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An iterative method for finding common solutions of generalized
mixed equilibrium problems and fixed point problems

Benjawan Rodjanadid

ABSTRACT: In this paper, we introduce an iterative method for finding a common element of
the set of solutions of a generalized mixed equilibrium problem and the set of common fixed
points of a finite family of nonexpansive mappings in a real Hilbert space. Then, we prove that
the sequence converges strongly to a common element of the above two sets. Furthermore,
we apply our result to prove three new strong convergence theorems in fixed point problems,
mixed equilibrium problems, generalized equilibrium problems and equilibrium problems.

1. Introduction

Let H be a real Hilbert space, C a nonempty closed convex subset of H, ϕ : C → R a real
value function, A : C → H a nonlinear mapping and let Φ : C × C → R be a bifunction, i.e.,
Φ(x, x) = 0 for each x ∈ C. Then, we consider the following mixed equilibrium problem :

Find x∗ ∈ C such that

(1) (GMEP) : Φ(x∗, y) + ϕ(y)− ϕ(x∗) + 〈Ax∗, y− x∗〉 ≥ 0, ∀y ∈ C.

The set of solutions for problem (1) is denoted by Ω, i.e.,

(2) Ω = {x∗ ∈ C : Φ(x∗, y) + ϕ(y)− ϕ(x∗) + 〈Ax∗, y− x∗〉 ≥ 0, ∀y ∈ C}.

If A ≡ 0 in (1), then (GMEP) (1) reduces to the classical mixed equilibrum problem (for short,
MEP) and Ω is denoted by MEP(Φ, ϕ), that is,

(3) MEP(Φ, ϕ) = {x∗ ∈ C : Φ(x∗, y) + ϕ(y)− ϕ(x∗) ≥ 0, ∀y ∈ C}.

If ϕ ≡ 0 in (1), then (GMEP) (1) reduces to the generalized equilibrium problem (for short,
GEP) and Ω is denoted by EP, that is,

(4) EP = {x∗ ∈ C : Φ(x∗, y) + 〈Ax∗, y− x∗〉 ≥ 0, ∀y ∈ C}.

If ϕ ≡ 0 and A ≡ 0 in (1), then (GMEP) (1) reduces to the classical equilibrium problem (for
short, EP) and Ω is denoted by EP(Φ), that is,

(5) EP(Φ) = {x∗ ∈ C : Φ(x∗, y) ≥ 0, ∀y ∈ C}.
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If Φ ≡ 0 and ϕ ≡ 0 in (1), then (GMEP) (1) reduces to the classical variational inequality and
Ω is denoted by VI(A, C), that is,

(6) VI(A, C) = {x∗ ∈ C : 〈Ax∗, y− x∗〉 ≥ 0, ∀y ∈ C}.

In 2005, Combettes and Hirstoaga [3] introduced an iterative scheme of finding the best
approximation to the initial data when EP(Φ) 6= ∅ and proved a strong convergence theorem.

In 2006, Takahashi and Takahashi [14] introduced an iterative scheme by the viscosity ap-
proximation method for finding a common element of the set of solutions of an equilibrium
problem and the set of fixed points of nonexpansive mapping in a Hilbert space and proved a
strong convergence theorem.

In 2007, Tada and Takahashi [12] introduced two iterative schemes for finding a common
element of the set of solutions of an equilibrium problem and the set of fixed points of a nonex-
pansive mapping in a Hilbert space and obtained both strong convergence theorem and weak
convergence theorem. In 2008, Takahashi and Takahashi [13] introduced an iterative method
for finding a common element of the set of solutions of a generalized equilibrium problem
and the set of fixed points of a nonexpansive mapping in a Hilbert space and then obtain that
the sequence converges strongly to a common element of two sets. Moreover they proved
three new strong convergence theorems in fixed point problems, variational inequalities and
equilibrium problems.

Recently, Ceng and Yao [2] introduced a hybrid iterative scheme for finding a common el-
ement of the set of solutions of mixed equilibrium problem (3) and the set of common fixed
points of finitely many nonexpansive mappings and they proved that the sequences generated
by the hybrid iterative scheme converge strongly to a common element of the set of solutions of
mixed equilibrium problem and the set of common fixed points of finitely many nonexpansive
mappings.

In 2008, Peng and Yao [9] obtained some strong convergence theorems for iterative schemes
based on the hybrid method and the extragradient method for finding a common element of
the set of solutions of a mixed equilibrium problem, the set of fixed points of a nonexpansive
mapping and the set of solutions of the variational inequality.

In this paper, we introduced another iterative method for finding an element of the set of
solutions of problem (1) and the set of common fixed points of finitely many nonexpansive
mappings in real Hilbert space, where A : C → H is also an α−inverse strongly monotone
mapping and then obtain a strong convergence theorem. Moreover we using this theorem to
the problem for finding a common elements of ∩N

i=1F(Ti) ∩ MEP(Φ, ϕ) , ∩N
i=1F(Ti) ∩ EP and

∩N
i=1F(Ti) ∩ EP(Φ), respectively.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let symbols ⇀ and
→ denote weak and strong convergence, respectively. Let C be a nonempty closed convex
subset of H. Then, for any x ∈ H, there exists a unique nearest point in C, denoted by PC(x)
such that ‖x − PC(x)‖ ≤ ‖x − y‖, ∀y ∈ C. The mapping PC : x → PC(x) is called the metric
projection of H onto C. We know that PC is nonexpansive.

The following characterizes the projection PC.

Lemma 2.1. (See [11]) Given x ∈ H and y ∈ C. Then PC(x) = y if and only if there holds the
inequality

〈x − y, y− z〉 ≥ 0, ∀z ∈ C.

Recall that the following definitions.
(1) A mapping T : C → C is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C.

Next, we denote by F(T) the set of fixed points of T, i.e., F(T) = {x ∈ C : Tx = x}.
(2) A mapping f : H → H is said to be a contraction if there exists a constant ρ ∈ (0, 1) such

that ‖ f (x)− f (y)‖ ≤ ρ‖x − y‖ for all x, y ∈ H.
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(3) A mapping A : C → H is called monotone if 〈Ax − Ay, x − y〉 ≥ 0 for all x, y ∈ C
and it is called α−inverse strongly monotone if there exists a positive real number α such that
〈x − y, Ax − Ay〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ C. We can see that if A is α−inverse strongly
monotone, then A is monotone mapping.

The following lemmas will be useful for proving our main results.

Lemma 2.2. (See [11]) For all x, y ∈ H, there holds the inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

Lemma 2.3. (See [11]) In a strictly convex Banach space E, if

‖x‖ = ‖y‖ = ‖λx + (1− λ)y‖,

for all x, y ∈ E and λ ∈ (0, 1), then x = y.

Lemma 2.4. (See [16]) Let {an} be a sequence of nonnegative real numbers satisfying an+1 = (1 −
αn)an + αnβn, ∀n ≥ 0 where {αn}, {βn} satisfy the conditions

(i) {αn} ⊂ [0, 1],
∞
∑

n=1
αn = ∞;

(ii) lim sup
n→∞

βn ≤ 0.

Then lim
n→∞

an = 0.

Lemma 2.5. (See [10]) Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn} be
a sequence in [0, 1] with 0 < lim inf

n→∞
βn ≤ lim sup

n→∞
βn < 1. Suppose

xn+1 = βnxn + (1− βn)yn,

for all integer n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then, lim
n→∞

‖yn − xn‖ = 0.

Lemma 2.6. (See [15]) Let C be a nonempty closed convex subset of H , ϕ : C → R ∪ {+∞} be a
proper lower semicontinuous and convex function and let Φ be a bifunction of C × C in to R satisfy

(A1) Φ(x, x) = 0 for all x ∈ C;
(A2) Φ is monotone, i.e., Φ(x, y) + Φ(y, x) ≤ 0, ∀x, y ∈ C;
(A3) for all x, y, z ∈ C, limt→0 Φ(tz + (1− t)x, y) ≤ Φ(x, y);
(A4) for all x ∈ C, y 7→ Φ(x, y) is convex and lower semicontinuous;
(B1) for each x ∈ H and r > 0, there exists a bounded subset Dx ⊂ C and yx ∈ C such that for any

z ∈ C\Dx,

Φ(z, yx) + ϕ(yx) +
1
r
〈yx − z, z− x〉 < ϕ(z).

(B2) C is bounded set.
Assume that either (B1) or (B2) holds. For x ∈ C and r > 0, define a mapping Tr : H → C as follows.

Tr(x) := {z ∈ C : Φ(z, y) + ϕ(y) +
1
r
〈y− z, z− x〉 ≥ ϕ(z), ∀y ∈ C}

for all x ∈ H. Then , the following conditions hold:
(i) For each x ∈ H, Tr(x) 6= ∅;

(ii) Tr is single-valued;
(iii) Tr is firmly nonexpansive, i.e.,

‖Trx − Try‖2 ≤ 〈Trx − Try, x − y〉, ∀x, y ∈ H;

(iv) F(Tr) = MEP(Φ, ϕ) ;
(v) MEP(Φ, ϕ) is closed and convex.
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Lemma 2.7. (see [1]) Let C be a nonempty closed convex subset of H, and let Φ be a bifunction from
C × C into R satisfying (A1)-(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

Φ(z, y) +
1
r
〈y− z, z− x〉 ≥ 0, ∀y ∈ C.

Lemma 2.8. (see [3]) Assume that Φ : C × C → R satisfies (A1)-(A4). For r > 0, define a mapping
Sr : H → C as follows:

Sr(x) = {z ∈ C : Φ(z, y) +
1
r
〈y− z, z− x〉 ≥ 0, ∀y ∈ C}

for all x ∈ H. Then, the following hold:
(i) Sr is single-valued;

(ii) Sr is firmly nonexpansive;
(iii) F(Sr) = EP(Φ);
(iv) EP(Φ) is closed and convex.

Let X be a real Hilbert space and C a nonempty closed convex subset of X. For a finite family
of nonexpansive mappings T1, T2, . . . , TN and sequence {λn,i}N

i=1 in [0, 1], Kangtunyakarn and
Suantai [6] defined the mapping Kn : C → C as follows:

Un,1 = λn,1T1 + (1− λn,1)I,

Un,2 = λn,2T2Un,1 + (1− λn,2)Un,1,

Un,3 = λn,2T3Un,2 + (1− λn,3)Un,2,
...

Un,N−1 = λn,N−1TN−1Un,N−2 + (1− λn,N−1)Un,N−2,

Kn = Un,N = λn,NTNUn,N−1 + (1− λn,N)Un,N−1(7)

Such a mapping Kn is called the K−mapping generated by T1, T2, . . . , TN and λn,1, λn,2, . . . , λn,N .

Definition 2.9. (See [6]) Let C be a nonempty convex subset of a real Banach space. Let {Ti}N
i=1

be a finite family of nonexpansive mapping of C into itself, and let λ1, . . . , λN be real numbers
such that 0 ≤ λi ≤ 1 for every i = 1, . . . , N. They define a mapping K : C → C as follows:

U1 = λ1T1 + (1− λ1)I,

U2 = λ2T2U1 + (1− λ2)U1,

U3 = λ3T3U2 + (1− λ3)U2,
...

UN−1 = λN−1TN−1UN−2 + (1− λN−1)UN−2,

K = UN = λNTNUN−1 + (1− λN)UN−1.

Such a mapping K is called the K−mapping generated by T1, . . . , TN and λ1, . . . , λN .

Lemma 2.10. (See [6]) Let C be a nonempty closed convex subset of a strictly convex Banach space.
Let {Ti}N

i=1 be a finite family of nonexpansive mappings of C into itself with ∩N
i=1F(Ti) 6= ∅ and let

λ1, . . . , λN be real numbers such that 0 < λi < 1 for every i = 1, . . . , N − 1 and 0 < λN ≤ 1. Let K
be the K−mapping generated by T1, . . . , TN and λ1, . . . , λN . Then F(K) = ∩N

i=1F(Ti).

Lemma 2.11. (See [6]) Let C be a nonempty closed convex subset of a Banach space. Let {Ti}N
i=1 be

a finite family of nonexpansive mappings of C into itself and {λn,i}N
i=1 sequences in [0, 1] such that

λn,i → λi, as n → ∞ (i = 1, 2, . . . , N). Moreover, for every n ∈ N, let K and Kn be the K−mappings
generated by T1, T2, . . . , TN and λ1, λ2, . . . , λN and T1, T2, . . . , TN and λn,1, λn,2, . . . , λn,N , respec-
tively. Then, for every x ∈ C,

lim
n→∞

‖Knx − Kx‖ = 0.
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Lemma 2.12. Let {xn} be a bounded sequence in a Hilbert space H. Then there exits L > 0 such that

(8) ‖Kn+1xn+1 − Knxn‖ ≤ ‖xn+1 − xn‖+ L
N

∑
i=1

|λn+1,i − λn,i|, ∀n ≥ 0.

Proof. From (7) and the nonexpansivity of TN and Un,N , we obtain

‖Kn+1xn − Knxn‖ = ‖λn+1,NTNUn+1,N−1xn + (1− λn+1,N)Un+1,N−1xn

− λn,NTNUn,N−1xn − (1− λn,N)Un,N−1xn‖
= ‖λn+1,NTNUn+1,N−1xn + Un+1,N−1xn − λn+1,NUn+1,N−1xn

− λn,NTNUn,N−1xn −Un,N−1xn + λn,NUn,N−1xn‖
≤ ‖λn+1,NTNUn+1,N−1xn − λn,NTNUn,N−1xn‖+ ‖Un+1,N−1xn −Un,N−1xn‖

+ ‖λn+1,NUn+1,N−1xn − λn,NUn,N−1xn‖
= ‖λn+1,NTNUn+1,N−1xn − λn+1,NTNUn,N−1xn + λn+1,NTNUn,N−1xn

− λn,NTNUn,N−1xn‖+ ‖Un+1,N−1xn −Un,N−1xn‖+ ‖λn+1,NUn+1,N−1xn

− λn+1,NUn,N−1xn + λn+1,NUn,N−1xn − λn,NUn,N−1xn‖
≤ λn+1,N‖TNUn+1,N−1xn − TNUn,N−1xn‖+ |λn+1,N − λn,N |‖TNUn,N−1xn‖

+ ‖Un+1,N−1xn −Un,N−1xn‖+ λn+1,N‖Un+1,N−1xn −Un,N−1xn‖
+ |λn+1,N − λn,N |‖Un,N−1xn‖

≤ λn+1,N‖Un+1,N−1xn −Un,N−1xn‖+ ‖Un+1,N−1xn −Un,N−1xn‖
+ λn+1,N‖Un+1,N−1xn −Un,N−1xn‖+ |λn+1,N − λn,N |‖Un,N−1xn‖
+ |λn+1,N − λn,N |‖TNUn,N−1xn‖

≤ (2λn+1,N + 1)‖Un+1,N−1xn −Un,N−1xn‖+ 2L1|λn+1,N − λn,N |,(9)

where L1 = sup
n≥0

{‖Un,j−1xn‖, ‖TNUn,j−1xn‖}, j = 1, 2, . . . , N.

Again, from (7), we have

‖Un+1,N−1xn −Un,N−1xn‖ = ‖λn+1,N−1TN−1Un+1,N−2xn + (1− λn+1,N−1)Un+1,N−2xn

− λn,N−1TN−1Un,N−2xn − (1− λn,N−1)Un,N−2xn‖
≤ ‖λn+1,N−1TN−1Un+1,N−2xn − λn,N−1TN−1Un,N−2xn‖

+ ‖Un+1,N−2xn −Un,N−2xn‖+ ‖λn+1,N−1Un+1,N−2xn

− λn,N−1Un,N−2xn‖

≤ λn+1,N−1‖Un+1,N−2xn −Un,N−2xn‖+ |λn+1,N−1 − λn,N−1|
× ‖TN−1Un,N−2xn‖+ ‖Un+1,N−2xn −Un,N−2xn‖
+ λn+1,N−1‖Un+1,N−2xn −Un,N−2xn‖+ |λn+1,N−1 − λn,N−1|
× ‖Un,N−2xn‖

≤ (2λn+1,N−1 + 1)‖Un+1,N−2xn −Un,N−2xn‖+ 2L1|λn+1,N−1 − λn,N−1|.(10)
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Therefore, we have

‖Un+1,N−1xn −Un,N−1xn‖
≤ (2λn+1,N−1 + 1)(2λn+1,N−2 + 1)‖Un+1,N−3xn −Un,N−3‖

+ (2λn+1,N−1 + 1)2L1|λn+1,N−2 − λn,N−2|+ 2L1|λn+1,N−1 − λn,N−1|

≤
2

∏
i=N−1

(2λn+1,i + 1)‖Un+1,1xn −Un,1xn‖+
3

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,2 − λn,2|

+
4

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,3 − λn,3|+
5

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,4 − λn,4|

+ . . . +
N−1

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,N−2 − λn,N−2|+ 2L1|λn+1,N−1 − λn,N−1|

=
2

∏
i=N−1

(2λn+1,i + 1)‖λn+1,1T1xn + (1− λn+1,1)xn − λn,1T1xn − (1− λn,1)xn‖

+
3

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,2 − λn,2|+
4

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,3 − λn,3|

+
5

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,4 − λn,4|+ . . . +

+
N−1

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,N−2 − λn,N−2|+ 2L1|λn+1,N−1 − λn,N−1|,

then

‖Un+1,N−1xn −Un,N−1xn‖

≤
2

∏
i=N−1

(2λn+1,i + 1)(|λn+1,1 − λn,1|‖T1xn‖+ |λn+1,1 − λn,1|‖xn‖)

+
3

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,2 − λn,2|+
4

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,3 − λn,3|

+
5

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,4 − λn,4|+ . . . +

+
N−1

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,N−2 − λn,N−2|+ 2L1|λn+1,N−1 − λn,N−1|

≤
2

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,1 − λn,1|

+
3

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,2 − λn,2|+
4

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,3 − λn,3|

+
5

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,4 − λn,4|+ . . . +

+
N−1

∏
i=N−1

(2λn+1,i + 1)2L1|λn+1,N−2 − λn,N−2|+ 2L1|λn+1,N−1 − λn,N−1|(11)
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Substituting (11) in (9), we have

‖Kn+1xn − Knxn‖

≤
2

∏
i=N

(2λn+1,i + 1)2L1|λn+1,1 − λn,1|+
3

∏
i=N

(2λn+1,i + 1)2L1|λn+1,2 − λn,2|

+
4

∏
i=N

(2λn+1,i + 1)2L1|λn+1,3 − λn,3|+
5

∏
i=N

(2λn+1,i + 1)2L1|λn+1,4 − λn,4|

+ . . . +
N−1

∏
i=N

(2λn+1,i + 1)2L1|λn+1,N−2 − λn,N−2|

+
N

∏
i=N

(2λn+1,i + 1)2L1|λn+1,N−1 − λn,N−1|+ 2L1|λn+1,N − λn,N |

≤ L
N

∑
i=1

|λn+1,i − λn,i|,(12)

where L =
2

∏
i=N

(2λn+1,i + 1)2L1. It follows that

‖Kn+1xn+1 − Knxn‖ ≤ ‖Kn+1xn+1 − Kn+1xn‖+ ‖Kn+1xn − Knxn‖

≤ ‖xn+1 − xn‖+ L
N

∑
i=1

|λn+1,i − λn,i|.

�

3. Main Results

In this section, we deal with an iterative scheme by the approximation method for finding a
common element of the set of common fixed points of finite family of nonexpansive mappings
and the set of solutions of GMEP (1) in real Hilbert spaces.

Theorem 3.1. Let H be a Hilbert space, C a closed convex nonempty subset of H, ϕ : C → R a proper
lower semicontinuous and convex functional, A an α−inverse strongly monotone mapping of C into H,
Φ : C × C → R a bifunction satisfying (A1)-(A4), {Ti}N

i=1 a finite family of nonexpansive mappings
of C into itself such that ∩N

i=1F(Ti) ∩ Ω 6= 0 and f a ρ−contraction of C into itself. Moreover, let
{αn}, {βn} and {γn} are three sequences in (0, 1) with αn + βn + γn = 1, {λn,i}N

i=1 a sequence in
[a, b] with 0 < a ≤ b < 1 and {rn} a sequence in [0, 2α] for all n ∈ N. Assume that:

(i) either (B1) or (B2) holds;
(ii) the sequence {rn} satisfies

(C1) 0 < c ≤ rn ≤ d < 2α; and

(C2)
∞
∑

n=1
|rn+1 − rn| < ∞;

(iii) the sequence {αn} satisfies
(D1) lim

n→∞
αn = 0; and

(D2)
∞
∑

n=0
αn = ∞;

(iv) the sequence {βn} satisfies
(E1) 0 < lim inf

n→∞
βn ≤ lim sup

n→∞
βn < 1;

(v) the finite family of sequences {λn,i}N
i=1 satisfies

(F1) lim
n→∞

|λn+1,i − λn,i| = 0 for every i ∈ {1, 2, . . . , N}.
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For every n ∈ N, let Kn be a K−mapping generated by T1, T2, . . . , TN and λn,1, λn,2, . . . , λn,N and let
{xn} and {yn} be sequences generated by x0 ∈ C and

(13)

{
Φ(yn, x) + ϕ(x)− ϕ(yn) + 〈Axn, x − yn〉+ 1

rn
〈x − yn, yn − xn〉 ≥ 0, ∀x ∈ C

xn+1 = αn f (xn) + βnxn + γnKnyn.

Then both {xn} and {yn} converge strongly to x∗ = PΓ f (x∗) where Γ = ∩N
i=1F(Ti) ∩Ω

Proof. Let x, y ∈ C. Since A is α−strongly monotone and rn ∈ (0, 2α) ∀n ∈ N, we have

‖(I − rn A)x − (I − rn A)y‖2 = ‖x − y− rn(Ax − Ay)‖2

= ‖x − y‖2 − 2rn〈x − y, Ax − Ay〉+ r2
n‖Ax − Ay‖2

≤ ‖x − y‖2 − 2rnα‖Ax − Ay‖2 + r2
n‖Ax − Ay‖2

= ‖x − y‖2 + rn(rn − 2α)‖Ax − Ay‖2

≤ ‖x − y‖2,

which implies that I − rn A is nonexpansive.
Next we prove that the sequences {xn}, {yn}, {Axn}, { f (xn)} and {Knyn} are bounded.

Since

Φ(yn, x) + ϕ(x)− ϕ(yn) + 〈Axn, x − yn〉+
1
rn
〈x − yn, yn − xn〉 ≥ 0, ∀x ∈ C,

we have

Φ(yn, x) + ϕ(x)− ϕ(yn) +
1
rn
〈x − yn, yn − (xn − rn Axn)〉 ≥ 0, ∀x ∈ C.

It follows from Lemma 2.6 that yn = Trn(xn − rn Axn), ∀n ∈ N.
Let p ∈ ∩N

i=1F(Ti) ∩Ω. Then we have

Φ(p, y) + ϕ(y)− ϕ(p) + 〈Ap, y− p〉 ≥ 0, ∀y ∈ C,

so
Φ(p, y) + ϕ(y)− ϕ(p) +

1
rn
〈y− p, p− (p− rn Ap)〉 ≥ 0, ∀y ∈ C.

By Lemma 2.6, we have p = Trn(p− rn Ap).
Since Trn and (I − rn A) are nonexpansive, we have

‖yn − p‖ = ‖Trn(xn − rn Axn)− Trn(p− rn Ap)‖
≤ ‖(xn − rn Axn)− (p− rn Ap)‖
≤ ‖xn − p‖.(14)

From (13) and (14), we deduce that

‖xn+1 − p‖ = ‖αn f (xn) + βnxn + γnKnyn − p‖
= ‖αn f (xn) + βnxn + γnKnyn − (αn + βn + γn)p‖
≤ αn‖ f (xn)− p‖+ βn‖xn − p‖+ γn‖Knyn − p‖
≤ αn(‖ f (xn)− f (p)‖+ ‖ f (p)− p‖) + βn‖xn − p‖+ γn‖yn − p‖
≤ αn(ρ‖xn − p‖+ ‖ f (p)− p‖) + βn‖xn − p‖+ γn‖xn − p‖
= αnρ‖xn − p‖+ βn‖xn − p‖+ γn‖xn − p‖+ αn‖ f (p)− p‖
= αnρ‖xn − p‖+ (1− αn)‖xn − p‖+ αn‖ f (p)− p‖
= (1− αn(1− ρ))‖xn − p‖+ αn‖ f (p)− p‖

= (1− αn(1− ρ))‖xn − p‖+ αn(1− ρ) · 1
1− ρ

‖ f (p)− p‖(15)

It follows from (15) induction that

‖xn − p‖ ≤ M, ∀n ≥ 0
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where M = max{‖x0− p‖, 1
1−ρ‖ f (p)− p‖}. So {xn} is bounded. Therefore {yn}, {Axn}, { f (xn)}

and {Knyn} are also bounded.
Next we shall show that lim

n→∞
‖xn+1 − xn‖ = 0.

Define

(16) zn =
αn

1− βn
f (xn) +

γn

1− βn
Knyn,

we have

(17) xn+1 = βnxn + (1− βn)zn, ∀n ≥ 0.

Consider

‖zn+1 − zn‖ = ‖ αn+1

1− βn+1
f (xn+1) +

γn+1

1− βn+1
Kn+1yn+1 −

αn

1− βn
f (xn)−

γn

1− βn
Knyn‖

≤ αn+1

1− βn+1
‖ f (xn+1)− f (xn)‖+ | αn+1

1− βn+1
− αn

1− βn
|‖ f (xn)‖

+
γn+1

1− βn+1
‖Kn+1yn+1 − Knyn‖+ | γn+1

1− βn+1
− γn

1− βn
|‖Knyn‖

≤ αn+1

1− βn+1
ρ‖xn+1 − xn‖+ | αn+1

1− βn+1
− αn

1− βn
|(‖ f (xn)‖+ ‖Knyn‖)

+
γn+1

1− βn+1
‖Kn+1yn+1 − Knyn‖.(18)

Substituting (8) from Lemma 2.12 into (18), we have

‖zn+1 − zn‖ ≤
αn+1

1− βn+1
ρ‖xn+1 − xn‖+ | αn+1

1− βn+1
− αn

1− βn
|(‖ f (xn)‖+ ‖Knyn‖)

+
γn+1

1− βn+1
(‖yn+1 − yn‖+ L

N

∑
i=1

|λn+1,i − λn,i|).(19)

Putting un = xn − rn Axn. Then we have yn+1 = Trn+1 un+1, yn = Trn un. Hence from the
nonexpansivity of Trn+1 we have

‖yn+1 − yn‖ = ‖Trn+1 un+1 − Trn un‖
≤ ‖Trn+1 un+1 − Trn+1 un‖+ ‖Trn+1 un − Trn un‖
≤ ‖un+1 − un‖+ ‖Trn+1 un − Trn un‖.(20)

Since I − rn A is nonexpansive for all n ∈ N, we have

‖un+1 − un‖ = ‖xn+1 − rn+1 Axn+1 − xn + rn Axn‖
≤ ‖(I − rn+1 A)xn+1 − (I − rn+1 A)xn‖+ |rn − rn+1‖Axn‖
≤ ‖xn+1 − xn‖+ |rn+1 − rn|‖Axn‖.(21)

By Lemma 2.6, we obtain

(22) Φ(Trn un, y) + ϕ(y)− ϕ(Trn un) +
1
rn
〈y− Trn un, Trn un − un〉 ≥ 0, ∀y ∈ C,

and

(23) Φ(Trn+1 un, y) + ϕ(y)− ϕ(Trn+1 un) +
1

rn+1
〈y− Trn+1 un, Trn+1 un − un〉 ≥ 0, ∀y ∈ C.

Putting y = Trn+1 un in (22) and y = Trn un in (23), we have

(24) Φ(Trn un, Trn+1 un) + ϕ(Trn+1 un)− ϕ(Trn un) +
1
rn
〈Trn+1 un − Trn un, Trn un − un〉 ≥ 0,

and

(25) Φ(Trn+1 un, Trn un) + ϕ(Trn un)− ϕ(Trn+1 un) +
1

rn+1
〈Trn un − Trn+1 un, Trn+1 un − un〉 ≥ 0.
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Summing up (24) and (25) and using (A2), we have

1
rn+1

〈Trn un − Trn+1 un, Trn+1 un − un〉+
1
rn
〈Trn+1 un − Trn un, Trn un − un〉 ≥ 0,

and

〈Trn un − Trn+1 un,
Trn+1 un − un

rn+1
− Trn un − un

rn
〉 ≥ 0,

and hence

0 ≤ 〈Trn+1 un − Trn un, Trn un − un −
rn

rn+1
(Trn+1 un − un)〉

= 〈Trn+1 un − Trn un, Trn un − Trn+1 un + (1− rn

rn+1
)(Trn+1 un − un)〉

≤ ‖Trn+1 un − Trn un‖(‖Trn+1 un − Trn un‖+ |1− rn

rn+1
|‖Trn+1 un − un‖).

From (C1), we can find a real number a such that rn ≥ a > 0 for all n ∈ N.
Then, we have

‖Trn+1 un − Trn un‖2 ≤ |1− rn

rn+1
|‖Trn+1 un − Trn un‖(‖Trn+1 un‖+ ‖un‖),

and hence

‖Trn+1 un − Trn un‖ ≤ |1− rn

rn+1
|(‖Trn+1 un‖+ ‖un‖)

≤ 1
a
|rn+1 − rn|L̂,(26)

where L̂ = sup{‖Trn+1 un‖+ ‖un‖ : n ∈ N}.
By (20), (21) and (26), we have

(27) ‖yn+1 − yn‖ ≤ ‖xn+1 − xn‖+ |rn+1 − rn|‖Axn‖+
1
a
|rn+1 − rn|L̂.

Combining (19) and (27), we deduce

‖zn+1 − zn‖ ≤
αn+1

1− βn+1
ρ‖xn+1 − xn‖+ | αn+1

1− βn+1
− αn

1− βn
|(‖ f (xn)‖+ ‖Knyn‖)

+
γn+1

1− βn+1
(‖xn+1 − xn‖+ |rn+1 − rn|‖Axn‖+

1
a
|rn+1 − rn|L̂

+ L
N

∑
i=1

|λn+1,i − λn,i|)

≤ ‖xn+1 − xn‖+ | αn+1

1− βn+1
− αn

1− βn
|(‖ f (xn)‖+ ‖Knyn‖)

+
γn+1

1− βn+1
|rn+1 − rn|‖Axn‖+

γn+1

1− βn+1
· 1

a
|rn+1 − rn|L̂

+
γn+1

1− βn+1
L

N

∑
i=1

|λn+1,i − λn,i|.

Therefore

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ | αn+1

1− βn+1
− αn

1− βn
|(‖ f (xn)‖+ ‖Knyn‖)

+
γn+1

1− βn+1
|rn+1 − rn|‖Axn‖+

γn+1

1− βn+1
· 1

a
|rn+1 − rn|L̂

+
γn+1

1− βn+1
L

N

∑
i=1

|λn+1,i − λn,i|.(28)
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Applying the conditions (C2), (D1), (E1) and (F1) and taking the superior limit as n → ∞
to (28), we have

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) = 0.

Hence, by Lemma 2.5, we have lim
n→∞

‖zn − xn‖ = 0. This implies that

(29) lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖zn − xn‖ = 0.

Using (C2), (27) and (29), we have

(30) lim
n→∞

‖yn+1 − yn‖ = 0.

Next we show that lim
n→∞

‖xn − yn‖ = 0 and lim
n→∞

‖Knyn − yn‖ = 0.

Since xn+1 = αn f (xn) + βnxn + γnKnyn, we obtain

‖xn − Knyn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Knyn‖
= ‖xn − xn+1‖+ ‖αn f (xn) + βnxn + γnKnyn − Knyn‖
= ‖xn − xn+1‖+ ‖αn f (xn) + βnxn − (1− γn)Knyn‖
= ‖xn − xn+1‖+ ‖αn f (xn) + βnxn − (αn + βn)Knyn‖
≤ ‖xn − xn+1‖+ αn‖ f (xn)− Knyn‖+ βn‖xn − Knyn‖

and hence

(31) ‖xn − Knyn‖ ≤
1

1− βn
‖xn − xn+1‖+

αn

1− βn
‖ f (xn)− Knyn‖.

Since αn → 0 and ‖xn − xn+1‖ → 0 as n → ∞, (31) implies that

(32) lim
n→∞

‖xn − Knyn‖ = 0.

From (14) and monotonicity of A and nonexpansivity of Trn , we have

‖xn+1 − p‖2 = ‖αn f (xn) + βnxn + γnKnyn − p‖2

≤ αn‖ f (xn)− p‖2 + βn‖xn − p‖2 + γn‖Knyn − p‖2

≤ αn‖ f (xn)− p‖2 + βn‖xn − p‖2 + γn‖yn − p‖2

= αn‖ f (xn)− p‖2 + βn‖xn − p‖2 + γn‖Trn(xn − rn Axn)− Trn(p− rn Ap)‖2

≤ αn‖ f (xn)− p‖2 + βn‖xn − p‖2 + γn‖(xn − rn Axn)− (p− rn Ap)‖2

= αn‖ f (xn)− p‖2 + βn‖xn − p‖2 + γn‖(xn − p)− rn(Axn − Ap)‖2

= αn‖ f (xn)− p‖2 + βn‖xn − p‖2 + γn(‖xn − p‖2 − 2rn〈xn − p, Axn − Ap〉
+ r2

n‖Axn − Ap‖2)

≤ αn‖ f (xn)− p‖2 + βn‖xn − p‖2 + γn(‖xn − p‖2 − 2rnα‖Axn − Ap‖2

+ r2
n‖Axn − Ap‖2)

= αn‖ f (xn)− p‖2 + βn‖xn − p‖2 + γn‖xn − p‖2 − 2rnγnα‖Axn − Ap‖2

+ γnr2
n‖Axn − Ap‖2

= αn‖ f (xn)− p‖2 + (1− αn)‖xn − p‖2 + γnrn(rn − 2α)‖Axn − Ap‖2.(33)

By (33), we have

γnrn(2α− rn)‖Axn − Ap‖2 ≤ αn‖ f (xn)− p‖2 + (1− αn)‖xn − p‖2 − ‖xn+1 − p‖2

= αn‖ f (xn)− p‖2 − αn‖xn − p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

≤ αn‖ f (xn)− p‖2 − αn‖xn − p‖2 + ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖).(34)
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Since, 0 < c ≤ rn ≤ d < 2α, we have
(35)
γnc(2α− d)‖Axn −Ap‖2 ≤ αn‖ f (xn)− p‖2− αn‖xn − p‖2 + ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1− p‖).

From αn → 0 , ‖xn − xn+1‖ → 0 and the boundedness of {xn} and { f (xn)}, we have

(36) lim
n→∞

‖Axn − Ap‖ = 0.

Since Trn is a firmly nonexpansive, we have

‖yn − p‖2 = ‖Trn(xn − rn Axn)− Trn(p− rn Ap)‖2

≤ 〈Trn(xn − rn Axn)− Trn(p− rn Ap), (xn − rn Axn)− (p− rn Ap)〉
= 〈yn − p, (xn − rn Axn)− (p− rn Ap)〉

=
1
2
(‖yn − p‖2 + ‖(xn − rn Axn)− (p− rn Ap)‖2 − ‖(yn − p)

− ((xn − rn Axn)− (p− rn Ap))‖2)

≤ 1
2
(‖yn − p‖2 + ‖xn − p‖2 − ‖(xn − yn)− rn(Axn − Ap)‖2)

=
1
2
(‖yn − p‖2 + ‖xn − p‖2 − ‖xn − yn‖2 + 2rn〈xn − yn, Axn − Ap〉

− r2
n‖Axn − Ap‖2)(37)

and hence

(38) ‖yn − p‖2 ≤ ‖xn − p‖2 − ‖xn − yn‖2 + 2rn‖xn − yn‖‖Axn − Ap‖.

It follows that

‖xn+1 − p‖2 ≤ αn‖ f (xn)− p‖2 + βn‖xn − p‖2 + γn‖yn − p‖2

≤ αn‖ f (xn)− p‖2 + βn‖xn − p‖2 + γn(‖xn − p‖2 − ‖xn − yn‖2

+ 2rn‖xn − yn‖‖Axn − Ap‖)
= αn‖ f (xn)− p‖2 + βn‖xn − p‖2 + γn‖xn − p‖2 − γn‖xn − yn‖2

+ 2γnrn‖xn − yn‖‖Axn − Ap‖
= αn‖ f (xn)− p‖2 + (1− αn)‖xn − p‖2 − γn‖xn − yn‖2

+ 2γnrn‖xn − yn‖‖Axn − Ap‖.

This implies

γn‖xn − yn‖2 ≤ αn‖ f (xn)− p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2 − αn‖xn − p‖2

+ 2γnrn‖xn − yn‖‖Axn − Ap‖
≤ αn‖ f (xn)− p‖2 + ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖)

− αn‖xn − p‖2 + 2γnrn‖xn − yn‖‖Axn − Ap‖.(39)

Since αn → 0, ‖xn − xn+1‖ → 0, ‖Axn − Ap‖ → 0 and the sequences {xn}, {yn} and { f (xn)}
are bounded, it follows from (39) that

(40) lim
n→∞

‖xn − yn‖ = 0.

From ‖Knyn − yn‖ ≤ ‖Knyn − xn‖+ ‖xn − yn‖
by (32) and (40), we have

(41) lim
n→∞

‖Knyn − yn‖ = 0.

Next, we show that

(42) lim sup
n→∞

〈 f (x∗)− x∗, xn − x∗〉 ≤ 0,
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where x∗ = P∩N
i=1F(Ti)∩Ω f (x∗). To show this inequality, we can choose a subsequence {ynj} of

{yn} such that

(43) lim
i→∞

〈 f (x∗)− x∗, yni − x∗〉 = lim sup
n→∞

〈 f (x∗)− x∗, yn − x∗〉.

Since {yni} is bounded, there exists a subsequence {ynij} of {yni} which converges weakly to
ω. Without loss of generality, we can assume that yni ⇀ ω. From ‖Knyn − yn‖ → 0, so we have
Knyni ⇀ ω. Let us show ω ∈ ∩N

i=1F(Ti) ∩Ω.
First, we show ω ∈ Ω. Since yn = Trn(xn − rn Axn), for any z ∈ C we have

Φ(yn, z) + ϕ(z)− ϕ(yn) + 〈Axn, z− yn〉+
1
rn
〈z− yn, yn − xn〉 ≥ 0.

From (A2) we have

ϕ(z)− ϕ(yn) + 〈Axn, z− yn〉+
1
rn
〈z− yn, yn − xn〉 ≥ −Φ(yn, z) ≥ Φ(z, yn),

and hence

(44) ϕ(z)− ϕ(yni) + 〈Axni , z− yni〉+ 〈z− yni ,
yni − xni

rni

〉 ≥ Φ(z, yni),

Put yt = tz + (1− t)ω for all t ∈ (0, 1] and z ∈ C. Then we have yt ∈ C. From (44) we have

ϕ(yt)− ϕ(yni) + 〈yt − yni , Ayt〉

≥ 〈yt − yni , Ayt〉 − 〈yt − yni , Axni〉 − 〈yt − yni ,
yni − xni

rni

〉+ Φ(yt, yni)

= 〈yt − yni , Ayt − Ayni〉+ 〈yt − yni , Ayni − Axni〉 − 〈yt − yni ,
yni − xni

rni

〉+ Φ(yt, yni).

Since ‖yni − xni‖ → 0, we have ‖Ayni − Axni‖ → 0. Further, from monotonicity of A, we have
〈yt − yni , Ayt − Ayni〉 ≥ 0.
Thus from the weakly semicontinuity of ϕ and (A4), we have

(45) ϕ(yt)− ϕ(ω) + 〈yt −ω, Ayt〉 ≥ Φ(yt, ω) as i → ∞.

From (A1), (A4), (45) and the convexity of ϕ , we also have

0 = Φ(yt, yt) + ϕ(yt)− ϕ(yt)
= Φ(yt, (tz + (1− t)ω)) + ϕ(tz + (1− t)ω)− ϕ(yt)
≤ tΦ(yt, z) + (1− t)Φ(yt, ω) + tϕ(z) + (1− t)ϕ(ω)− ϕ(yt)
≤ tΦ(yt, z) + (1− t)(ϕ(yt)− ϕ(ω) + 〈yt −ω, Ayt〉) + tϕ(z) + (1− t)ϕ(ω)− ϕ(yt)
= tΦ(yt, z)− tϕ(yt) + (1− t)〈yt −ω, Ayt〉+ tϕ(z)
= t[Φ(yt, z)− ϕ(yt) + ϕ(z)] + (1− t)t〈z−ω, Ayt〉(46)

Dividing by t, we have

Φ(yt, z)− ϕ(yt) + ϕ(z) + (1− t)〈z−ω, Ayt〉 ≥ 0, ∀z ∈ C.

Letting t → 0, it follows from (A3) and the weakly semicontinuity of ϕ that

(47) Φ(ω, z)− ϕ(ω) + ϕ(z) + 〈z−ω, Aω〉 ≥ 0, ∀z ∈ C.

Therefore ω ∈ Ω. Next, we show that ω ∈ ∩N
i=1F(Ti). Assume that there exists j ∈ {1, 2, . . . , N}

such that ω 6= Tjω. By Lemma 2.10, we have ω 6= Kω.
Since yni ⇀ ω and ω 6= Kω, by Opial’s condition [8] and (41) and Lemma 2.11, we have

lim inf
i→∞

‖yni −ω‖ < lim inf
i→∞

‖yni − Kω‖

≤ lim inf
i→∞

(‖yni − Kni yni‖+ ‖Kni yni − Kni ω‖+ ‖Kni ω − Kω‖)

≤ lim inf
i→∞

‖yni −ω‖,
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which is a contradiction. Thus ω = Kω and ω ∈ F(K) = ∩N
i=1F(Ti). Hence ω ∈ ∩N

i=1F(Ti)∩Ω.
Since x∗ = P∩N

i=1F(Ti)∩Ω f (x∗), we have

lim sup
n→∞

〈 f (x∗)− x∗, xn − x∗〉 = lim
i→∞

〈 f (x∗)− x∗, xni − x∗〉

= lim
i→∞

〈 f (x∗)− x∗, yni − x∗〉

= 〈 f (x∗)− x∗, ω − x∗〉 ≤ 0.(48)

Finally, we prove that {xn} and {yn} converge strongly to x∗. From (13), we obtain

‖xn+1 − x∗‖2 = 〈αn f (xn) + βnxn + γnKnyn − x∗, xn+1 − x∗〉
= αn〈 f (xn)− x∗, xn+1 − x∗〉+ βn〈xn − x∗, xn+1 − x∗〉+ γn〈Knyn − x∗, xn+1 − x∗〉
≤ αn〈 f (xn)− f (x∗), xn+1 − x∗〉+ αn〈 f (x∗)− x∗, xn+1 − x∗〉

+
1
2

βn(‖xn − x∗‖2 + ‖xn+1 − x∗‖2) +
1
2

γn(‖Knyn − x∗‖2 + ‖xn+1 − x∗‖2)

≤ 1
2
(1− αn)(‖xn − x∗‖2 + ‖xn+1 − x∗‖2) + αn〈 f (x∗)− x∗, xn+1 − x∗〉

+
1
2

αn(‖ f (xn)− f (x∗)‖2 + ‖xn+1 − x∗‖2)

≤ 1
2
(1− αn)(‖xn − x∗‖2 + ‖xn+1 − x∗‖2) + αn〈 f (x∗)− x∗, xn+1 − x∗〉

+
1
2

αnρ2‖xn − x∗‖2 +
1
2

αn‖xn+1 − x∗‖2

=
1
2
(1− αn(1− ρ2))‖xn − x∗‖2 +

1
2
‖xn+1 − x∗‖2 + αn〈 f (x∗)− x∗, xn+1 − x∗〉,(49)

which implies that

‖xn+1 − x∗‖2 ≤ (1− αn(1− ρ2))‖xn − x∗‖2 + 2αn〈 f (x∗)− x∗, xn+1 − x∗〉

= (1− αn(1− ρ2))‖xn − x∗‖2 + αn(1− ρ2) · 2
(1− ρ2)

〈 f (x∗)− x∗, xn+1 − x∗〉

= (1− δn)‖xn − x∗‖2 + δnσn,(50)

where δn = αn(1 − ρ2) and σn = 2
(1−ρ2) 〈 f (x∗)− x∗, xn+1 − x∗〉. It is easy to see that

∞
∑

n=1
δn =

∞ and lim sup
n→∞

σn ≤ 0. Applying Lemma 2.4 to (50), we conclude that xn → x∗ as n → ∞.

Consequently, {yn} converge strongly to x∗. This completes the proof. �

Corollary 3.2. Let H be a Hilbert space, C a closed convex nonempty subset of H, ϕ : C → R a proper
lower semicontinuous and convex functional, Φ : C × C → R a bifunction satisfying (A1)-(A4),
{Ti}N

i=1 a finite family of nonexpansive mappings of C into itself such that ∩N
i=1F(Ti)∩ MEP(Φ, ϕ) 6=

0 and f a ρ−contraction of C into itself. Moreover, let {αn}, {βn} and {γn} are three sequences in
(0, 1) with αn + βn + γn = 1, {λn,i}N

i=1 a sequence in [a, b] with 0 < a ≤ b < 1 and {rn} a sequence
in [0, 2α] for all n ∈ N. Assume that:

(i) either (B1) or (B2) holds;
(ii) the sequence {rn} satisfies

(C1) 0 < c ≤ rn ≤ d < 2α; and

(C2)
∞
∑

n=1
|rn+1 − rn| < ∞;

(iii) the sequence {αn} satisfies
(D1) lim

n→∞
αn = 0; and

(D2)
∞
∑

n=0
αn = ∞;

(iv) the sequence {βn} satisfies
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(E1) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(v) the finite family of sequences {λn,i}N
i=1 satisfies

(F1) lim
n→∞

|λn+1,i − λn,i| = 0 for every i ∈ {1, 2, . . . , N}.

For every n ∈ N, let Kn be a K−mapping generated by T1, T2, . . . , TN and λn,1, λn,2, . . . , λn,N and let
{xn} and {yn} be sequences generated by x0 ∈ C and{

Φ(yn, x) + ϕ(x)− ϕ(yn) + 1
rn
〈x − yn, yn − xn〉 ≥ 0, ∀x ∈ C

xn+1 = αn f (xn) + βnxn + γnKnyn.

Then both {xn} and {yn} converge strongly to x∗ = P∩N
i=1F(Ti)∩MEP(Φ,ϕ) f (x∗).

Proof. Put A ≡ 0. Then, for all α ∈ (0, ∞), we have that

〈x − y, Ax − Ay〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ C.

Hence all the conditions of Theorem 3.1 are satisfied. Therefore the corollary is obtained by
Theorem 3.1. �

Corollary 3.3. Let H be a Hilbert space, C a closed convex nonempty subset of H, A an α−inverse
strongly monotone mapping of C into H, Φ : C × C → R a bifunction satisfying (A1)-(A4), {Ti}N

i=1
a finite family of nonexpansive mappings of C into itself such that ∩N

i=1F(Ti) ∩ EP 6= 0 and f a
ρ−contraction of C into itself. Moreover, let {αn}, {βn} and {γn} are three sequences in (0, 1) with
αn + βn + γn = 1, {λn,i}N

i=1 a sequence in [a, b] with 0 < a ≤ b < 1 and {rn} a sequence in [0, 2α]
for all n ∈ N. Assume that:

(i) the sequence {rn} satisfies
(C1) 0 < c ≤ rn ≤ d < 2α; and

(C2)
∞
∑

n=1
|rn+1 − rn| < ∞;

(ii) the sequence {αn} satisfies
(D1) lim

n→∞
αn = 0; and

(D2)
∞
∑

n=0
αn = ∞;

(iii) the sequence {βn} satisfies
(E1) 0 < lim inf

n→∞
βn ≤ lim sup

n→∞
βn < 1;

(iv) the finite family of sequences {λn,i}N
i=1 satisfies

(F1) lim
n→∞

|λn+1,i − λn,i| = 0 for every i ∈ {1, 2, . . . , N}.

For every n ∈ N, let Kn be a K−mapping generated by T1, T2, . . . , TN and λn,1, λn,2, . . . , λn,N and let
{xn} and {yn} be sequences generated by x0 ∈ C and{

Φ(yn, x) + 〈Axn, x − yn〉+ 1
rn
〈x − yn, yn − xn〉 ≥ 0, ∀x ∈ C

xn+1 = αn f (xn) + βnxn + γnKnyn.

Then both {xn} and {yn} converge strongly to x∗ = P∩N
i=1F(Ti)∩EP f (x∗).

Proof. Put ϕ ≡ 0 in Theorem 3.1. Hence all the conditions of Theorem 3.1 are satisfied. There-
fore the corollary is obtained by Theorem 3.1. �

Corollary 3.4. Let H be a Hilbert space, C a closed convex nonempty subset of H, Φ : C × C → R

a bifunction satisfying (A1)-(A4), {Ti}N
i=1 a finite family of nonexpansive mappings of C into itself

such that ∩N
i=1F(Ti) ∩ EP(Φ) 6= 0 and f a ρ−contraction of C into itself. Moreover, let {αn}, {βn}

and {γn} are three sequences in (0, 1) with αn + βn + γn = 1, {λn,i}N
i=1 a sequence in [a, b] with

0 < a ≤ b < 1 and {rn} a sequence in [0, 2α] for all n ∈ N. Assume that:
(i) the sequence {rn} satisfies

(C1) 0 < c ≤ rn ≤ d < 2α; and
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(C2)
∞
∑

n=1
|rn+1 − rn| < ∞;

(ii) the sequence {αn} satisfies
(D1) lim

n→∞
αn = 0; and

(D2)
∞
∑

n=0
αn = ∞;

(iii) the sequence {βn} satisfies
(E1) 0 < lim inf

n→∞
βn ≤ lim sup

n→∞
βn < 1;

(iv) the finite family of sequences {λn,i}N
i=1 satisfies

(F1) lim
n→∞

|λn+1,i − λn,i| = 0 for every i ∈ {1, 2, . . . , N}.

For every n ∈ N, let Kn be a K−mapping generated by T1, T2, . . . , TN and λn,1, λn,2, . . . , λn,N and let
{xn} and {yn} be sequences generated by x0 ∈ C and{

Φ(yn, x) + 1
rn
〈x − yn, yn − xn〉 ≥ 0, ∀x ∈ C

xn+1 = αn f (xn) + βnxn + γnKnyn.

Then both {xn} and {yn} converge strongly to x∗ = P∩N
i=1F(Ti)∩EP(Φ) f (x∗).

Proof. Put ϕ ≡ 0 and A ≡ 0 in Theorem3.1. Hence the corollary is obtained by Theorem
3.1. �
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