



A TOPOLOGY IN A VECTOR LATTICE AND FIXED POINT THEOREMS FOR NONEXPANSIVE MAPPINGS

TOSHIHARU KAWASAKI*

College of Engineering, Nihon University, Fukushima 963-8642, Japan

ABSTRACT. In the previous paper [4] we show Takahashi's and Fan-Browder's fixed point theorems in a vector lattice and in the previous paper [5] we show Schauder-Tychonoff's fixed point theorem using Fan-Browder's fixed point theorem. The purpose of this paper is to introduce a topology in a vector lattice and to show a fixed point theorem for a nonexpansive mapping and also common fixed point theorems for commutative family of nonexpansive mappings in a vector lattice.

KEYWORDS : Fixed-point; Contraction mapping; Lipschitz condition; Lagrangian; Kuhn-Tucker condition; Lagrange-B"urmann expansion.

1. INTRODUCTION

There are many fixed point theorems in a topological vector space, for instance, Kirk's fixed point theorem in a Banach space, and so on; see for example [8].

In this paper we consider fixed point theorems in a vector lattice. As known well every topological vector space has a linear topology. On the other hand, although every vector lattice does not have a topology, it has two lattice operators, which are the supremum \vee and the infimum \wedge , and also an order is introduced from these operators; see also [6, 9] about vector lattices. There are some methods how to introduce a topology to a vector lattice. One method is to assume that the vector lattice has a linear topology [1]. On the other hand, there is another method to make up a topology in a vector lattice, for instance, in [2] one method is introduced in the case of the vector lattice with unit.

*Corresponding author.

Email address : toshiharu.kawasaki@nifty.ne.jp (T. Kawasaki).

Article history : Received December 6 2010. Accepted January 25 2011.

In the previous paper [4] we show Takahashi's and Fan-Browder's fixed point theorems in a vector lattice and in the previous paper [5] we show Schauder-Tychonoff's fixed point theorem using Fan-Browder's fixed point theorem. The purpose of this paper is to introduce a topology in a vector lattice and to show a fixed point theorem for a nonexpansive mapping and also common fixed point theorems for commutative family of nonexpansive mappings in a vector lattice.

2. TOPOLOGY IN A VECTOR LATTICE

First we introduce a topology in a vector lattice introduced by [2]; see also [4, 5].

Let X be a vector lattice. $e \in X$ is said to be an unit if $e \wedge x > 0$ for any $x \in X$ with $x > 0$. Let \mathcal{K}_X be the class of units of X . In the case where X is the set of real numbers \mathbf{R} , $\mathcal{K}_\mathbf{R}$ is the set of positive real numbers. Let X be a vector lattice with unit and let Y be a subset of X . Y is said to be open if for any $x \in Y$ and for any $e \in \mathcal{K}_X$ there exists $\varepsilon \in \mathcal{K}_\mathbf{R}$ such that $[x - \varepsilon e, x + \varepsilon e] \subset Y$. Let \mathcal{O}_X be the class of open subsets of X . Y is said to be closed if $Y^C \in \mathcal{O}_X$. For $e \in \mathcal{K}_X$ and for an interval $[a, b]$ we consider the following subset

$$[a, b]^e = \{x \mid \text{there exists some } \varepsilon \in \mathcal{K}_\mathbf{R} \text{ such that } x - a \geq \varepsilon e \text{ and } b - x \geq \varepsilon e\}.$$

By the definition of $[a, b]^e$ it is easy to see that $[a, b]^e \subset [a, b]$. Every mapping from $X \times \mathcal{K}_X$ into $(0, \infty)$ is said to be a gauge. Let Δ_X be the class of gauges in X . For $x \in X$ and $\delta \in \Delta_X$, $O(x, \delta)$ is defined by

$$O(x, \delta) = \bigcup_{e \in \mathcal{K}_X} [x - \delta(x, e)e, x + \delta(x, e)e]^e.$$

$O(x, \delta)$ is said to be a δ -neighborhood of x . Suppose that for any $x \in X$ and for any $\delta \in \Delta_X$ there exists $U \in \mathcal{O}_X$ such that $x \in U \subset O(x, \delta)$.

For a subset Y of X we denote by $\text{cl}(Y)$ and $\text{int}(Y)$, the closure and the interior of Y , respectively. Let X and Y be vector lattices with unit, $x_0 \in Z \subset X$ and f a mapping from Z into Y . f is said to be continuous in the sense of topology at x_0 if for any $V \in \mathcal{O}_Y$ with $f(x_0) \in V$ there exists $U \in \mathcal{O}_X$ with $x_0 \in U$ such that $f(U \cap Z) \subset V$.

Let X be a vector lattice with unit. X is said to be Hausdorff if for any $x_1, x_2 \in X$ with $x_1 \neq x_2$ there exists $O_1, O_2 \in \mathcal{O}_X$ such that $x_1 \in O_1$, $x_2 \in O_2$ and $O_1 \cap O_2 = \emptyset$. A subset Y of X is said to be compact if for any open covering of Y there exists a finite sub-covering. A subset Y of X is said to be normal if for any closed subsets F_1 and F_2 with $F_1 \cap F_2 \cap Y = \emptyset$ there exists $O_1, O_2 \in \mathcal{O}_X$ such that $F_1 \subset O_1$, $F_2 \subset O_2$ and $O_1 \cap O_2 \cap Y = \emptyset$.

A vector lattice is said to be Archimedean if it holds that $x = 0$ whenever there exists $y \in X$ with $y \geq 0$ such that $0 \leq rx \leq y$ for any $r \in \mathcal{K}_\mathbf{R}$.

Let X be a vector lattice with unit and Y a vector lattice, $x_0 \in Z \subset X$ and f a mapping from Z into Y . f is said to be continuous at x_0 if there exists $\{v_e \mid e \in \mathcal{K}_X\}$ satisfying the conditions (U1), (U2)^d and (U3)^s such that for any $e \in \mathcal{K}_X$ there exists $\delta \in \mathcal{K}_\mathbf{R}$ such that for any $x \in Z$ if $|x - x_0| \leq \delta e$, then $|f(x) - f(x_0)| \leq v_e$; where

- (U1) $v_e \in Y$ with $v_e > 0$;
- (U2)^d $v_{e_1} \geq v_{e_2}$ if $e_1 \geq e_2$;
- (U3)^s For any $e \in \mathcal{K}_X$ there exists $\theta(e) \in \mathcal{K}_\mathbf{R}$ such that $v_{\theta(e)e} \leq \frac{1}{2}v_e$.

Let X be an Archimedean vector lattice. Then there exists a positive homomorphism f from X into \mathbf{R} , that is, f satisfies the following conditions:

- (H1) $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$ for any $x, y \in X$ and for any $\alpha, \beta \in \mathbf{R}$;
- (H2) $f(x) \geq 0$ for any $x \in X$ with $x \geq 0$;

see [5]*Example 3.1. Suppose that there exists a homomorphism f from X into \mathbf{R} satisfying the following condition instead of (H2):

$$(H2)^s \quad f(x) > 0 \text{ for any } x \in X \text{ with } x > 0.$$

Example 2.1. We consider of a sufficient condition to satisfy $(H2)^s$. Let X be a Hilbert lattice with unit, that is, X has an inner product $\langle \cdot, \cdot \rangle$ and for any $x, y \in X$ if $|x| \leq |y|$, then $\langle x, x \rangle \leq \langle y, y \rangle$. For any $e \in \mathcal{K}_X$ let f be a function from X into \mathbf{R} defined by $f(x) = \langle x, e \rangle$. Then f satisfies (H1) and $(H2)^s$ clearly.

3. FIXED POINT THEOREM FOR A NONEXPANSIVE MAPPING

Let X be a vector lattice and Y a subset of X . A mapping f from Y into Y is said to be nonexpansive if $|f(x) - f(y)| \leq |x - y|$ for any $x, y \in Y$. In this section we consider a fixed point theorem for a nonexpansive mapping.

Lemma 3.1. *Let X be a Hausdorff Archimedean vector lattice with unit and K a non-empty compact convex subset of X . Then*

$$c(K) = \left\{ x \left| x \in K, \bigvee_{y \in K} |x - y| = \bigwedge_{x \in K} \bigvee_{y \in K} |x - y| \right. \right\}$$

is non-empty compact convex.

Proof. For any $x \in K$ and for any $e \in \mathcal{K}_X$ let

$$F(x, e) = \left\{ y \left| y \in K, |x - y| \leq \bigwedge_{x \in K} \bigvee_{y \in K} |x - y| + e \right. \right\}.$$

Then $F(x, e)$ is non-empty compact convex. Let $C(e) = \bigcap_{x \in K} F(x, e)$. Since $\bigcap_{i=1}^n F(x_i, e) \neq \emptyset$ for any $x_1, \dots, x_n \in K$, $C(e)$ is non-empty compact convex. Since $C(e_1) \supset C(e_2)$ for any $e_1, e_2 \in \mathcal{K}_X$ with $e_1 \geq e_2$, $\bigcap_{e \in \mathcal{K}_X} C(e)$ is non-empty compact convex. Moreover $c(K) = \bigcap_{e \in \mathcal{K}_X} C(e)$. Indeed $c(K) \subset \bigcap_{e \in \mathcal{K}_X} C(e)$ is clear. Let $x \in C(e)$ for any $e \in \mathcal{K}_X$. Then

$$|x - y| \leq \bigwedge_{x \in K} \bigvee_{y \in K} |x - y| + e$$

for any $y \in K$. Therefore

$$\bigvee_{y \in K} |x - y| \leq \bigwedge_{x \in K} \bigvee_{y \in K} |x - y| + \bigwedge_{e \in \mathcal{K}_X} e = \bigwedge_{x \in K} \bigvee_{y \in K} |x - y|.$$

By definition

$$\bigvee_{y \in K} |x - y| \geq \bigwedge_{x \in K} \bigvee_{y \in K} |x - y|.$$

Therefore

$$\bigvee_{y \in K} |x - y| = \bigwedge_{x \in K} \bigvee_{y \in K} |x - y|,$$

that is, $x \in c(K)$. □

Let X be a Hausdorff Archimedean vector lattice with unit and Y a subset of X . We say that Y has the normal structure if for any compact convex subset K , which contains two points at least, of Y there exists $x \in K$ such that

$$\bigvee_{y \in K} |x - y| < \bigvee_{x, y \in K} |x - y|.$$

Lemma 3.2. *Let X be a Hausdorff Archimedean vector lattice with unit and K a non-empty compact convex subset, which contains two points at least, of X . Suppose that K has the normal structure. Then*

$$\bigvee_{x,y \in c(K)} |x - y| < \bigvee_{x,y \in K} |x - y|.$$

Proof. Since K has the normal structure, there exists $z \in K$ such that

$$|x - y| \leq \bigvee_{y \in K} |x - y| = \bigwedge_{x \in K} \bigvee_{y \in K} |x - y| \leq \bigvee_{y \in K} |z - y| < \bigvee_{x,y \in K} |x - y|$$

for any $x, y \in c(K)$. Therefore

$$\bigvee_{x,y \in c(K)} |x - y| < \bigvee_{x,y \in K} |x - y|.$$

□

Theorem 3.1. *Let X be a Hausdorff Archimedean vector lattice with unit and K a non-empty compact convex subset of X . Suppose that K has the normal structure. Then every nonexpansive mapping from K into K has a fixed point.*

Proof. Let f be a nonexpansive mapping from K into K and $\{K_\lambda \mid \lambda \in \Lambda\}$ the family of non-empty compact convex subsets of K satisfying that $f(K_\lambda) \subset K_\lambda$. By Zorn's lemma there exists a minimal element K_0 of $\{K_\lambda \mid \lambda \in \Lambda\}$. Assume that K_0 contains two points at least. By Lemma 3.1 $c(K_0)$ is non-empty compact convex. Let $x \in c(K_0)$. For any $y \in K_0$, we obtain that

$$|f(x) - f(y)| \leq |x - y| \leq \bigvee_{y \in K_0} |x - y| = \bigwedge_{x \in K_0} \bigvee_{y \in K_0} |x - y|.$$

Let

$$M = \left\{ y \left| y \in K, |f(x) - y| \leq \bigwedge_{x \in K_0} \bigvee_{y \in K_0} |x - y| \right. \right\}.$$

Then $f(K_0) \subset M$ and hence $f(K_0 \cap M) \subset K_0 \cap M$. Since K_0 is a minimal element, it holds that $K_0 \subset M$. Therefore

$$\bigvee_{y \in K_0} |f(x) - y| \leq \bigwedge_{x \in K_0} \bigvee_{y \in K_0} |x - y|.$$

By definition, we have

$$\bigvee_{y \in K_0} |f(x) - y| \geq \bigwedge_{x \in K_0} \bigvee_{y \in K_0} |x - y|.$$

Therefore

$$\bigvee_{y \in K_0} |f(x) - y| = \bigwedge_{x \in K_0} \bigvee_{y \in K_0} |x - y|,$$

that is, $f(x) \in c(K_0)$. Since K_0 is a minimal element, it holds that $c(K_0) = K_0$ and hence

$$\bigvee_{x,y \in c(K_0)} |x - y| = \bigvee_{x,y \in K_0} |x - y|.$$

However by Lemma 3.2

$$\bigvee_{x,y \in c(K_0)} |x - y| < \bigvee_{x,y \in K_0} |x - y|.$$

It is a contradiction. Therefore K_0 only contains a unique point. The point is a fixed point. \square

4. FIXED POINT THEOREM FOR THE COMMUTATIVE FAMILY OF NONEXPANSIVE MAPPINGS

For any nonexpansive mapping f from K into K let $F_K(f)$ be the set of fixed points of f .

Lemma 4.1. *Let X be a Hausdorff Archimedean vector lattice with unit, Y a subset of X and f a nonexpansive mapping from Y into Y . Suppose that there exists a homomorphism from X into \mathbf{R} satisfying the condition (H2)^s. Then $F_Y(f)$ is closed.*

Proof. Assume that $F_Y(f)$ is not closed. Then for any $\delta \in \Delta_X$ there exists $x \in F_Y(f)^C$ such that $O(x, \delta) \not\subset F_Y(f)^C$. Take $y_\delta \in O(x, \delta) \cap F_Y(f)$. Then $f(y_\delta) = y_\delta$. Note that every nonexpansive mapping is continuous and hence by [5]*Lemma 3.2 it is also continuous in the sense of topology. Since $\{y_\delta \mid \delta \in \Delta_X\}$ is convergent to x in the sense of topology, $\{f(y_\delta) \mid \delta \in \Delta_X\}$ is convergent to $f(x)$ in the sense of topology. Since X is Hausdorff, $f(x) = x$. It is a contradiction. Therefore $F_Y(f)$ is closed. \square

Lemma 4.2. *Let X be a vector lattice. If $|x - z| = |x - w|$, $|y - z| = |y - w|$ and $|x - z| + |y - z| = |x - y|$, then $z = w$.*

Proof. Note that $|a + b| = |a - b|$ if and only if $|a| \wedge |b| = 0$. Since

$$|x - z| = \left| x - \frac{1}{2}(z + w) - \frac{1}{2}(z - w) \right|$$

and

$$|x - w| = \left| x - \frac{1}{2}(z + w) + \frac{1}{2}(z - w) \right|,$$

it holds that $|x - \frac{1}{2}(z + w)| \wedge \frac{1}{2}|z - w| = 0$. In the same way it holds that $|y - \frac{1}{2}(z + w)| \wedge \frac{1}{2}|z - w| = 0$. Note that $(a + b) \wedge c \leq a \wedge c + b \wedge c$ for any $a, b, c \geq 0$. Therefore

$$\begin{aligned} |x - y| \wedge \frac{1}{2}|z - w| &\leq \left(\left| x - \frac{1}{2}(z - w) \right| + \left| \frac{1}{2}(z - w) - y \right| \right) \wedge \frac{1}{2}|z - w| \\ &\leq \left| x - \frac{1}{2}(z - w) \right| \wedge \frac{1}{2}|z - w| + \left| y - \frac{1}{2}(z + w) \right| \wedge \frac{1}{2}|z - w| \\ &= 0. \end{aligned}$$

Assume that $z \neq w$. Note that, if $|b| \wedge |c| = 0$, then $||a| - |b|| \wedge |c| = |a| \wedge |c|$. Therefore

$$\begin{aligned} (|x - z| + |y - z|) \wedge \frac{1}{2}|z - w| &\geq |x - z| \wedge \frac{1}{2}|z - w| \\ &\geq \left| x - \frac{1}{2}|z - w| \right| - \frac{1}{2}|z - w| \wedge \frac{1}{2}|z - w| \\ &= \frac{1}{2}|z - w| > 0. \end{aligned}$$

It is a contradiction. Therefore $z = w$. \square

Lemma 4.3. *Let X be a Hausdorff Archimedean vector lattice with unit, Y a subset of X and f a nonexpansive mapping from Y into Y . Then $F_Y(f)$ is convex.*

Proof. Let $x, y \in F_Y(f)$ and $0 \leq \alpha \leq 1$. Then

$$\begin{aligned} |x - f((1 - \alpha)x + \alpha y)| &= |f(x) - f((1 - \alpha)x + \alpha y)| \\ &\leq |x - ((1 - \alpha)x + \alpha y)| = \alpha|x - y|, \\ |y - f((1 - \alpha)x + \alpha y)| &= |f(y) - f((1 - \alpha)x + \alpha y)| \\ &\leq |y - ((1 - \alpha)x + \alpha y)| = (1 - \alpha)|x - y|. \end{aligned}$$

Since

$$\begin{aligned} |x - y| &\leq |x - f((1 - \alpha)x + \alpha y)| + |y - f((1 - \alpha)x + \alpha y)| \\ &\leq |x - ((1 - \alpha)x + \alpha y)| + |y - ((1 - \alpha)x + \alpha y)| = |x - y|, \end{aligned}$$

it holds that

$$\begin{aligned} |x - f((1 - \alpha)x + \alpha y)| &= |x - ((1 - \alpha)x + \alpha y)|, \\ |y - f((1 - \alpha)x + \alpha y)| &= |y - ((1 - \alpha)x + \alpha y)|, \end{aligned}$$

and hence

$$|x - f((1 - \alpha)x + \alpha y)| + |y - f((1 - \alpha)x + \alpha y)| = |x - y|.$$

By Lemma 4.2 $f((1 - \alpha)x + \alpha y) = (1 - \alpha)x + \alpha y$, that is, $F_Y(f)$ is convex. \square

Theorem 4.1. *Let X be a Hausdorff Archimedean vector lattice with unit, K a compact convex subset of X and $\{f_i \mid i = 1, \dots, n\}$ the finite commutative family of nonexpansive mappings from K into K . Suppose that there exists a homomorphism from X into \mathbf{R} satisfying the condition (H2)^s and K has the normal structure. Then $\bigcap_{i=1}^n F_{K_0}(f_i)$ is non-empty.*

Proof. Let $\{K_\lambda \mid \lambda \in \Lambda\}$ be the family of non-empty compact convex subsets of K satisfying that $f_i(K_\lambda) \subset K_\lambda$ for any i . By Zorn's lemma there exists a minimal element K_0 of $\{K_\lambda \mid \lambda \in \Lambda\}$. Assume that K_0 contains two points at least. By Theorem 3.1 $F_{K_0}(f_1 \circ \dots \circ f_n)$ is non-empty. Moreover by Lemma 4.1 and Lemma 4.3 $F_{K_0}(f_1 \circ \dots \circ f_n)$ is compact convex. It holds that $f_i(F_{K_0}(f_1 \circ \dots \circ f_n)) = F_{K_0}(f_1 \circ \dots \circ f_n)$ for any i . It is shown as follows. Let $x \in F_{K_0}(f_1 \circ \dots \circ f_n)$. Since

$$f_i(x) = f_i((f_1 \circ \dots \circ f_n)(x)) = (f_1 \circ \dots \circ f_n)(f_i(x))$$

for any i , $f_i(x) \in F_{K_0}(f_1 \circ \dots \circ f_n)$, that is, $f_i(F_{K_0}(f_1 \circ \dots \circ f_n)) \subset F_{K_0}(f_1 \circ \dots \circ f_n)$. Next let $x_i = (f_1 \circ \dots \circ f_{i-1} \circ f_{i+1} \circ \dots \circ f_n)(x)$. Since

$$(f_1 \circ \dots \circ f_n)(x_i) = (f_1 \circ \dots \circ f_{i-1} \circ f_{i+1} \circ \dots \circ f_n)(x) = x_i,$$

it holds that $x_i \in F_{K_0}(f_1 \circ \dots \circ f_n)$. Moreover $f_i(x_i) = x$. Therefore $F_{K_0}(f_1 \circ \dots \circ f_n) \subset f_i(F_{K_0}(f_1 \circ \dots \circ f_n))$. Since K has the normal structure, there exists $x_0 \in K_0$ such that

$$\bigvee_{y \in K_0} |x_0 - y| < \bigvee_{x, y \in K_0} |x - y|.$$

Let

$$A = \left\{ x \left| x \in K_0, \bigvee_{y \in F_{K_0}(f_1 \circ \dots \circ f_n)} |x - y| \leq \bigvee_{y \in F_{K_0}(f_1 \circ \dots \circ f_n)} |x_0 - y| \right. \right\}.$$

A is non-empty and convex clearly. Moreover since X is Archimedean, A is closed and hence compact. Let $x \in A$. Then for any i and for any $y \in F_{K_0}(f_1 \circ \dots \circ f_n)$

$$|f_i(x) - y| = |f_i(x) - f_i(y_i)| \leq |x - y_i|$$

$$\begin{aligned} &\leq \bigvee_{y \in F_{K_0}(f_1 \circ \dots \circ f_n)} |x - y| \\ &\leq \bigvee_{y \in F_{K_0}(f_1 \circ \dots \circ f_n)} |x_0 - y| \end{aligned}$$

and hence $f_i(a) \in A$, that is, $f_i(A) \subset A$. Since K_0 is minimal, $A = K_0$. Therefore

$$\bigvee_{x, y \in F_{K_0}(f_1 \circ \dots \circ f_n)} |x - y| \leq \bigvee_{y \in F_{K_0}(f_1 \circ \dots \circ f_n)} |x_0 - y| < \bigvee_{x, y \in F_{K_0}(f_1 \circ \dots \circ f_n)} |x - y|.$$

It is a contradiction. Therefore K_0 only contains a unique point. The point is a common fixed point of $\{f_i \mid i = 1, \dots, n\}$. \square

Theorem 4.2. *Let X be a Hausdorff Archimedean vector lattice with unit, K a compact convex subset of X and $\{f_i \mid i \in I\}$ the commutative family of nonexpansive mappings from K into K . Suppose that there exists a homomorphism from X into \mathbf{R} satisfying the condition (H2)^s and K has the normal structure. Then $\bigcap_{i \in I} F_K(f_i)$ is non-empty.*

Proof. By Theorem 4.1 $\bigcap_{k=1}^n F_K(f_{i_k})$ is non-empty for any finite set $i_1, \dots, i_n \in I$. Since K is compact, $\bigcap_{i \in I} F_K(f_i)$ is non-empty. \square

Acknowledgements. The author is grateful to Professor Tamaki Tanaka for his suggestions and comments. Moreover the author got a lot of useful advice from Professor Wataru Takahashi, Professor Masashi Toyoda and Professor Toshikazu Watanabe.

REFERENCES

1. R. Cristescu, Topological Vector Spaces, Noordhoff International Publishing, Leyden, 1977.
2. T. Kawasaki, Denjoy integral and Henstock-Kurzweil integral in vector lattices, I, II, Czechoslovak Mathematical Journal 59 (2009), no. 2, 381–399, 401–417.
3. T. Kawasaki, M. Toyoda, and T. Watanabe, Fixed point theorem for set-valued mapping in a Riesz space, Memoirs of the Faculty of Engineering, Tamagawa University 44 (2009), 81–85 (in Japanese).
4. , Takahashis and Fan-Browders fixed point theorems in a vector lattice, Journal of Nonlinear and Convex Analysis 10 (2009), no. 3, 455–461.
5. , Schauder-Tychonoffs fixed point theorems in a vector lattice, Fixed Point Theory 11 (2009), no. 1, 37–44.
6. W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces, North-Holland, Amsterdam, 1971.
7. W. Takahashi, Fixed point, minimax, and Hahn-Banach theorems, Proceedings of the Symposium on Pure Mathematics 45 (1986), no. 2, 419–427.
8. , Nonlinear Functional Analysis. Fixed Points Theory and its Applications, Yokohama Publishers, Yokohama, 2000.
9. B. Z. Vulikh, Introduction to the Theory of Partially Orderd Spaces, Wolters-Noordhoff, Groningen, 1967.