
|z − w|

= 0.

Assume that z 6= w. Note that, if |b|∧|c| = 0, then ||a|−|b||∧|c| = |a|∧|c|. Therefore

(|x− z|+ |y − z|) ∧ 1
2
|z − w| ≥ |x− z| ∧ 1

2
|z − w|

≥
∣∣∣∣∣∣∣∣x− 1

2
|z − w|

∣∣∣∣− 1
2
|z − w|

∣∣∣∣ ∧ 1
2
|z − w|

=
1
2
|z − w| > 0.

It is a contradiction. Therefore z = w. �

Lemma 4.3. Let X be a Hausdorff Archimedean vector lattice with unit, Y a subset
of X and f a nonexpansive mapping from Y into Y . Then FY (f) is convex.
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Proof. Let x, y ∈ FY (f) and 0 ≤ α ≤ 1. Then

|x− f((1− α)x + αy)| = |f(x)− f((1− α)x + αy)|
≤ |x− ((1− α)x + αy)| = α|x− y|,

|y − f((1− α)x + αy)| = |f(y)− f((1− α)x + αy)|
≤ |y − ((1− α)x + αy)| = (1− α)|x− y|.

Since

|x− y| ≤ |x− f((1− α)x + αy)|+ |y − f((1− α)x + αy)|
≤ |x− ((1− α)x + αy)|+ |y − ((1− α)x + αy)| = |x− y|,

it holds that

|x− f((1− α)x + αy)| = |x− ((1− α)x + αy)|,
|y − f((1− α)x + αy)| = |y − ((1− α)x + αy)|,

and hence

|x− f((1− α)x + αy)|+ |y − f((1− α)x + αy)| = |x− y|.

By Lemma 4.2 f((1− α)x + αy) = (1− α)x + αy, that is, FY (f) is convex. �

Theorem 4.1. Let X be a Hausdorff Archimedean vector lattice with unit, K a
compact convex subset of X and {fi | i = 1, . . . , n} the finite commutative family of
nonexpansive mappings from K into K. Suppose that there exists a homomorphism
from X into R satisfying the condition (H2)s and K has the normal structure. Then⋂n

i=1 FK(fi) is non-empty.

Proof. Let {Kλ | λ ∈ Λ} be the family of non-empty compact convex subsets of K
satisfying that fi(Kλ) ⊂ Kλ for any i. By Zorn’s lemma there exists a minimal
element K0 of {Kλ | λ ∈ Λ}. Assume that K0 contains two points at least. By
Theorem 3.1 FK0(f1◦· · ·◦fn) is non-empty. Moreover by Lemma 4.1 and Lemma 4.3
FK0(f1 ◦ · · · ◦ fn) is compact convex. It holds that fi(FK0(f1 ◦ · · · ◦ fn)) = FK0(f1 ◦
· · · ◦ fn) for any i. It is shown as follows. Let x ∈ FK0(f1 ◦ · · · ◦ fn). Since

fi(x) = fi((f1 ◦ · · · ◦ fn)(x)) = (f1 ◦ · · · ◦ fn)(fi(x))

for any i, fi(x) ∈ FK0(f1 ◦ · · · ◦fn), that is, fi(FK0(f1 ◦ · · · ◦fn)) ⊂ FK0(f1 ◦ · · · ◦fn).
Next let xi = (f1 ◦ · · · ◦ fi−1 ◦ fi+1 ◦ · · · ◦ fn)(x). Since

(f1 ◦ · · · ◦ fn)(xi) = (f1 ◦ · · · ◦ fi−1 ◦ fi+1 ◦ · · · ◦ fn)(x) = xi,

it holds that xi ∈ FK0(f1 ◦ · · · ◦ fn). Moreover fi(xi) = x. Therefore FK0(f1 ◦ · · · ◦
fn) ⊂ fi(FK0(f1◦· · ·◦fn)). Since K has the normal structure, there exists x0 ∈ K0

such that ∨
y∈K0

|x0 − y| <
∨

x,y∈K0

|x− y|.

Let

A =

x

∣∣∣∣∣∣ x ∈ K0,
∨

y∈FK0 (f1◦···◦fn)

|x− y| ≤
∨

y∈FK0 (f1◦···◦fn)

|x0 − y|

 .

A is non-empty and convex clearly. Moreover since X is Archimedean, A is closed
and hence compact. Let x ∈ A. Then for any i and for any y ∈ FK0(f1 ◦ · · · ◦ fn)

|fi(x)− y| = |fi(x)− fi(yi)| ≤ |x− yi|
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≤
∨

y∈FK0 (f1◦···◦fn)

|x− y|

≤
∨

y∈FK0 (f1◦···◦fn)

|x0 − y|

and hence fi(a) ∈ A, that is, fi(A) ⊂ A. Since K0 is minimal, A = K0. Therefore∨
x,y∈FK0 (f1◦···◦fn)

|x− y| ≤
∨

y∈FK0 (f1◦···◦fn)

|x0 − y| <
∨

x,y∈FK0 (f1◦···◦fn)

|x− y|.

It is a contradiction. Therefore K0 only contains a unique point. The point is a
common fixed point of {fi | i = 1, . . . , n}. �

Theorem 4.2. Let X be a Hausdorff Archimedean vector lattice with unit, K a
compact convex subset of X and {fi | i ∈ I} the commutative family of nonexpansive
mappings from K into K. Suppose that there exists a homomorphism from X into R
satisfying the condition (H2)s and K has the normal structure. Then

⋂
i∈I FK(fi) is

non-empty.

Proof. By Theorem 4.1
⋂n

k=1 FK(fik
) is non-empty for any finite set i1, . . . , in ∈ I.

Since K is compact,
⋂

i∈I FK(fi) is non-empty. �
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