Journal of Nonlinear Analysis and Optimization

Vol. 1 No. 1 (2010), 169-182

ISSN: 1906-9685

http://www.sci.nu.ac.th/jnao

Common Fixed Points of a New Three-Step Iteration with Errors of Asymptotically Quasi-Nonexpansive Nonself-Mappings in Banach spaces

Utith Inprasit^{1,2} and Hathaikarn Wattanataweekul^{1,2}

ABSTRACT: In this paper, we study a new three-step iterative scheme for approximating a common fixed point of three asymptotically quasi-nonexpansive nonself-mappings with errors and prove several strong and weak convergence results of the iterative sequences with errors in a uniformly convex Banach space. We also extend and improve some recent corresponding results in the literature.

1. Introduction

We assume that X is a normed space and C is a nonempty subset of X. A mapping $T:C\to C$ is said to be asymptotically nonexpansive [3] if there exists a sequence $\{k_n\}$ of real numbers with $k_n \geq 1$ and $\lim_{n \to \infty} k_n = 1$ such that $\|T^nx - T^ny\| \leq k_n\|x - y\|$ for all $x,y \in C$ and each $n \geq 1$. The class of asymptotically nonexpansive mappings is a natural generalization of the important class of nonexpansive mappings. Goebel and Kirk [3] proved that if C is a nonempty closed and bounded subset of a uniformly convex Banach space, then every asymptotically nonexpansive self-mapping has a fixed point. A mapping $T:C\to C$ is called asymptotically quasi-nonexpansive if $F(T)\neq \emptyset$ and there exists a sequence $\{k_n\}$ of real numbers with $k_n\geq 1$ and $\lim_{n\to\infty} k_n=1$ such that $\|T^nx-q\|\leq k_n\|x-q\|$ for all $x\in C, q\in F(T), n\geq 1$, where F(T) is the set of fixed points of T. The mapping T is called uniformly L-Lipschitzian if there exists a positive constant L such that $\|T^nx-T^ny\|\leq L\|x-y\|$ for all $x,y\in C$ and each $n\geq 1$. It is easy to see that an asymptotically nonexpansive mapping must be uniformly L-Lipschitzian as well as asymptotically quasi-nonexpansive but the converse does not hold.

In 2000, Noor [9] introduced a three-step iterative sequence and studied the approximate solutions of variational inclusions in Hilbert spaces. Glowinski and Le Tallec [4] applied three-step iterative sequences for finding the approximate solutions of the elastoviscoplasticity problem, eigenvalue problems and in the liquid crystal theory. It has been shown in [1], that three-step method performs better than two-step and one-step methods for solving variational inequalities. The three-step schemes are natural generalization of the splitting methods to solve partial differential equations; see, Noor [9, 10, 11]. This signifies that Noor three-step methods are robust and more efficient than the Mann (one-step) and Ishikawa (two-step) type

iterative methods to solve problems of pure and applied sciences.

In 2001, Khan and Takahashi [5] have approximated common fixed points of two asymptotically nonexpansive mappings by the modified Ishikawa iteration. Recently Shahzad and Udomene [15] established convergence theorems for the modified Ishikawa iteration process of two asymptotically quasi-non expansive mappings to a common fixed point of the mappings. For related results with error terms, we refer to [2, 6, 13] and [15].

The purpose of this paper is to establish strong and weak convergence theorems of a new three-step iteration for three asymptotically quasi-nonexpan sive non-self mappings in a uniformly convex Banach space. This scheme can be viewed as an extension of Xu and Noor [18], Suantai [16] and Nilsrakoo and Saejung [8].

Let X be a normed space. A subset C of X is said to be a *retract* of X if there exists a continuous map $P: X \to C$ such that Px = x for all $x \in C$. Every closed convex set of a uniformly convex Banach space is a retract. A map $P: X \to C$ is said to be a *retraction* if $P^2 = P$. It follows that if a map P is a retraction, then Py = y for all y in the range of P. A mapping $T: C \to X$ is said to be *asymptotically quasi-nonexpansive* if $F(T) \neq \emptyset$ and there exists a sequence $\{k_n\}$ of real numbers with $k_n \geq 1$ and $\lim_{n \to \infty} k_n = 1$ such that

$$||T(PT)^{n-1}x - q|| \le k_n ||x - q||$$

for all $x \in C$, $q \in F(T)$, $n \ge 1$, where F(T) is the set of fixed points of T and $(PT)^0 = I$, the identity operator on C.

The mapping $T: C \to X$ is called *uniformly L-Lipschitzian* if there exists a positive constant L such that

$$||T(PT)^{n-1}x - T(PT)^{n-1}y|| \le L||x - y||$$

for all $x, y \in C$ and $n \in \mathbb{N}$.

Let *C* be a nonempty closed convex subset of *X* and $P: X \to C$ a nonexpansive retraction of *X* onto *C*, and let $T_1, T_2, T_3: C \to X$ be asymptotically quasi-nonexpansive mappings and *F* is the set of all common fixed points of T_i i.e., $F = \bigcap_{i=1}^3 F(T_i)$, where $F(T_i) = \{x \in C: T_i x = x\}$ for all i = 1, 2, 3. Then, for arbitrary $x_1 \in C$, compute the sequences $\{x_n\}, \{y_n\}, \{z_n\}$ by the iterative scheme

$$z_{n} = P[a_{n}T_{1}(PT_{1})^{n-1}x_{n} + (1 - a_{n} - \delta_{n})x_{n} + \delta_{n}u_{n}],$$

$$y_{n} = P[b_{n}T_{2}(PT_{2})^{n-1}z_{n} + c_{n}T_{1}(PT_{1})^{n-1}x_{n} + (1 - b_{n} - c_{n} - \sigma_{n})x_{n} + \sigma_{n}v_{n}],$$

$$x_{n+1} = P[\alpha_{n}T_{3}(PT_{3})^{n-1}y_{n} + \beta_{n}T_{2}(PT_{2})^{n-1}z_{n} + \gamma_{n}T_{1}(PT_{1})^{n-1}x_{n}$$

$$+ (1 - \alpha_{n} - \beta_{n} - \gamma_{n} - \rho_{n})x_{n} + \rho_{n}w_{n}]$$
(1)

for all $n \ge 1$, where $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\}, \{\sigma_n\}, \{\rho_n\}$ are appropriate sequences in [0,1] and $\{u_n\}, \{v_n\}, \{w_n\}$ are bounded sequences in C.

Without errors ($\delta_n = \sigma_n = \rho_n \equiv 0$), and T_1, T_2, T_3 are self-maps of C, the iterative scheme (1) reduces to the following iterative scheme:

$$z_{n} = a_{n}T_{1}^{n}x_{n} + (1 - a_{n})x_{n},$$

$$y_{n} = b_{n}T_{2}^{n}x_{n} + c_{n}T_{1}^{n}x_{n} + (1 - b_{n} - c_{n})x_{n},$$

$$x_{n+1} = \alpha_{n}T_{3}^{n}y_{n} + \beta_{n}T_{2}^{n}x_{n} + \gamma_{n}T_{1}^{n}x_{n} + (1 - \alpha_{n} - \beta_{n} - \gamma_{n})x_{n}, \quad n \ge 1,$$

where $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$ are appropriate sequences in [0,1].

If $T := T_1 = T_2 = T_3$, then (2) reduces to the iterative scheme defined by Nilsrakoo and Saejung [8].

If $\gamma_n \equiv 0$ and $T := T_1 = T_2 = T_3$, then (2) reduces to the iterative scheme defined by Suantai [16].

If $c_n = \beta_n = \gamma_n \equiv 0$ and $T := T_1 = T_2 = T_3$, then (2) reduces to the iterative scheme defined by Xu and Noor [18].

If $a_n = b_n = c_n \equiv 0$, then (2) reduces to the following iterative scheme:

(3)
$$x_{n+1} = \alpha_n T_3^n x_n + \beta_n T_2^n x_n + \gamma_n T_1^n x_n + (1 - \alpha_n - \beta_n - \gamma_n) x_n$$

for all $n \ge 1$, where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are appropriate sequences in [0, 1].

To study strong and weak convergence theorems of the iterative scheme 1, we recall some useful well-known concepts and results.

Recall that a Banach space X is said to satisfy *Opial's condition* [12] if for each sequence $\{x_n\}$ and $x,y\in X$ with $x_n\to x$ weakly as $n\to\infty$ and $x\neq y$ imply that

$$\lim_{n\to\infty}\sup\|x_n-x\|<\lim_{n\to\infty}\sup\|x_n-y\|.$$

In what follows, we shall make use of the following lemmas.

Lemma 1.1. [17, Lemma 1]. Let $\{a_n\}$, $\{b_n\}$, $\{\delta_n\}$ be sequences of nonnegative real numbers satisfying the inequality

$$a_{n+1} \leq (1+\delta_n)a_n + b_n$$
 for all $n = 1, 2, \dots$

If
$$\sum_{n=1}^{\infty} \delta_n < \infty$$
 and $\sum_{n=1}^{\infty} b_n < \infty$, then

- (i) $\lim_{n\to\infty} a_n$ exists, and
- (ii) $\lim_{n\to\infty} a_n = 0$ whenever $\lim_{n\to\infty} \inf a_n = 0$.

Lemma 1.2. [7, Lemma 1.4]. Let X be a uniformly convex Banach space and let $B_r = \{x \in X : \|x\| \le r\}$, r > 0 be a closed ball of X. Then there exists a continuous, strictly increasing convex function $g: [0,\infty) \to [0,\infty)$, g(0) = 0 such that

$$\|\lambda x + \mu y + \xi z + \vartheta w\|^2 \le \lambda \|x\|^2 + \mu \|y\|^2 + \xi \|z\|^2 + \vartheta \|w\|^2 - \lambda \mu g(\|x - y\|)$$

for all $x, y, z, w \in B_r$ and all $\lambda, \mu, \xi, \vartheta \in [0, 1]$ with $\lambda + \mu + \xi + \vartheta = 1$.

Similar to Lemma 1.2, we can prove the next lemma.

Lemma 1.3. Let X be a uniformly convex Banach space and let B_r be a closed ball of X. Then there exists a continuous, strictly increasing convex function $g:[0,\infty)\to[0,\infty)$, g(0)=0 such that

$$\|\lambda x + \mu y + \xi z + \vartheta w + \zeta s\|^2 \le \lambda \|x\|^2 + \mu \|y\|^2 + \xi \|z\|^2 + \vartheta \|w\|^2 + \zeta \|s\|^2 - \lambda \mu g(\|x - y\|)$$
 for all $x, y, z, w, s \in B_r$ and all $\lambda, \mu, \xi, \vartheta, \zeta \in [0, 1]$ with $\lambda + \mu + \xi + \vartheta + \zeta = 1$.

Lemma 1.4. [16, Lemma 2.7]. Let X be a Banach space which satisfies Opial's condition and let $\{x_n\}$ be a sequence in X. Let $u, v \in X$ be so that $\lim_{n\to\infty} \|x_n - u\|$ and $\lim_{n\to\infty} \|x_n - v\|$ exist. If $\{x_{n_k}\}$ and $\{x_{m_k}\}$ are subsequences of $\{x_n\}$ which converge weakly to u and v, respectively, then u = v.

2. Main Results

In this section, we prove strong and weak convergence theorems for the iterative scheme (1) for asymptotically quasi-nonexpansive nonself-mappings in a Banach space. In order to prove our main results, the following lemmas are needed.

Lemma 2.1. Let X be a uniformly convex Banach space and C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T_1, T_2, T_3 : C \to X$ be asymptotically quasi-nonexpansive mappings with respect to sequences $\{k_n\}, \{l_n\}, \{m_n\}$, respectively, such that $F \neq \emptyset$, $k_n \geq 1$, $l_n \geq 1$, $m_n \geq 1$, $\sum\limits_{n=1}^{\infty} (k_n - 1) < \infty$, $\sum\limits_{n=1}^{\infty} (l_n - 1) < \infty$ $\sum\limits_{n=1}^{\infty} (m_n - 1) < \infty$. Let $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\}, \{\sigma_n\}, \{\rho_n\}$ be real sequences in [0,1] such that $a_n + \delta_n$, $b_n + c_n + \sigma_n$ and $\alpha_n + \beta_n + \gamma_n + \rho_n$ are in [0,1] for all $n \geq 1$, $\sum\limits_{n=1}^{\infty} \delta_n < \infty$, $\sum\limits_{n=1}^{\infty} \sigma_n < \infty$, and let $\{u_n\}, \{v_n\}, \{w_n\}$ be bounded sequences in C. For a given $x_1 \in C$, let $\{x_n\}, \{y_n\}, \{z_n\}$ be the

sequences defined as in (1). Then

- $\lim \|x_n q\|$ exists for all $q \in F$. (i)
- If one of the following conditions (a), (b), (c) and (d) holds, then (ii) $\lim ||T_1(PT_1)^{n-1}x_n - x_n|| = 0.$
 - (a) $\lim_{n\to\infty} \inf \beta_n > 0$ and $0 < \lim_{n\to\infty} \inf a_n \le \lim_{n\to\infty} \sup(a_n + \delta_n) < 1$.
 - $(b) \lim_{n \to \infty} \inf \alpha_n, \lim_{n \to \infty} \inf b_n > 0 \text{ and } 0 < \lim_{n \to \infty} \inf a_n \le \lim_{n \to \infty} \sup(a_n + \delta_n) < 1.$ $(c) 0 < \lim_{n \to \infty} \inf \gamma_n \le \lim_{n \to \infty} \sup(\alpha_n + \beta_n + \gamma_n + \rho_n) < 1.$
- $(d) \ 0 < \lim_{n \to \infty} \inf \alpha_n \text{ and } 0 < \lim_{n \to \infty} \inf c_n \le \lim_{n \to \infty} \sup(b_n + c_n + \sigma_n) < 1.$ $(iii) \quad \text{If either } (a) \ 0 < \lim_{n \to \infty} \inf \beta_n \le \lim_{n \to \infty} \sup(\alpha_n + \beta_n + \gamma_n + \rho_n) < 1$ $\quad \text{or } (b) \lim_{n \to \infty} \inf \alpha_n > 0 \text{ and } 0 < \lim_{n \to \infty} \inf b_n \le \lim_{n \to \infty} \sup(b_n + c_n + \sigma_n) < 1,$ $\quad \text{then } \lim_{n \to \infty} ||T_2(PT_2)^{n-1}z_n z_n|| = 0.$
- (iv) If $0 < \lim_{n \to \infty} \inf \alpha_n \le \lim_{n \to \infty} \sup(\alpha_n + \beta_n + \gamma_n + \rho_n) < 1$, then $\lim_{n \to \infty} ||T_3(PT_3)^{n-1}y_n x_n|| = 0$.

Proof. (i) Let $q \in F$. By (1), we obtain

$$||z_{n}-q|| = ||P[a_{n}T_{1}(PT_{1})^{n-1}x_{n} + (1-a_{n}-\delta_{n})x_{n} + \delta_{n}u_{n}] - P(q)||$$

$$\leq a_{n}||T_{1}(PT_{1})^{n-1}x_{n} - q|| + (1-a_{n}-\delta_{n})||x_{n} - q|| + \delta_{n}||u_{n} - q||$$

$$\leq (1+a_{n}(k_{n}-1)-\delta_{n})||x_{n} - q|| + \delta_{n}||u_{n} - q||$$

and

$$||y_{n} - q|| = ||P[b_{n}T_{2}(PT_{2})^{n-1}z_{n} + c_{n}T_{1}(PT_{1})^{n-1}x_{n} + (1 - b_{n} - c_{n} - \sigma_{n})x_{n} + \sigma_{n}v_{n}] - P(q)||$$

$$\leq b_{n}||T_{2}(PT_{2})^{n-1}z_{n} - q|| + c_{n}||T_{1}(PT_{1})^{n-1}x_{n} - q||$$

$$+ (1 - b_{n} - c_{n} - \sigma_{n})||x_{n} - q|| + \sigma_{n}||v_{n} - q||$$

$$\leq b_{n}l_{n}||z_{n} - q|| + c_{n}k_{n}||x_{n} - q|| + (1 - b_{n} - c_{n} - \sigma_{n})||x_{n} - q||$$

$$+ \sigma_{n}||v_{n} - q||.$$
(5)

By (4) and (5), we obtain

$$\begin{split} \|x_{n+1} - q\| &= \|P[\alpha_n T_3 (PT_3)^{n-1} y_n + \beta_n T_2 (PT_2)^{n-1} z_n + \gamma_n T_1 (PT_1)^{n-1} x_n \\ &+ (1 - \alpha_n - \beta_n - \gamma_n - \rho_n) x_n + \rho_n w_n] - P(q)\| \\ &\leq \alpha_n \|T_3 (PT_3)^{n-1} y_n - q\| + \beta_n \|T_2 (PT_2)^{n-1} z_n - q\| \\ &+ \gamma_n \|T_1 (PT_1)^{n-1} x_n - q\| + (1 - \alpha_n - \beta_n - \gamma_n - \rho_n) \|x_n - q\| \\ &+ \rho_n \|w_n - q\| \\ &\leq \alpha_n m_n \|y_n - q\| + \beta_n l_n \|z_n - q\| + \gamma_n k_n \|x_n - q\| \\ &+ (1 - \alpha_n - \beta_n - \gamma_n - \rho_n) \|x_n - q\| + \rho_n \|w_n - q\| \\ &\leq (\alpha_n m_n b_n l_n + \beta_n l_n) \|z_n - q\| + \alpha_n m_n c_n k_n \|x_n - q\| \\ &+ (\alpha_n m_n - \alpha_n m_n b_n - \alpha_n m_n c_n - \alpha_n m_n \sigma_n) \|x_n - q\| \\ &+ (\alpha_n m_n \sigma_n \|v_n - q\| + \gamma_n k_n \|x_n - q\| \\ &+ (1 - \alpha_n - \beta_n - \gamma_n - \rho_n) \|x_n - q\| + \rho_n \|w_n - q\| \\ &\leq \|x_n - q\| + ((l_n - 1)(\alpha_n m_n b_n + \beta_n) + (k_n - 1)(\gamma_n + \alpha_n m_n c_n) \\ &+ (\alpha_n m_n b_n l_n + \beta_n l_n) a_n) + \alpha_n (m_n - 1)) \|x_n - q\| \\ &+ (m_n l_n + l_n) \delta_n \|u_n - q\| + m_n \sigma_n \|v_n - q\| + \rho_n \|w_n - q\|. \end{split}$$

Since $\{l_n\}$, $\{m_n\}$, $\{u_n\}$, $\{v_n\}$, $\{w_n\}$ are bounded, there exists a constant K > 0 such that $\alpha_n m_n b_n + \beta_n \leq K$, $\gamma_n + \alpha_n m_n c_n + (\alpha_n m_n b_n l_n + \beta_n l_n) a_n \leq K$, $(m_n l_n + l_n) \|u_n - q\| \leq K$, $m_n \|v_n - q\| \leq K$, $\|w_n - q\| \leq K$ and $\alpha_n \leq K$ for all $n \geq 1$. Then

$$||x_{n+1} - q|| \le \left(1 + K((k_n - 1) + (l_n - 1) + (m_n - 1))\right) ||x_n - q|| + K(\delta_n + \sigma_n + \rho_n)$$
(6)

By Lemma 1.1, we obtain $\lim_{n\to\infty} ||x_n - q||$ exists.

Next, we want to prove (ii), (iii) and (iv). It follows from (i) that $\{x_n - q\}$, $\{T_1(PT_1)^{n-1}x_n - q\}$, $\{y_n - q\}$, $\{T_3(PT_3)^{n-1}y_n - q\}$, $\{z_n - q\}$ and $\{T_2(PT_2)^{n-1}z_n - q\}$ are all bounded. Let

$$M = \max \Big\{ \sup_{n \ge 1} \|x_n - q\|, \sup_{n \ge 1} \|T_1(PT_1)^{n-1}x_n - q\|, \sup_{n \ge 1} \|y_n - q\|, \sup_{n \ge 1} \|T_3(PT_3)^{n-1}y_n - q\|, \sup_{n \ge 1} \|z_n - q\|, \sup_{n \ge 1} \|u_n - q\|, \sup_{n \ge 1} \|T_2(PT_2)^{n-1}z_n - q\|, \sup_{n \ge 1} \|v_n - q\|, \sup_{n \ge 1} \|w_n - q\| \Big\}.$$

By Lemma 1.3, there exists a continuous, strictly increasing convex function $g:[0,\infty)\to[0,\infty)$ with g(0)=0 such that

(7)
$$\|\lambda x + \mu y + \xi z + \vartheta w + \zeta s\|^{2} \le \lambda \|x\|^{2} + \mu \|y\|^{2} + \xi \|z\|^{2} + \vartheta \|w\|^{2} + \zeta \|s\|^{2} - \lambda \mu g(\|x - y\|)$$

for all $x, y, z, w, s \in B_r$ and all $\lambda, \mu, \xi, \vartheta, \zeta \in [0, 1]$ with $\lambda + \mu + \xi + \vartheta + \zeta = 1$. By (7), we have

$$||z_{n} - q||^{2} = ||P[a_{n}T_{1}(PT_{1})^{n-1}x_{n} + (1 - a_{n} - \delta_{n})x_{n} + \delta_{n}u_{n}] - P(q)||^{2}$$

$$\leq ||a_{n}(T_{1}(PT_{1})^{n-1}x_{n} - q) + (1 - a_{n} - \delta_{n})(x_{n} - q) + \delta_{n}(u_{n} - q)||^{2}$$

$$\leq a_{n}||T_{1}(PT_{1})^{n-1}x_{n} - q||^{2} + (1 - a_{n} - \delta_{n})||x_{n} - q||^{2}$$

$$+ \delta_{n}||u_{n} - q||^{2} - a_{n}(1 - a_{n} - \delta_{n})g(||T_{1}(PT_{1})^{n-1}x_{n} - x_{n}||)$$

$$\leq a_{n}k_{n}^{2}||x_{n} - q||^{2} + (1 - a_{n} - \delta_{n})||x_{n} - q||^{2} + \delta_{n}||u_{n} - q||^{2}$$

$$- a_{n}(1 - a_{n} - \delta_{n})g(||T_{1}(PT_{1})^{n-1}x_{n} - x_{n}||)$$

$$\leq (1 + a_{n}(k_{n}^{2} - 1) - \delta_{n})||x_{n} - q||^{2} + \delta_{n}||u_{n} - q||^{2}$$

$$(8)$$

and

$$||y_{n} - q||^{2} = ||P[b_{n}T_{2}(PT_{2})^{n-1}z_{n} + c_{n}T_{1}(PT_{1})^{n-1}x_{n} + (1 - b_{n} - c_{n} - \sigma_{n})$$

$$x_{n} + \sigma_{n}v_{n}] - P(q)||^{2}$$

$$\leq ||b_{n}(T_{2}(PT_{2})^{n-1}z_{n} - q) + c_{n}(T_{1}(PT_{1})^{n-1}x_{n} - q)$$

$$+ (1 - b_{n} - c_{n} - \sigma_{n})(x_{n} - q) + \sigma_{n}(x_{n} - q)||^{2}$$

$$\leq b_{n}||T_{2}(PT_{2})^{n-1}z_{n} - q||^{2} + (1 - b_{n} - c_{n} - \sigma_{n})||x_{n} - q||^{2}$$

$$+ c_{n}||T_{1}(PT_{1})^{n-1}x_{n} - q||^{2} + \sigma_{n}||v_{n} - q||^{2}$$

$$- b_{n}(1 - b_{n} - c_{n} - \sigma_{n})g(||T_{2}(PT_{2})^{n-1}z_{n} - x_{n}||)$$

$$\leq b_{n}l_{n}^{2}||z_{n} - q||^{2} + (1 - b_{n} - c_{n} - \sigma_{n})||x_{n} - q||^{2} + c_{n}k_{n}^{2}||x_{n} - q||^{2}$$

$$+ \sigma_{n}||v_{n} - q||^{2} - b_{n}(1 - b_{n} - c_{n} - \sigma_{n})g(||T_{2}(PT_{2})^{n-1}z_{n} - x_{n}||)$$

$$(9)$$

By (7), (8) and (9), we obtain

$$\begin{split} \|x_{n+1} - q\|^2 &= \|P[\alpha_n T_3(PT_3)^{n-1}y_n + \beta_n T_2(PT_2)^{n-1}z_n + \gamma_n T_1(PT_1)^{n-1}x_n \\ &+ (1 - \alpha_n - \beta_n - \gamma_n - \rho_n)x_n + \rho_n w_n| - P(q)\|^2 \\ &\leq \alpha_n \|T_3(PT_3)^{n-1}y_n - q\|^2 + \beta_n \|T_2(PT_2)^{n-1}z_n - q\|^2 \\ &+ \gamma_n \|T_1(PT_1)^{n-1}x_n - q\|^2 + (1 - \alpha_n - \beta_n - \gamma_n - \rho_n)\|x_n - q\|^2 \\ &- \alpha_n (1 - \alpha_n - \beta_n - \gamma_n - \rho_n)g(\|T_3(PT_3)^{n-1}y_n - x_n\|) \\ &+ \rho_n \|w_n - q\|^2 \\ &\leq \alpha_n m_n^2 \|y_n - q\|^2 + \beta_n l_n^2 \|z_n - q\|^2 + \gamma_n k_n^2 \|x_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &+ (1 - \alpha_n - \beta_n - \gamma_n - \rho_n)g(\|T_3(PT_3)^{n-1}y_n - x_n\|) \\ &\leq \alpha_n (1 - \alpha_n - \beta_n - \gamma_n - \rho_n)g(\|T_3(PT_3)^{n-1}y_n - x_n\|) \\ &\leq \alpha_n m_n^2 c_n k_n^2 \|x_n - q\|^2 + \alpha_n m_n^2 (1 - b_n - c_n - \sigma_n)\|x_n - q\|^2 \\ &+ \gamma_n k_n^2 \|x_n - q\|^2 + (1 - \alpha_n - \beta_n - \gamma_n - \rho_n)\|x_n - q\|^2 \\ &+ (\alpha_n m_n^2 b_n l_n^2 + \beta_n l_n^2)\|z_n - q\|^2 + \alpha_n m_n^2 \sigma_n \|v_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &- \alpha_n m_n^2 b_n (1 - b_n - c_n - \sigma_n)g(\|T_3(PT_3)^{n-1}y_n - x_n\|) \\ &\leq \alpha_n m_n^2 c_n k_n^2 \|x_n - q\|^2 + \alpha_n m_n^2 (1 - b_n - c_n)\|x_n - q\|^2 \\ &+ \gamma_n k_n^2 \|x_n - q\|^2 + (1 - \alpha_n - \beta_n - \gamma_n)\|x_n - q\|^2 + (\alpha_n m_n^2 b_n l_n^2 + \beta_n l_n^2)\|x_n - q\|^2 + (\alpha_n m_n^2 b_n l_n^2 + \beta_n l_n^2)(a_n (k_n^2 - 1))\|x_n - q\|^2 \\ &+ (\alpha_n m_n^2 b_n l_n^2 + \beta_n l_n^2)a_n (1 - a_n - \delta_n)g(\|T_1(PT_1)^{n-1}x_n - x_n\|) \\ &+ (m_n^2 l_n^2 + l_n^2)\delta_n \|u_n - q\|^2 + m_n^2 \sigma_n \|v_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &- \alpha_n m_n^2 b_n (1 - b_n - c_n - \sigma_n)g(\|T_3(PT_3)^{n-1}y_n - x_n\|) \\ &= \|x_n - q\|^2 + ((k_n^2 - 1)(\alpha_n m_n^2 c_n + \gamma_n + (\alpha_n m_n^2 b_n l_n^2 + \beta_n l_n^2)a_n) \\ &+ (l_n^2 - 1)(\alpha_n m_n^2 b_n + \beta_n) + \alpha_n (m_n^2 - 1))\|x_n - q\|^2 \\ &+ (m_n^2 l_n^2 + l_n^2)\delta_n \|u_n - q\|^2 + m_n^2 \sigma_n \|v_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &- \alpha_n m_n^2 b_n (1 - b_n - c_n - \sigma_n)g(\|T_3(PT_3)^{n-1}y_n - x_n\|) \\ &- \beta_n l_n^2 a_n (1 - a_n - \delta_n)g(\|T_1(PT_1)^{n-1}x_n - x_n\|) \\ &- \beta_n l_n^2 a_n (1 - a_n - \delta_n)g(\|T_1(PT_1)^{n-1}x_n - x_n\|) \\ &- \alpha_n m_n^2 b_n (1 - b_n - c_n - \sigma_n)g(\|T_2(PT_2)^{n-1}z_n - x_n\|) \\ &- \alpha_n m_n^2 b_n (1 - b_n - c_n - \sigma_n)g(\|T_3(PT_3)^{n-1}y_n - x_n\|) \\ &- \alpha_n m_n^2 b_n (1 - b_n - c_n - \sigma_n)g(\|T_3(P$$

Since $\{k_n\}$, $\{l_n\}$, $\{m_n\}$, $\{u_n\}$, $\{v_n\}$, $\{w_n\}$ are bounded and $\{x_n\}$ is bounded, there exist constants $K_0 > 0$ such that

$$(\alpha_{n}m_{n}^{2}c_{n} + \gamma_{n} + (\alpha_{n}m_{n}^{2}b_{n}l_{n}^{2} + \beta_{n}l_{n}^{2})a_{n})\|x_{n} - q\|^{2} \leq K_{0},$$

$$(\alpha_{n}m_{n}^{2}b_{n} + \beta_{n})\|x_{n} - q\|^{2} \leq K_{0}, \alpha_{n}\|x_{n} - q\|^{2} \leq K_{0}, (m_{n}^{2}l_{n}^{2} + l_{n}^{2})\|u_{n} - q\|^{2} \leq K_{0},$$

$$m_{n}^{2}\|v_{n} - q\|^{2} \leq K_{0} \text{ and } \|w_{n} - q\|^{2} \leq K_{0} \text{ for all } n \geq 1. \text{ Thus}$$

$$\alpha_{n}m_{n}^{2}b_{n}l_{n}^{2}a_{n}(1 - a_{n} - \delta_{n})g(||T_{1}(PT_{1})^{n-1}x_{n} - x_{n}||) \leq ||x_{n} - q||^{2} - ||x_{n+1} - q||^{2} + K_{0}((k_{n}^{2} - 1) + (l_{n}^{2} - 1) + (m_{n}^{2} - 1)) + K_{0}(\delta_{n} + \sigma_{n} + \rho_{n}).$$

$$\beta_{n}l_{n}^{2}a_{n}(1 - a_{n} - \delta_{n})g(||T_{1}(PT_{1})^{n-1}x_{n} - x_{n}||) \leq ||x_{n} - q||^{2} - ||x_{n+1} - q||^{2} + K_{0}((k_{n}^{2} - 1) + (l_{n}^{2} - 1) + (m_{n}^{2} - 1)) + K_{0}((k_{n}^{2} - 1) + (l_{n}^{2} - 1) + (m_{n}^{2} - 1)) + K_{0}(\delta_{n} + \sigma_{n} + \rho_{n}).$$
(11)

$$\alpha_{n}m_{n}^{2}b_{n}(1-b_{n}-c_{n}-\sigma_{n})g(\|T_{2}(PT_{2})^{n-1}z_{n}-x_{n}\|) \leq \|x_{n}-q\|^{2}-\|x_{n+1}-q\|^{2} + K_{0}((k_{n}^{2}-1)+(l_{n}^{2}-1)+(m_{n}^{2}-1)) + K_{0}(\delta_{n}+\sigma_{n}+\rho_{n}).$$

$$(12) + K_{0}(\delta_{n}+\sigma_{n}+\rho_{n}).$$

$$\alpha_{n}(1-\alpha_{n}-\beta_{n}-\gamma_{n}-\rho_{n})g(\|T_{3}(PT_{3})^{n-1}y_{n}-x_{n}\|) \leq \|x_{n}-q\|^{2}-\|x_{n+1}-q\|^{2} + K_{0}((k_{n}^{2}-1)+(l_{n}^{2}-1)+(m_{n}^{2}-1)) + K_{0}(\delta_{n}+\sigma_{n}+\rho_{n}).$$

$$(13)$$

Again (7), we obtain

$$||y_{n}-q||^{2} = ||P[b_{n}T_{2}(PT_{2})^{n-1}z_{n} + c_{n}T_{1}(PT_{1})^{n-1}x_{n} + (1-b_{n}-c_{n}-\sigma_{n})x_{n} + \sigma_{n}v_{n}] - P(q)||^{2}$$

$$\leq c_{n}||T_{1}(PT_{1})^{n-1}x_{n} - q||^{2} + (1-b_{n}-c_{n}-\sigma_{n})||x_{n}-q||^{2} + b_{n}||T_{2}(PT_{2})^{n-1}z_{n} - q||^{2} + \sigma_{n}||v_{n}-q||^{2} - c_{n}(1-b_{n}-c_{n}-\sigma_{n})g(||T_{1}(PT_{1})^{n-1}x_{n}-x_{n}||)$$

$$\leq c_{n}k_{n}^{2}||x_{n}-q||^{2} + (1-b_{n}-c_{n}-\sigma_{n})||x_{n}-q||^{2} + b_{n}l_{n}^{2}||z_{n}-q||^{2} + \sigma_{n}||v_{n}-q||^{2} - c_{n}(1-b_{n}-c_{n}-\sigma_{n})g(||T_{1}(PT_{1})^{n-1}x_{n}-x_{n}||)$$

$$(14)$$

By (7), (8) and (14), we have

$$\begin{split} \|x_{n+1} - q\|^2 &= \|P[\alpha_n T_3(PT_3)^{n-1} y_n + \beta_n T_2(PT_2)^{n-1} z_n + \gamma_n T_1(PT_1)^{n-1} x_n \\ &\quad + (1 - \alpha_n - \beta_n - \gamma_n - \rho_n) x_n + \rho_n w_n] - P(q)\|^2 \\ &\leq \alpha_n \|T_3(PT_3)^{n-1} y_n - q\|^2 + \beta_n \|T_2(PT_2)^{n-1} z_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &\quad + \gamma_n \|T_1(PT_1)^{n-1} x_n - q\|^2 + (1 - \alpha_n - \beta_n - \gamma_n - \rho_n) \|x_n - q\|^2 \\ &\quad - \beta_n (1 - \alpha_n - \beta_n - \gamma_n - \rho_n) g (\|T_2(PT_2)^{n-1} z_n - x_n\|) \\ &\leq \alpha_n m_n^2 \|y_n - q\|^2 + \beta_n l_n^2 \|z_n - q\|^2 + \gamma_n k_n^2 \|x_n - q\|^2 \\ &\quad + \rho_n \|w_n - q\|^2 + (1 - \alpha_n - \beta_n - \gamma_n - \rho_n) \|x_n - q\|^2 \\ &\quad + \beta_n (1 - \alpha_n - \beta_n - \gamma_n - \rho_n) g (\|T_2(PT_2)^{n-1} z_n - x_n\|) \\ &\leq \alpha_n m_n^2 c_n k_n^2 \|x_n - q\|^2 + \alpha_n m_n^2 (1 - b_n - c_n - \alpha_n) \|x_n - q\|^2 \\ &\quad + \gamma_n k_n^2 \|x_n - q\|^2 + (1 - \alpha_n - \beta_n - \gamma_n - \rho_n) \|x_n - q\|^2 \\ &\quad + \gamma_n k_n^2 \|x_n - q\|^2 + (1 - \alpha_n - \beta_n - \gamma_n - \rho_n) \|x_n - q\|^2 \\ &\quad + (\alpha_n m_n^2 b_n l_n^2 + \beta_n l_n^2) \|z_n - q\|^2 + \alpha_n m_n^2 \sigma_n \|v_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &\quad - \alpha_n m_n^2 c_n (1 - b_n - c_n - \sigma_n) g (\|T_1(PT_1)^{n-1} x_n - x_n\|) \\ &\leq \alpha_n m_n^2 c_n k_n^2 \|x_n - q\|^2 + \alpha_n m_n^2 (1 - b_n - c_n) \|x_n - q\|^2 \\ &\quad + \gamma_n k_n^2 \|x_n - q\|^2 + (1 - \alpha_n - \beta_n - \gamma_n) \|x_n - q\|^2 + (\alpha_n m_n^2 b_n l_n^2 + \beta_n l_n^2) \|a_n - q\|^2 + (\alpha_n m_n^2 b_n l_n^2 + \beta_n l_n^2) \|a_n - q\|^2 + (\alpha_n m_n^2 b_n l_n^2 + \beta_n l_n^2) \|a_n - q\|^2 + (\alpha_n m_n^2 b_n l_n^2 + \beta_n l_n^2) \|a_n - q\|^2 + \alpha_n m_n^2 c_n (1 - b_n - c_n - \sigma_n) g (\|T_1(PT_1)^{n-1} x_n - x_n\|) \\ &= \|x_n - q\|^2 + ((k_n^2 - 1)(\alpha_n m_n^2 c_n + \gamma_n + (\alpha_n m_n^2 b_n l_n^2 + \beta_n l_n^2) a_n) \\ &\quad + (l_n^2 - 1)(\alpha_n m_n^2 b_n + \beta_n) + \alpha_n (m_n^2 - 1) \|x_n - q\|^2 \\ &\quad + (m_n^2 l_n^2 + l_n^2) \delta_n \|u_n - q\|^2 + m_n^2 \sigma_n \|v_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &\quad + (m_n^2 l_n^2 + l_n^2) \delta_n \|u_n - q\|^2 + m_n^2 \sigma_n \|v_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &\quad + (m_n^2 l_n^2 + l_n^2) \delta_n \|u_n - q\|^2 + m_n^2 \sigma_n \|v_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &\quad - \alpha_n m_n^2 c_n (1 - b_n - c_n - \sigma_n) g (\|T_1(PT_1)^{n-1} z_n - z_n\|) \\ &= \theta_n (1 - \alpha_n - \beta_n - \gamma_n - \rho_n) g (\|T_2(PT_2)^{n-1} z_n - z_n\|) \end{aligned}$$

Thus

$$\alpha_{n}m_{n}^{2}c_{n}(1-b_{n}-c_{n}-\sigma_{n})g(\|T_{1}(PT_{1})^{n-1}x_{n}-x_{n}\|) \leq \|x_{n}-q\|^{2}-\|x_{n+1}-q\|^{2} + K_{0}((k_{n}^{2}-1)+(l_{n}^{2}-1)+(m_{n}^{2}-1)) + K_{0}(\delta_{n}+\sigma_{n}+\rho_{n}).$$
(15)

$$\beta_{n}(1-\alpha_{n}-\beta_{n}-\gamma_{n}-\rho_{n})g(\|T_{2}(PT_{2})^{n-1}z_{n}-x_{n}\|) \leq \|x_{n}-q\|^{2}-\|x_{n+1}-q\|^{2} + K_{0}((k_{n}^{2}-1)+(l_{n}^{2}-1)+(m_{n}^{2}-1)) + K_{0}(\delta_{n}+\sigma_{n}+\rho_{n}).$$
(16)

By (7), (8) and (9), we obtain

$$\begin{split} \|x_{n+1} - q\|^2 &= \|P[\alpha_n T_3(PT_3)^{n-1}y_n + \beta_n T_2(PT_2)^{n-1}z_n + \gamma_n T_1(PT_1)^{n-1}x_n \\ &\quad + (1 - \alpha_n - \beta_n - \gamma_n - \rho_n)x_n + \rho_n w_n] - P(q)\|^2 \\ &\leq \gamma_n \|T_1(PT_1)^{n-1}x_n - q\|^2 + \alpha_n \|T_3(PT_3)^{n-1}y_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &\quad + (1 - \alpha_n - \beta_n - \gamma_n - \rho_n)\|x_n - q\|^2 + \beta_n \|T_2(PT_2)^{n-1}z_n - q\|^2 \\ &\quad - \gamma_n (1 - \alpha_n - \beta_n - \gamma_n - \rho_n)g(\|T_1(PT_1)^{n-1}x_n - x_n\|) \\ &\leq \gamma_n k_n^2 \|x_n - q\|^2 + \alpha_n m_n^2 \|y_n - q\|^2 + \beta_n l_n^2 \|z_n - q\|^2 \\ &\quad + \rho_n \|w_n - q\|^2 + (1 - \alpha_n - \beta_n - \gamma_n - \rho_n)\|x_n - q\|^2 \\ &\quad - \gamma_n (1 - \alpha_n - \beta_n - \gamma_n - \rho_n)g(\|T_1(PT_1)^{n-1}x_n - x_n\|) \\ &\leq \gamma_n k_n^2 \|x_n - q\|^2 + \beta_n l_n^2 \|z_n - q\|^2 + \alpha_n m_n^2 \sigma_n \|v_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &\quad + \alpha_n m_n^2 b_n l_n^2 \|z_n - q\|^2 + \alpha_n m_n^2 (1 - b_n - c_n - \sigma_n)\|x_n - q\|^2 \\ &\quad + \alpha_n m_n^2 c_n k_n^2 \|x_n - q\|^2 + (1 - \alpha_n - \beta_n - \gamma_n - \rho_n)\|x_n - q\|^2 \\ &\quad + \alpha_n m_n^2 c_n k_n^2 \|x_n - q\|^2 + (1 - \alpha_n - \beta_n - \gamma_n - \rho_n)\|x_n - q\|^2 \\ &\quad + (\alpha_n m_n^2 b_n l_n^2 + \beta_n l_n^2)\|x_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &\quad + ((\alpha_n m_n^2 b_n l_n^2 + \beta_n l_n^2)\|x_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &\quad + (1 - \alpha_n - \beta_n - \gamma_n)\|x_n - q\|^2 + \alpha_n m_n^2 (1 - b_n - c_n)\|x_n - q\|^2 \\ &\quad + (1 - \alpha_n - \beta_n - \gamma_n)\|x_n - q\|^2 + \alpha_n m_n^2 (1 - b_n - c_n)\|x_n - q\|^2 \\ &\quad + (1 - \alpha_n - \beta_n - \gamma_n - \rho_n)g(\|T_1(PT_1)^{n-1}x_n - x_n\|) \\ &= \|x_n - q\|^2 + ((k_n^2 - 1)(\alpha_n m_n^2 c_n + \gamma_n + (\alpha_n m_n^2 b_n l_n^2 + \beta_n l_n^2)a_n) \\ &\quad + (l_n^2 - 1)(\alpha_n m_n^2 b_n + \beta_n) + \alpha_n (m_n^2 - 1))\|x_n - q\|^2 \\ &\quad + (m_n^2 l_n^2 + l_n^2)\delta_n \|u_n - q\|^2 + m_n^2 \sigma_n \|v_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &\quad + (m_n^2 l_n^2 + l_n^2)\delta_n \|u_n - q\|^2 + m_n^2 \sigma_n \|v_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &\quad + (m_n^2 l_n^2 + l_n^2)\delta_n \|u_n - q\|^2 + m_n^2 \sigma_n \|v_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &\quad + (m_n^2 l_n^2 + l_n^2)\delta_n \|u_n - q\|^2 + m_n^2 \sigma_n \|v_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &\quad + (m_n^2 l_n^2 + l_n^2)\delta_n \|u_n - q\|^2 + m_n^2 \sigma_n \|v_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &\quad + (m_n^2 l_n^2 + l_n^2)\delta_n \|u_n - q\|^2 + m_n^2 \sigma_n \|v_n - q\|^2 + \rho_n \|w_n - q\|^2 \\ &\quad + (m_n^2 l_n^2 + l_n^2)\delta_n \|u_n - q\|^2 + m_n^2 \sigma_n \|v_n - q\|$$

Thus

$$\gamma_{n}(1 - \alpha_{n} - \beta_{n} - \gamma_{n} - \rho_{n})g(\|T_{1}(PT_{1})^{n-1}x_{n} - x_{n}\|) \leq \|x_{n} - q\|^{2} - \|x_{n+1} - q\|^{2} + K_{0}((k_{n}^{2} - 1) + (l_{n}^{2} - 1) + (m_{n}^{2} - 1)) + K_{0}(\delta_{n} + \sigma_{n} + \rho_{n}).$$

$$(17)$$

(ii) (a) Let $\lim_{n\to\infty}\inf\beta_n>0$ and $0<\lim_{n\to\infty}\inf a_n\leq \lim_{n\to\infty}\sup(a_n+\delta_n)<1$. Then there exists a positive integer n_0 and $\eta,\eta'\in(0,1)$ such that $0<\eta<\beta_n$, $0<\eta< a_n$ and $a_n+\delta_n<\eta'<1$

for all $n \ge n_0$. This implies by (11) that

$$\eta^{2}(1-\eta')g(\|T_{1}(PT_{1})^{n-1}x_{n}-x_{n}\|) \leq \|x_{n}-q\|^{2}-\|x_{n+1}-q\|^{2} + K_{0}((k_{n}^{2}-1)+(l_{n}^{2}-1)+(m_{n}^{2}-1)) + K_{0}(\delta_{n}+\sigma_{n}+\rho_{n})$$
(18)

for all $n \ge n_0$. It follows from (18) that for $r \ge n_0$,

$$\sum_{n=n_0}^{r} g\Big(\|T_1(PT_1)^{n-1}x_n - x_n\|\Big) \leq \frac{1}{\eta^2(1-\eta')} \Big(\sum_{n=n_0}^{r} (\|x_n - q\|^2 - \|x_{n+1} - q\|^2) + K_0 \sum_{n=n_0}^{r} ((k_n^2 - 1) + (l_n^2 - 1) + (m_n^2 - 1) + \delta_n + \sigma_n + \rho_n)\Big) \\
\leq \frac{1}{\eta^2(1-\eta')} \Big(\|x_{n_0} - q\|^2 + K_0 \sum_{n=n_0}^{r} ((k_n^2 - 1) + (l_n^2 - 1) + (l_n^2 - 1))\Big).$$
(19)

Since $0 \le t^2 - 1 \le 2t(t-1)$ for all $t \ge 1$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$, $\sum_{n=1}^{\infty} (l_n - 1) < \infty$, $\sum_{n=1}^{\infty} (m_n - 1) < \infty$ ∞ , we get $\sum_{n=1}^{\infty} (k_n^2 - 1) < \infty$, $\sum_{n=1}^{\infty} (l_n^2 - 1) < \infty$, $\sum_{n=1}^{\infty} (m_n^2 - 1) < \infty$. By inequality (19), let $r \to \infty$. We get $\sum_{n=n_0}^{\infty} g(\|T_1(PT_1)^{n-1}x_n - x_n\|) < \infty$. Thus $\lim_{n \to \infty} g(\|T_1(PT_1)^{n-1}x_n - x_n\|) = 0$. Since g is strictly increasing and continuous at 0 with g(0) = 0, it follows that $\lim_{n \to \infty} ||T_1(PT_1)^{n-1}x_n - T_n(PT_1)||$ $|x_n|| = 0.$

By using a similar method as in (ii) part (a) together with (10), (17), (15), (16), (12) and (13), the results in (ii) (b,c,d), (iii) (a,b) and (iv), respectively, can be proved.

Lemma 2.2. Let X be a uniformly convex Banach space and C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T_1, T_2, T_3 : C \rightarrow X$ be asymptotically quasi-nonexpansive mappings with respect to sequences $\{k_n\}$, $\{l_n\}$, $\{m_n\}$, respectively, such that Eatily quasi-nonexpansive mappings with respect to sequences (a_n) , $(a_$ $b_n + c_n + \sigma_n$, $\alpha_n + \beta_n + \gamma_n + \rho_n$ are in [0,1] for all $n \geq 1$, $\sum_{n=1}^{\infty} \delta_n < \infty$, $\sum_{n=1}^{\infty} \sigma_n < \infty$, $\sum_{n=1}^{\infty} \rho_n < \infty$ and let $\{u_n\}$, $\{v_n\}$, $\{w_n\}$ be bounded sequences in C. For a given $x_1 \in C$, let $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ be the sequences defined as in (1). Suppose T_1 , T_2 , T_3 are uniformly L-Lipschitzian. If $\lim_{n\to\infty} ||T_1(PT_1)^{n-1}x_n - T_1(PT_1)^{n-1}x_n||$ $||x_n|| = 0$, $\lim_{n \to \infty} ||T_2(PT_2)^{n-1}z_n - x_n|| = 0$, $\lim_{n \to \infty} ||T_3(PT_3)^{n-1}y_n - x_n|| = 0$, then

- $\lim_{n \to \infty} ||T_1x_n x_n|| = 0,$
- (ii) $\lim_{n \to \infty} \|T_2 x_n x_n\| = 0$, and (iii) $\lim_{n \to \infty} \|T_3 x_n x_n\| = 0$.

Proof. Since

$$||x_{n+1} - x_n|| \le \alpha_n ||T_3(PT_3)^{n-1}y_n - x_n|| + \beta_n ||T_2(PT_2)^{n-1}z_n - x_n|| + \gamma_n ||T_1(PT_1)^{n-1}x_n - x_n|| + \rho_n ||w_n - x_n|| \longrightarrow 0 \text{ as } n \to \infty,$$

we obtain

$$||T_{1}(PT_{1})^{n-1}x_{n+1} - x_{n+1}|| \leq ||T_{1}(PT_{1})^{n-1}x_{n+1} - T_{1}(PT_{1})^{n-1}x_{n}|| + ||T_{1}(PT_{1})^{n-1}x_{n} - x_{n}|| + ||x_{n+1} - x_{n}|| \leq L||x_{n+1} - x_{n}|| + ||T_{1}(PT_{1})^{n-1}x_{n} - x_{n}|| + ||x_{n+1} - x_{n}|| \longrightarrow 0 \text{ as } n \to \infty.$$
(20)

By (20), we get

$$||T_1x_n - x_n|| \le ||T_1(PT_1)^{n-1}x_n - x_n|| + ||T_1(PT_1)^{n-1}x_n - T_1x_n||$$

$$\le ||T_1(PT_1)^{n-1}x_n - x_n|| + L||T_1(PT_1)^{n-2}x_n - x_n||$$

$$\longrightarrow 0 \text{ as } n \to \infty.$$

Thus $\lim_{n\to\infty} ||T_1x_n - x_n|| = 0$. Next, we want to prove (ii). Since

$$||z_n - x_n|| \le a_n ||T_1(PT_1)^{n-1}x_n - x_n|| + \delta_n ||u_n - x_n|| \longrightarrow 0 \text{ as } n \to \infty,$$

we obtain

$$||T_{2}(PT_{2})^{n-1}x_{n+1} - x_{n+1}|| \leq ||T_{2}(PT_{2})^{n-1}x_{n+1} - T_{2}(PT_{2})^{n-1}x_{n}|| + ||T_{2}(PT_{2})^{n-1}z_{n} - T_{2}(PT_{2})^{n-1}x_{n}|| + ||T_{2}(PT_{2})^{n-1}z_{n} - x_{n}|| + ||x_{n+1} - x_{n}|| \leq L||x_{n+1} - x_{n}|| + L||z_{n} - x_{n}|| + ||T_{2}(PT_{2})^{n-1}z_{n} - x_{n}|| + ||x_{n+1} - x_{n}|| \longrightarrow 0 \text{ as } n \to \infty.$$

Hence, we have

$$||T_2x_n - x_n|| \le ||T_2(PT_2)^{n-1}x_n - x_n|| + ||T_2(PT_2)^{n-1}x_n - T_2x_n||$$

$$\le ||T_2(PT_2)^{n-1}z_n - T_2(PT_2)^{n-1}x_n|| + ||T_2(PT_2)^{n-1}z_n - x_n||$$

$$+ L||T_2(PT_2)^{n-2}x_n - x_n|| \longrightarrow 0 \text{ as } n \to \infty.$$

Thus $\lim_{n\to\infty} ||T_2x_n - x_n|| = 0$, so (ii) is obtained. Since

$$||y_n - x_n|| \le b_n ||T_2(PT_2)^{n-1} z_n - x_n|| + c_n ||T_1(PT_1)^{n-1} x_n - x_n|| + \sigma_n ||v_n - x_n|| \longrightarrow 0$$

and $||T_3(PT_3)^{n-1}y_n - x_n|| \longrightarrow 0$ as $n \to \infty$, we obtain

$$||T_3(PT_3)^{n-1}x_n - x_n|| \le ||T_3(PT_3)^{n-1}y_n - T_3(PT_3)^{n-1}x_n|| + ||T_3(PT_3)^{n-1}y_n - x_n|| \le L||y_n - x_n|| + ||T_3(PT_3)^{n-1}y_n - x_n|| \longrightarrow 0 \text{ as } n \to \infty.$$

Thus

$$||T_{3}(PT_{3})^{n-1}x_{n+1} - x_{n+1}|| \leq ||T_{3}(PT_{3})^{n-1}x_{n+1} - T_{3}(PT_{3})^{n-1}x_{n}|| + ||T_{3}(PT_{3})^{n-1}y_{n} - T_{3}(PT_{3})^{n-1}x_{n}|| + ||T_{3}(PT_{3})^{n-1}y_{n} - x_{n}|| + ||x_{n+1} - x_{n}|| \leq L||x_{n+1} - x_{n}|| + L||y_{n} - x_{n}|| + ||T_{3}(PT_{3})^{n-1}y_{n} - x_{n}|| + ||x_{n+1} - x_{n}|| \longrightarrow 0 \text{ as } n \to \infty.$$

It follows that,

$$||T_3x_n - x_n|| \le ||T_3(PT_3)^{n-1}x_n - x_n|| + ||T_3(PT_3)^{n-1}x_n - T_3x_n||$$

$$\le ||T_3(PT_3)^{n-1}x_n - x_n|| + L||T_3(PT_3)^{n-2}x_n - x_n||$$

$$\longrightarrow 0 \text{ as } n \to \infty.$$

Hence (iii) is satisfied.

Theorem 2.3. Let X be a uniformly convex Banach space and C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T_1, T_2, T_3 : C \rightarrow X$ be asymptotically quasi-nonexpansive mappings with respect to sequences $\{k_n\}, \{l_n\}, \{m_n\}$, respectively, such that $F \neq \emptyset, k_n \geq 1, l_n \geq 1, m_n \geq 1, \sum_{n=1}^{\infty} (k_n - 1) < \infty, \sum_{n=1}^{\infty} (l_n - 1) < \infty \text{ and } \sum_{n=1}^{\infty} (m_n - 1) < \infty.$ Let $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\}, \{\sigma_n\}, \{\rho_n\} \text{ be real sequences in } [0, 1] \text{ such that } a_n + \delta_n,$ $b_n + c_n + \sigma_n$ and $\alpha_n + \beta_n + \gamma_n + \rho_n$ are in [0,1] for all $n \geq 1$, and $\sum_{n=1}^{\infty} \delta_n < \infty$, $\sum_{n=1}^{\infty} \sigma_n < \infty$,

 $\sum_{n=1}^{\infty} \rho_n < \infty$ and let $\{u_n\}, \{v_n\}, \{w_n\}$ be bounded sequences in C. Assume that T_1, T_2, T_3 are uniformly L-Lipschitzian. If one of T_i (i = 1,2,3) is a completely continuous and one of the following conditions (C1)-(C5) is satisfied:

- (C1) $0 < \lim_{n \to \infty} \inf a_n \le \lim_{n \to \infty} \sup(a_n + \delta_n) < 1,$ $0 < \lim_{n \to \infty} \inf b_n \le \lim_{n \to \infty} \sup(b_n + c_n + \sigma_n) < 1,$ and $0 < \lim_{n \to \infty} \inf \alpha_n \le \lim_{n \to \infty} \sup(\alpha_n + \beta_n + \gamma_n + \rho_n) < 1.$ (C2) $0 < \lim_{n \to \infty} \inf b_n, \lim_{n \to \infty} \inf c_n \le \lim_{n \to \infty} \sup(b_n + c_n + \sigma_n) < 1,$ and $0 < \lim_{n \to \infty} \inf \alpha_n \le \lim_{n \to \infty} \sup(\alpha_n + \beta_n + \gamma_n + \rho_n) < 1.$ (C3) $0 < \lim_{n \to \infty} \inf b_n \le \lim_{n \to \infty} \sup(b_n + c_n + \sigma_n) < 1,$ and

 - $0 < \lim_{n \to \infty} \inf \alpha_{n}, \lim_{n \to \infty} \inf \gamma_{n} \le \lim_{n \to \infty} \sup(\alpha_{n} + \beta_{n} + \gamma_{n} + \rho_{n}) < 1.$ $(C4) \lim_{n \to \infty} \inf b_{n} > 0, \text{ and } 0 < \lim_{n \to \infty} \inf a_{n} \le \lim_{n \to \infty} \sup(a_{n} + \delta_{n}) < 1, \text{ and } 0 < \lim_{n \to \infty} \inf \alpha_{n}, \lim_{n \to \infty} \inf \beta_{n} \le \lim_{n \to \infty} \sup(\alpha_{n} + \beta_{n} + \gamma_{n} + \rho_{n}) < 1.$ $(C5) \quad 0 < \lim_{n \to \infty} \inf \alpha_{n}, \lim_{n \to \infty} \inf \beta_{n}, \lim_{n \to \infty} \inf \gamma_{n} \le \lim_{n \to \infty} \sup(\alpha_{n} + \beta_{n} + \gamma_{n} + \rho_{n}) < 1.$

Then the sequences $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ defined as in (1) converge strongly to a common fixed point of T_1 , T_2 and T_3 .

Proof. Suppose one of the conditions (C1)-(C5) is satisfied. By Lemma 2.2, we obtain $\lim_{n\to\infty} ||T_ix_n-T_ix_n||$ $|x_n|| = 0$ for i = 1, 2, 3. Assume one of T_1, T_2 and T_3 says T_1 is completely continuous. Since $\{x_n\}$ is a bounded sequence in C, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{T_1x_{n_k}\}$ converges to $q \in C$. Since $||x_{n_k} - q|| \le ||T_1 x_{n_k} - x_{n_k}|| + ||T_1 x_{n_k} - q||$, we get $\lim_{k \to \infty} ||x_{n_k} - q|| = 0$. Thus $\{x_{n_k}\}$ converges to $q \in C$. By continuity of T_i , we have $T_i x_{n_k} \to T_i q$ as $k \to \infty$. Since

$$||T_i q - q|| \le ||T_i x_{n_k} - T_i q|| + ||T_i x_{n_k} - x_{n_k}|| + ||x_{n_k} - q|| \to 0 \text{ as } k \to \infty,$$

we obtain $T_i q = q$ (i = 1, 2, 3). Thus $q \in F$. By Lemma 2.1 (i), $\lim_{n \to \infty} ||x_n - q||$ exists. This implies $\lim_{n\to\infty} ||x_n-q|| = 0$. By Lemma 2.1, we have

$$||T_1(PT_1)^{n-1}x_n - x_n|| \to 0 \text{ and } ||T_2(PT_2)^{n-1}z_n - x_n|| \to 0 \text{ as } n \to \infty.$$

It follows that

$$||y_n - x_n|| \le b_n ||T_2(PT_2)^{n-1}z_n - x_n|| + c_n ||T_1(PT_1)^{n-1}x_n - x_n|| + \sigma_n ||v_n - x_n||$$

$$\longrightarrow 0 \text{ and } ||z_n - x_n|| \le a_n ||T_1(PT_1)^{n-1}x_n - x_n|| + \delta_n ||u_n - x_n|| \to 0 \text{ as } n \to \infty. \text{ These imply } \lim_{n \to \infty} y_n = q \text{ and } \lim_{n \to \infty} z_n = q.$$

Remark 2.4. In Theorem 2.3, assume that T_1 , T_2 and T_3 are asymptotically nonexpansive selfmappings of C such that one of them is completely continuous and thus T_1 , T_2 , T_3 are uniformly

L-Lipschitzian and $\delta_n = \sigma_n = \rho_n \equiv 0$. We obtain the following results.

- (1) If one of the conditions (C1) (C5) is satisfied, then the sequences $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ defined as in (2) converge strongly to a common fixed point of T_1 , T_2 and T_3 .
 - (2) If $T := T_1 = T_2 = T_3$ and one of the conditions (C1) (C5) is satisfied, then we obtain the results of Nilsrakoo and Saejung [8].
 - (3) If $T := T_1 = T_2 = T_3$ and one of the conditions (C1), (C2), (C4) is satisfied and $\gamma_n \equiv 0$, then we obtain the results of Suantai [16].
 - (4) If $T := T_1 = T_2 = T_3$ with condition (C1) is satisfied and $c_n = \beta_n = \gamma_n \equiv 0$, then we obtain the results of Xu and Noor [18].
 - (5) If the condition (*C*5) is satisfied and $a_n = b_n = c_n \equiv 0$, then the sequence $\{x_n\}$ defined as in (3) converges strongly to a common fixed point of T_1, T_2 and T_3 .

The mapping $T: C \to X$ with $F(T) \neq \emptyset$ is said to satisfy *Condition A* [14] if there is a nondecreasing function $f: [0, \infty) \to [0, \infty)$ with f(0) = 0, f(r) > 0 for all $r \in (0, \infty)$ such that $||x - Tx|| \geq f(d(x, F(T)))$ for all $x \in C$, where $d(x, F(T)) = \inf\{||x - q|| : q \in F(T)\}$. As Tan and Xu [17] pointed out, the Condition A is weaker than the compactness of C.

The following result gives a strong convergence theorem for asymptotically quasi-nonexpansive nonself-mappings in a uniformly convex Banach space satisfying Condition A.

Theorem 2.5. Let X be a uniformly convex Banach space and C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let $T_1, T_2, T_3 : C \to X$ be asymptotically quasi-nonexpansive mappings with respect to sequences $\{k_n\}, \{l_n\}, \{m_n\}, \text{ respectively, such that } F \neq \emptyset, k_n \geq 1, l_n \geq 1, m_n \geq 1, \sum\limits_{n=1}^{\infty} (k_n - 1) < \infty, \sum\limits_{n=1}^{\infty} (l_n - 1) < \infty \text{ and } \sum\limits_{n=1}^{\infty} (m_n - 1) < \infty.$ Let $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\}, \{\sigma_n\}, \{\rho_n\} \text{ be real sequences in } [0, 1] \text{ such that } a_n + \delta_n, b_n + c_n + \sigma_n \text{ and } \alpha_n + \beta_n + \gamma_n + \rho_n \text{ are in } [0, 1] \text{ for all } n \geq 1 \text{ and } \sum\limits_{n=1}^{\infty} \delta_n < \infty, \sum\limits_{n=1}^{\infty} \sigma_n < \infty, \sum\limits_{n=1}^{\infty} \rho_n < \infty \text{ and let } \{u_n\}, \{v_n\}, \{w_n\} \text{ be bounded sequences in } C.$ Suppose T_1 satisfies Condition A and T_2, T_3 are uniformly L-Lipschitzian and one of the conditions (C1)-(C5) in Theorem 2.3 is satisfied. Then the sequence $\{x_n\}$ defined as in (1) converges strongly to a common fixed point of T_1, T_2 and T_3 .

Proof. Let $q \in F$. By Lemma 2.1, $\lim_{n \to \infty} \|x_n - q\|$ exists. Thus $\{x_n - q\}$ is bounded. Then there is a constant H such that $\|x_n - q\| \le H$ for all $n \ge 1$. This together with (6), we have

$$||x_{n+1} - q|| < ||x_n - q|| + D_n,$$

where $D_n = KH((k_n-1)+(l_n-1)+(m_n-1))+K(\delta_n+\sigma_n+\rho_n)<\infty$ for all $n\geq 1$. By Lemma 2.2, we have $\lim_{n\to\infty}\|x_n-T_ix_n\|=0$ (i=1,2,3). Since T_1 satisfies Condition A, we obtain $\lim_{n\to\infty}d(x_n,F(T_1))=0$. Next, we want to show $\{x_n\}$ is a Cauchy sequence. Since $\lim_{n\to\infty}d(x_n,F(T_1))=0$ and $\sum_{n=1}^\infty D_n<\infty$, for any $\epsilon>0$, there exists a positive integer n_0 such that $d(x_n,F(T_1))<\epsilon/4$ and $\sum_{n=1}^\infty D_n<\epsilon/2$ for all $n\geq n_0$. Now, let $n\in\mathbb{N}$ be such that $n\geq n_0$. Then we can find $q^*\in F$ such that $||x_n-q^*||<\epsilon/4$. This implies by (21) that for $m\geq 1$,

$$||x_{n+m} - x_n|| \le ||x_{n+m} - q^*|| + ||x_n - q^*||$$

$$\le 2||x_n - q^*|| + \sum_{k=n}^{n+m-1} D_k$$

$$= 2||x_n - q^*|| + \sum_{k=n}^{n+m-1} D_k < 2\left(\frac{\epsilon}{4}\right) + \frac{\epsilon}{2} = \epsilon.$$

This shows that $\{x_n\}$ is a Cauchy sequence and so it is convergent. Let $\lim_{n\to\infty} x_n = p$. Since $d(x_n, F(T_1)) \to 0$ as $n \to \infty$, it follows that $d(p, F(T_1)) = 0$ and hence $p \in F(T_1)$. Next, we want to show $p \in F(T_2) \cap F(T_3)$. Since T_2 , T_3 are uniformly L-Lipschitzian and by Lemma 2.2, we obtain

$$||T_{i}p - p|| \leq ||T_{i}x_{n} - T_{i}p|| + ||T_{i}x_{n} - x_{n}|| + ||x_{n} - p|| \leq L||x_{n} - p|| + ||T_{i}x_{n} - x_{n}|| + ||x_{n} - p|| \to 0 \text{ as } n \to \infty.$$
Thus $T_{i}p = p \ (i = 2, 3)$. Therefore $p \in F$.

In the next result, we prove weak convergence for the iterative scheme (1) for asymptotically quasi-nonexpansive nonself-mappings in a uniformly convex Banach space satisfying Opial's condition.

Theorem 2.6. Let X be a uniformly convex Banach space which satisfies Opial's condition and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let T_1, T_2, T_3 : $C \to X$ be asymptotically quasi-nonexpansive mappings with respect to sequences $\{k_n\}, \{l_n\}, \{m_n\}, respectively, such that <math>F \neq \emptyset, k_n \geq 1, l_n \geq 1, m_n \geq 1, \sum_{n=1}^{\infty} (k_n - 1) < \infty, \sum_{n=1}^{\infty} (l_n - 1) < \infty$ and $\sum_{n=1}^{\infty} (m_n - 1) < \infty$. Let $\{a_n\}, \{b_n\}, \{c_n\}, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\}, \{\sigma_n\}, \{\rho_n\} \text{ be real sequences in } [0,1] \text{ such that } a_n + \delta_n, b_n + c_n + \sigma_n \text{ and } \alpha_n + \beta_n + \gamma_n + \rho_n \text{ are in } [0,1] \text{ for all } n \geq 1 \text{ and } \sum_{n=1}^{\infty} \delta_n < \infty, \sum_{n=1}^{\infty} \sigma_n < \infty, \sum_{n=1}^{\infty} \rho_n < \infty \text{ and let } \{u_n\}, \{v_n\}, \{w_n\} \text{ be bounded sequences in } C.$ Suppose T_1, T_2, T_3 are uniformly L-Lipschitzian and $I - T_i$ (i = 1, 2, 3) is demiclosed at 0. If one of the following conditions (C1)-(C5) in Theorem 2.3 is satisfied, then the sequence $\{x_n\}$ defined as in (1) converges weakly to a common fixed point of T_1, T_2 and T_3 .

Proof. Assume one of the conditions (C1)-(C5) is satisfied. By Lemma 2.1 and Lemma 2.2, we have $\lim_{n\to\infty} \|T_ix_n - x_n\| = 0$ (i=1,2,3). Since X is uniformly convex and $\{x_n\}$ is bounded, without loss of generality, we may assume that $x_n \to u$ weakly as $n \to \infty$. Since $I - T_i$ is demiclosed at 0, we obtain $u \in F$. Suppose subsequences $\{x_{n_k}\}$ and $\{x_{m_k}\}$ of $\{x_n\}$ converge weakly to u and v, respectively. Also, since $I - T_i$ (i=1,2,3) is demiclosed at 0, we have u and $v \in F$. By Lemma 2.1, we obtain $\lim_{n\to\infty} \|x_n - u\|$ and $\lim_{n\to\infty} \|x_n - v\|$ exist. It follows from Lemma 1.4 that u = v. Therefore $\{x_n\}$ converges weakly to a common fixed point of T_1 , T_2 and T_3 . \square

References

- [1] A. Bnouhachem, M.A. Noor, Th.M. Rassias, Three-steps iterative algorithms for mixed variational inequalities, *Appl. Math. Comput.* 183: 436-446 (2006).
- [2] H. Fukhar-ud-din, S.H. Khan, Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications, *J. Math. Anal. Appl.* 328: 821-829 (2007).
- [3] K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, *Proc. Amer. Math. Soc.* 35: 171-174 (1972).
- [4] R. Glowinski, P. Le Tallec, Augmented Lagrangian and Operator-Splittting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.
- [5] S.H. Khan, W.Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, *Sci. Math. Jpn.* 53: 133-138 (2001).
- [6] S.H. Khan, H. Fukhar-ud-din, Weak and strong convergence of a scheme with errors for two nonexpansive mappings, *Nonlinear Anal.* 8: 1295-1301 (2005).
- [7] K. Nammanee, M.A. Noor, S. Suantai, Convergence criteria of modified Noor iterations with errors for asymptotically nonexpansive mappings, *J. Math. Anal. Appl.*, in press.
- [8] W. Nilsrakoo and S. Saejung, A new three-step fixed point iteration scheme for asymptotically nonexpansive mappings, *J. Appl. Math. Comput.* 181: 1026-1034 (2006).
- [9] M.A. Noor, New approximation schemes for general variational inequalities, *J. Math. Anal. Appl.* 251: 217-229 (2000).
- [10] M.A. Noor, Three-step iterative algorithms for multivalued quasi variational inclusions, *J. Math. Anal. Appl.* 255: 589-604 (2001).
- [11] M.A. Noor, Some developments in general variational inequalities, Appl. Math. Comput. 152: 199-277 (2004).

- [12] Z. Opial, Weak convergence of successive approximations for nonexpansive mappings, *Bull. Amer. Math. Soc.* 73: 591-597 (1967).
- [13] L. Qihou, Iteration sequences for asymptotically quasi-nonexpansive mapping with an error member of uniform convex Banach space, *J. Math. Anal. Appl.* 266: 468-471 (2002).
- [14] H.F. Senter, W.G. Dotson, Approximating fixed points of nonexpansive mappings, *Proc. Amer. Math. Soc.* 44: 375-380 (1974).
- [15] N. Shahzad, A. Udomene, Approximating common fixed points of two asymptotically quasi-nonexpansive mappings in Banach spaces, *Fixed Point Theory Appl.* (2006), article ID 18909, 10 pp.
- [16] S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, *J. Math. Anal. Appl.* 311: 506-517 (2005).
- [17] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, *J. Math. Anal. Appl.* 178: 301-308 (1993).
- [18] B.L. Xu, M. Aslam Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, *J. Math. Anal. Appl.* 267: 444-453 (2002).

 1,2 Department of Mathematics, Statistics and Computer, Faculty of Science,, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.

^{1,2}CENTRE OF EXCELLENCE IN MATHEMATICS, CHE, SI AYUTTHAYA RD., BANGKOK 10400, THAILAND. Email address: utith@sci.ubu.ac.th(U. Inprasit) and hathaikarn@sci.ubu.ac.th (H. Wattanataweekul)