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An iterative method for finding common solutions of generalized
mixed equilibrium problems and fixed point problems

Benjawan Rodjanadid

ABSTRACT: In this paper, we introduce an iterative method for finding a common element of
the set of solutions of a generalized mixed equilibrium problem and the set of common fixed
points of a finite family of nonexpansive mappings in a real Hilbert space. Then, we prove that
the sequence converges strongly to a common element of the above two sets. Furthermore,
we apply our result to prove three new strong convergence theorems in fixed point problems,
mixed equilibrium problems, generalized equilibrium problems and equilibrium problems.

1. Introduction

Let H be a real Hilbert space, C a nonempty closed convex subset of H, ¢ : C — IR a real
value function, A : C — H a nonlinear mapping and let ® : C x C — R be a bifunction, i.e.,
®(x,x) = 0 for each x € C. Then, we consider the following mixed equilibrium problem :

Find x* € C such that

(1) (GMEP) : P, y) +oy) —o(x") +{Ax",y—x") 20, VyeC
The set of solutions for problem (1) is denoted by (), i.e.,
(2) O={x"eC:2(x"y) +¢y) —x") +(Ax",y—x") 20, VyeC}.

If A = 0in (1), then (GMEP) (1) reduces to the classical mixed equilibrum problem (for short,
MEP) and Q) is denoted by MEP(®, ¢), that is,

3) MEP(®,¢) = {x* € C: D(x*,y) + ¢(y) — ¢(x*) >0, VyeC}.

If = 0in (1), then (GMEP) (1) reduces to the generalized equilibrium problem (for short,
GEP) and () is denoted by EP, that is,

4) EP={x* € C:®(x*,y)+ (Ax*,y—x") >0, VyeC}.

If p =0and A = 01in (1), then (GMEP) (1) reduces to the classical equilibrium problem (for
short, EP) and Q) is denoted by EP(®), that is,

(5) EP(®) ={x" € C:®(x",y) >0, VyeC}l
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If ® = 0and ¢ = 01in (1), then (GMEP) (1) reduces to the classical variational inequality and
Q) is denoted by VI(A, C), that is,

(6) VI(A,C)={x*e€C: (Ax*,y—x*) >0, VYyeC}.

In 2005, Combettes and Hirstoaga [3] introduced an iterative scheme of finding the best
approximation to the initial data when EP(®) # @ and proved a strong convergence theorem.

In 2006, Takahashi and Takahashi [14] introduced an iterative scheme by the viscosity ap-
proximation method for finding a common element of the set of solutions of an equilibrium
problem and the set of fixed points of nonexpansive mapping in a Hilbert space and proved a
strong convergence theorem.

In 2007, Tada and Takahashi [12] introduced two iterative schemes for finding a common
element of the set of solutions of an equilibrium problem and the set of fixed points of a nonex-
pansive mapping in a Hilbert space and obtained both strong convergence theorem and weak
convergence theorem. In 2008, Takahashi and Takahashi [13] introduced an iterative method
for finding a common element of the set of solutions of a generalized equilibrium problem
and the set of fixed points of a nonexpansive mapping in a Hilbert space and then obtain that
the sequence converges strongly to a common element of two sets. Moreover they proved
three new strong convergence theorems in fixed point problems, variational inequalities and
equilibrium problems.

Recently, Ceng and Yao [2] introduced a hybrid iterative scheme for finding a common el-
ement of the set of solutions of mixed equilibrium problem (3) and the set of common fixed
points of finitely many nonexpansive mappings and they proved that the sequences generated
by the hybrid iterative scheme converge strongly to a common element of the set of solutions of
mixed equilibrium problem and the set of common fixed points of finitely many nonexpansive
mappings.

In 2008, Peng and Yao [9] obtained some strong convergence theorems for iterative schemes
based on the hybrid method and the extragradient method for finding a common element of
the set of solutions of a mixed equilibrium problem, the set of fixed points of a nonexpansive
mapping and the set of solutions of the variational inequality.

In this paper, we introduced another iterative method for finding an element of the set of
solutions of problem (1) and the set of common fixed points of finitely many nonexpansive
mappings in real Hilbert space, where A : C — H is also an a—inverse strongly monotone
mapping and then obtain a strong convergence theorem. Moreover we using this theorem to
the problem for finding a common elements of "X, F(T;) N MEP(®, ¢) , "X, F(T;) N EP and
NN, F(T;) N EP(®P), respectively.

2. Preliminaries

Let H be a real Hilbert space with inner product (-, -) and norm || - ||. Let symbols — and
— denote weak and strong convergence, respectively. Let C be a nonempty closed convex
subset of H. Then, for any x € H, there exists a unique nearest point in C, denoted by Pc(x)
such that ||x — Pc(x)|| < ||lx —y||, Yy € C. The mapping Pc : x — Pc(x) is called the metric
projection of H onto C. We know that P¢ is nonexpansive.
The following characterizes the projection Pc.

Lemma 2.1. (See [11]) Given x € H and y € C. Then Pc(x) = y if and only if there holds the
inequality
(x—y,y—z)>0, VzeC.

Recall that the following definitions.

(1) A mapping T : C — C is called nonexpansive if ||[Tx — Ty|| < ||x —y|| for all x,y € C.
Next, we denote by F(T) the set of fixed points of T, i.e., F(T) = {x € C: Tx = x}.

(2) A mapping f : H — H is said to be a contraction if there exists a constant p € (0,1) such
that || f(x) — f(y)|| < pllx -y forallx,y € H.
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(3) A mapping A : C — H is called monotone if (Ax — Ay,x —y) > O forall x,y € C
and it is called « —inverse strongly monotone if there exists a positive real number a such that
(x —y, Ax — Ay) > a||Ax — Ay|]>, Vx,y € C. We can see that if A is a—inverse strongly
monotone, then A is monotone mapping.

The following lemmas will be useful for proving our main results.

Lemma 2.2. (See [11]) For all x,y € H, there holds the inequality
e+ yl1* < llxl” + 20y, x + y).
Lemma 2.3. (See [11]) In a strictly convex Banach space E, if
€l = llyll = [[Ax + (1 = A)yl],
forall x,y € Eand A € (0,1), then x = y.

Lemma 2.4. (See [16]) Let {a,} be a sequence of nonnegative real numbers satisfying a,1 = (1 —
Xy )y + 0&nBn, V1 > 0 where {ay},{Pn} satisfy the conditions

(i) {an} C[0,1], Of: K, = o0;

n=1
(ii) limsup B, < 0.

n—oo

Then lim a, = 0.

n—o0

Lemma 2.5. (See [10]) Let {x, } and {y, } be bounded sequences in a Banach space X and let {p,} be
a sequence in [0,1] with 0 < liminf B, < limsup B, < 1. Suppose
n—oo

n—oo

Xn+1 = ,ann + (1 - ,Bn)ynz
for all integer n > 0 and

limsup(|lyn1 — Yull = |xns1 — xal]) <0.

n—o00

Then, lim ||y, — x,|| = 0.
n—oo

Lemma 2.6. (See [15]) Let C be a nonempty closed convex subset of H, ¢ : C — R U {+o0} bea
proper lower semicontinuous and convex function and let ® be a bifunction of C x C in to R satisfy
(A1) ®(x,x) =0forall x € C;
(A2) @ is monotone, i.e., ®(x,y) +P(y,x) <0, Vx,yeC;
(A3) forall x,y,z € C, lim;_o®(tz+ (1 —t)x,y) < D(x,y);
(A4) forallx € C, yw— D(x,y) is convex and lower semicontinuous;
(B1) for each x € H and r > 0, there exists a bounded subset D, C C and y, € C such that for any
z € C\Dy,

(z,) + plye) + (e~ 22— 7) < 9(2).

(B2) C is bounded set.
Assume that either (B1) or (B2) holds. For x € C and r > 0, define a mapping T, : H — C as follows.

T(x):={z€C:P(z,y) + ¢(y) + %(y—z,z —x) > ¢(z), Vy € C}

forall x € H. Then , the following conditions hold:
(i) Foreachx € H,T,(x) # @;
(ii) T, is single-valued;
(iii) T, is firmly nonexpansive, i.e.,
| T,x — Ty||* < (T,x — Ty, x —y), Vx,y € H;

(iv) F(T,) = MEP(®, ¢) ;
(v) MEP(®, ¢) is closed and convex.
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Lemma 2.7. (see [1]) Let C be a nonempty closed convex subset of H, and let ® be a bifunction from
C x Cinto R satisfying (A1)-(A4). Let r > 0 and x € H. Then, there exists z € C such that

D(z,y) + %(y—z,z—x> >0, VYyecC.

Lemma 2.8. (see [3]) Assume that ® : C x C — R satisfies (A1)-(A4). For r > 0, define a mapping
S, : H — Cas follows:

1
Si(x) ={z€C:P(z,y) + ;(y—z,z —x) >0, YyecC}

forall x € H. Then, the following hold:
(i) Sy is single-valued;
(ii) S, is firmly nonexpansive;

(iii) F(Sy) = EP(®);

(iv) EP(®) is closed and convex.

Let X be a real Hilbert space and C a nonempty closed convex subset of X. For a finite family
of nonexpansive mappings Ty, T», . .., Ty and sequence {A,;}Y | in [0, 1], Kangtunyakarn and
Suantai [6] defined the mapping K,, : C — C as follows:

un,l = /\n,lTl + <1 - /\n,l)lz
Unp = A2 Tolny + (1= Aup)Unp,
Unz = An2TaUnp + (1 = Ana)Un,

Uyn-1 = AnN-1TN-1Unn—2+ (1 — Ayn_1)UsN-2,
(7) Ky = Upn = A NTNUpn—1+ (1 — Ayn)UnN-1

Such a mapping K, is called the K—mapping generated by T1, T», ..., Inand Ay, 1, Ap2, ..., AunN.

Definition 2.9. (See [6]) Let C be a nonempty convex subset of a real Banach space. Let {T;} ¥,
be a finite family of nonexpansive mapping of C into itself, and let A4, ..., Ay be real numbers
such that0 < A; < 1foreveryi=1,...,N. They define a mapping K : C — C as follows:

U, =M1+ (1 — /\1)1,
U, = A LU + (1 — /\z)ul,
U; = A3T3U, + (1 — )\3)112,

Un—1 = An-1Tn-1Un—2 + (1 = An-1)Un—2,
K=Uy= /\NTNUN,l + (1 — /\N)UN,l.
Such a mapping K is called the K—mapping generated by T1,..., Ty and Ay, ..., An.

Lemma 2.10. (See [6]) Let C be a nonempty closed convex subset of a strictly convex Banach space.
Let {T;}N, be a finite family of nonexpansive mappings of C into itself with NN | F(T;) # @ and let
A, ..., AN be real numbers such that 0 < A; < 1 foreveryi =1,..., N—1and 0 < Ay < 1.Let K
be the K—mapping generated by Ty, ..., Ty and Ay, ..., An. Then F(K) = NN, F(T;).

Lemma 2.11. (See [6]) Let C be a nonempty closed convex subset of a Banach space. Let {T;}N | be
a finite family of nonexpansive mappings of C into itself and {A,;}N | sequences in [0,1] such that
Api— Ajasn — oo (i=1,2,...,N). Moreover, for every n € IN, let K and K,, be the K—mappings
generated by T1,To,..., Tn and A, Aa, ..., Ay and Ty, Ty, ..., T and A1, Aup, ..., AnN, respec-
tively. Then, for every x € C,

7}1_1)%0 | Knx — Kx|| = 0.
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Lemma 2.12. Let {x,} be a bounded sequence in a Hilbert space H. Then there exits L > 0 such that

N
8) [Kn+12n41 — KnXn|| < |xn41 — x|l + L Z [Ant1,i — Anil, ¥n > 0.
~

1

Proof. From (7) and the nonexpansivity of Ty and U, n, we obtain

[ Kns1xn — KnXn || = [[Anpt NTNUn1,N—1%0 + (1 = Appi,N)Un 1N 1%
— A NTNUpN—1%0 — (1 = A N) U N—120 ||
= (A NTNUnra,N-1%0 + U g N 1% — A, nUn,N—1%0
— A NTNUp N 1% — Uy, n—1X0 + A, NUp N 1% |
<At NTNUn g1, N-1X0 — Ag NINUp N 1% || + [[Un1,n—1%0 — Up N—1Xa]|
F A, NUnr1,N-1%0 — A N Uy N1 X4 |
= [[ A, NINUn1,N—1%0 — Apst NTNU N1 X0 + Apg, NTN Uy N— 120
— A NTNUp N1 4 [[Un1,N—1%0 — Un N1 X || + | A, v U 1,n—1%0
— A, NUn N—1X0 + A, NUn N— 160 — A NUp N — 1% |
S AN TNUnei,N—1%0 — TNUy n—120 || + [ A8 — AN || T U N1 ]|
| U1, n-1%0 — U, N—1%n || + Anpr, Nl Ung1,n—1%0 — Up,n—1X0]|
+ | Ang,n = AN Un,N—12%0 |
< M N[ Ungi,N—1X0 — Uy n—1Xn || 4 (| Unp1,n—1%0 — U N1 X0 |
+ AN U, N—1%0 — U N—1Xa | 4 [Ang,n — AN [ U N—120 |
+ | Auri,N = AN TN U N1 ]|
) < AngN + D[[Upga,n-1%0 — Uy Nn—1Xn|| + 2L1[Aui1,n — AnnN],

where Ly = sup{||Uy;—1xu|, | TNUyj-1x4}, j=1,2,...,N.
n>0

Again, from (f), we have

[ Uny1,8-1%0 — Unn—1%n|| = [[Angs,n-1 TN 1Unp1,n—2X0 + (1 = Aygi,n—1) Ung1,n—2%n
— A N-1TN— U N—2Xy — (1 = Ay n—1) U, N—2Xn |
< AN TN 1Unp 1N 2% — Agn—1Tn-1Up N—2X4 ]|
+ | U 1,8—2%0 — U, N—2%n || + | A1, N—1Ung1,N—2Xn
— Ap,N—1Up,N—2X4||

S ANt Ungi,n—2%n — U n—2Xn || + [Appin—1 — Ann-1]
X | TN—1 U, N—2%n || + |[Ung1,N—2Xn — U, N—2Xx]|
+ A, N1 | Ungp1,N—2Xn — U N—2Xn || + [Anpi,n—1 — Aun—1]
X || U, N—2Xx]|
(10) < Agn-1 F D[ Ung1,n—2%n — Uy, n—2Xn || +2L1 | Apy1,n-1 — AgN-1]-
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Therefore, we have

| Uns1,N-1%n — U, N—1%n |
< Agn-1 1) A N2 + D) [[Ung1,n 3% — U, n-3]|

+ (2Au41,8-1 + 1)2L1 [ Apsa,n—2 — AuN—2| + 2L1[Aur1N—1 — AnN-1]
2

< H (ZAVH-ll +1)Hun+1,1xn - nlan +

(2A 41, +1)2L1 [ Aus12 — Aol
“N—
(24

1

4
+ H (A g1, +1)2L1 [ Ay 13 — Aug| +
i 1 i

-1

+...+ H (2Any1,i +1)2L1 AN -2 — Apn—2| +2L1 | Apg1,n—1 — AuN-1]
i=N-1

nt+1i +1)201|Ang14 — Apal

3
11
i=N—-1
5
IT (

i=N—

1

Z |

2
= JI @Aosri+DlAnsraTixn + (1= Aps11) X — Aua Tixn — (1= Ayp) x|

4
Ans,i + 1201 Ans12 = Aual + [T (2Ang1i +1)2L1[An 113 — Angl

I

i=N—-1 i=N—-1
5
TT @Augai +1)2L1 [ Apyrs — Aual + ...+

+ (2An41,i +1)2L1 | Ay 1,Nn—2 — AuN—2| +2L1 [ Apr1N—1 — AuN-1],

then

| Upt1,N-1%n — Up,N—1%n]]

2
< JT @i + D) Ausns = Al Taixall + (A1 — Aualllall)
i=N-1
3 4
+ JT @Aus1i + 1201 g1 — Aul + T 2Aws1i +1)2L1[Ans13 — Ans]
i=N-1 i=N-1
5
+ H (2)\,14_1,1‘ -+ 1)2L1 ‘An+1,4 — )Ln,4‘ +...+
i=N-1

z

-1
+ H (A1, + 1201 Ay n—2 — ApN—2| + 2L1 | Apga,n—1 — AnN1]
“N-1
2
< H (A1, +1)2L1 Ay 11 — Aual

i=N-1
3 4
+ T @Ausai + 121 Aws12 — Aul + [ (2Ans1,i +1)2L1|Apsa3 — Anj|
i=N—-1 i=N-1
5
+ H (ZAn+1,i + 1>2L1 ‘An+l,4 — )\71,4‘ +...+
i=N-1
1
(11) + (2Ans1,i +1)2L1 | Apgi,n—2 — ApN—2| + 2L1 | Ay, N1 — Ap,N—1]
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Substituting (11) in (9), we have

1 Kinr1tn — Ky |

2 3
< [T@Aws1i +1)2L1 | Auga1 — Ana| + [ [@Ans1i + 1)2L1 [ A2 — Ang]
=N =N

+

-

1

5
(211 + D20 | Ans13 — Ansl + [ T (2Aur1,i + 1)2L1 [ Ang1a — Anal
=N

Il
Z

Z

oA QAug1i +1)201 A N—2 — AnN—2]

+
1
z

y

n
z

+ | | @Ans1,i +1)2L1 |Apg1,N—1 — AgN—1] + 2L1|Apg1,N — AnN]|

5=

Il
—

(12) <L) | Augri— Auil,

1

2
where L = [T (2A,41,; + 1)2L;. It follows that
i=N
| Kns1%n41 — Knx || < [[Kpg1%n41 — Kpg1xa|| + (| Knp1xn — K ||

N

< [xngr = Xl + LY [Angri — Anil-
iz

3. Main Results

In this section, we deal with an iterative scheme by the approximation method for finding a
common element of the set of common fixed points of finite family of nonexpansive mappings
and the set of solutions of GMEP (1) in real Hilbert spaces.

Theorem 3.1. Let H be a Hilbert space, C a closed convex nonempty subset of H, ¢ : C — R a proper
lower semicontinuous and convex functional, A an a—inverse strongly monotone mapping of C into H,
® : C x C — R a bifunction satisfying (A1)-(A4), {T;}X.| a finite family of nonexpansive mappings
of C into itself such that "N F(T;) N Q # 0 and f a p—contraction of C into itself. Moreover, let
{an}, {Bn} and {y,} are three sequences in (0,1) with ay + Bn + vn = 1, {Ay;}, a sequence in
[a,b] with0 < a < b < 1and {r,} a sequence in [0,2a] for all n € IN. Assume that:

(i) either (B1) or (B2) holds;

(ii) the sequence {r,} satisfies

CHOo<c<r,<d<2aand

(€2) Zl [Pt — 1| < oo
n=

(iii) the sequence {a,} satisfies
(D1) lim a,, = 0; and
n—oo

(D2) ) ay = o0;
n=0

(iv) the setﬁtence {Bn} satisfies
(E1) 0 < liminf B, < limsup B, < 1;
n—oo

n—oo
(v) the finite family of sequences {A,; } N | satisfies
(F1) lim |Ayq1;— Ayi| =0 foreveryi € {1,2,...,N}.
n—oo
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For every n € IN, let K, be a K—mapping generated by T1,To, ..., Tn and Ay1, Aup, ..., AN and let
{xn} and {y,} be sequences generated by xo € C and

(13) {CD(yn,x) + @(x) — @(yn) + (Axn, x —yn) + %(x —YnYn —Xn) 20, Vx €C
Xni1 = &nf (Xn) + BuXn + YnKuyn.
Then both {x,} and {y,} converge strongly to x* = Prf(x*) where T = NN F(T;) N Q
Proof. Let x,y € C. Since A is a—strongly monotone and r, € (0,2a) Vn € IN, we have
10 = 1)z — (1= 1w A)yIP = | — y — rul Ax — Ay)|
= [lx =yl = 2 (x —y, Ax — Ay) + ;]| Ax — Ay|)?
< llx = yl? = 2ma| Ax — Ay|]® + ]| Ax — Ay|?
— =yl + (1 — 20)|| Ax — Ay
< llx—yl?

which implies that I — r, A is nonexpansive.
Next we prove that the sequences {x,}, {yn}, {Axn}, {f(xx)} and {K,y,} are bounded.
Since

1
D (yn, x) + @(x) — @(yn) + (Axn, x — yn) + E<x —YnYn —Xn) 20, Vx €C,
we have

1
Py X) + ¢(x) = @(yn) + = {x =Y, Yu — (xn —1nAxn)) 20, Vx € C.

n
It follows from Lemma 2.6 that y, = T;, (x, — rnAx,), ¥n € N.
Let p € NN, F(T;) N Q. Then we have

@(p,y) +o(y) —@(p) + (Ap,y—p) >0, Vy €C,
SO

@(p,y) +oy) —o(p) + rln<y —pp—(p—rdAp)) >0, VyeC.

By Lemma 2.6, we have p = T, (p — rn Ap).
Since T}, and (I — r,A) are nonexpansive, we have

lyn = pll = Ty, (xn — ruAxn) — To,,(p — raAp) ||
< |[(xn — rnAxn) — (p — ra Ap)||
(14) < lxn = pl-
From (13) and (14), we deduce that
[xn+1 = pll = llanf (xn) + Buxn + vuKayn — pl|

= [lanf (xn) + Buxn + YnKnyn — (@n + Bn + vn)p|l
< aul f(xn) = pll + Bullxn — pll + vall Kuyn — pl
< an([|f(xn) = fF()I 4+ f(p) = pI) + Bullxn = pll + ¥ullyn — pl
< an(pllxn = pll + 1f(p) = pl) + Bullxa = pll + vallxn — pll
= anp|[xn = pll + Bullxn — pll + vullxn — pll + anllf(p) — pll
= anp|[xn — pll + (1 — an)|lxn = pll + an f(p) — Pl
= (1—an(1—p))llxn — pll +anll f(p) — Pl

(15) = (1= au(1 =)l = pll 0l =) - T 1£(1) —

It follows from (15) induction that
X —pll <M, Yn>0
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where M = max{||xo — p|, ﬁ | f(p) —pll}-So {x,} isbounded. Therefore {y,}, { Axn}, {f(xn)}
and {K,y,} are also bounded.

Next we shall show that lim |[|x,11 — x| = 0.
n—oo
Define
&p TYn
16 = Kayy,
( ) Zn 1_,an(xn)+1_,31’l ”y”
we have
(17) Xp+1 = BnXn + (1 — Bn)zn, Vn > 0.
Consider
Apt1 Yn+1 Xn Tn
— = ||—— ——K - - ——XK
Zns1 = zull = || 1— ﬁn+1f(xn+1) + 1 Bt n+1Yn+1 1_ ‘an(xn) 1- B, Yl
K1 Xpy1 Xn
< —|f(x — fxn)| + — b
L F o) = Flsn) |+ | = )]
Yn+1 TYn+1 TYn
———||K — K — K
+ 1— Bori 1 Kin+1Yn+1 Yl + |1 —Bpr1  1-— ,Bn|H Y
Opt1 Xpt+1 Xn
< ———0|| X1 — Xn|| + - xn)|| + [|K
s ]+ 1 - )+ K
(18) + Ky s1ns — Kl
1- :Bn+1
Substituting (8) from Lemma 2.12 into (18), we have
X1 Kp41 Xn
S e e - - K
21 =2l € T2 pls =l + 17250 — (I + Kyl
Yn+1 N
(19) + Iy = yull + LY [Ansri = Anil)-
1- ‘Bn+l i—1
Putting u, = x, — r,Ax,. Then we have y,1 = T, ups1, Yn = Tp,uy. Hence from the
nonexpansivity of T, ,, we have
[Yns1 = yull = [ Trii i — T, t|
< ”Trn+1”n+l — Ty, tin|| + HTrnH“n — Ty, tn|
(20) < uns1 — uall + HTrnﬂ”n — Ty, ttn |-
Since I — r, A is nonexpansive for all n € IN, we have
|tns1 — tnll = [[Xn1 — T 1AX041 — X + 10 AXy ||
< (I = rup1A)xnr — (I = rag1 A)xul| 4 |rn — ruga || Axa|
(21) < Hxn—i-l - an + |t — rn’HAan'
By Lemma 2.6, we obtain
1
(22) (T, un, y) + ¢(y) — @(Ty,un) + 7<]/ — Ty, tin, Ty, iy — un) >0, Yy € C,
n
and
1
@3 O(Tryytny) + @) = @(Trvstin) + =y = Tty Tyt — ttn) 20, Wy € C.
n+

Puttingy = T, ,,u, in (22) and y = T;,u, in (23), we have

n+1
1

(24) ®<Trnun’ Trn+1un) + go(TrnJrlun) - @(Tfnun) + 7<Trn+1 Uy — T”nun’ Trnun - un> 2 O’
n

and

1
(25)  @(Ty,, tn, Tr,tin) + (T, utn) — @(Tp,, i) + ﬁ<Trn un — Tr,ytin, Ty thn — i) 2> 0.
n+
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Summing up (24) and (25) and using (A2), we have

1 1
<Trnun - Trnﬂunr Trﬂﬂun - un> + 7<Trn+1”n - Trnun/ Tr,,un - un> >0,
n

41
and
T, u,—u T, —
<Trnun - Trn+1un/ Tl 7 g 7’111’[” ”n> Z O/
Yn+1 n
and hence
v
0 < (Trpttn — Tyt Tyt — Uty — i(TrnHun — Uy))
n
= <Trn+1 - Trn Un, Trn Up — T7’n+1 + (1 - rn+1 )(TrnJrlun - u”)>
< || Trn+1 Trn Uy H ( || T7n+1 n 7n+1 — Uy || ) .

From (C1), we can find a real number a such thatr, > a > 0 for all n € N.
Then, we have

I Tsy st = Togtenl < 11 = 22l Tyt = Toytt |1 Tt ),
and hence
1 Toattn = Trttnl] < J1 = 2 (1T ]+ )
20 < - nll,

where L = sup{||T, ,un| + |lun|| :n € N}.
By (20), (21) and (26), we have

1 A
(27) Y1 = yull < Nwser = 2l + [ = rul [ A% ]| + = Jrngs = 1ulL.
Combining (19) and (27), we deduce
Kp+1 Mn+t1 X
— < T — - K
2041 — zn|l < 1= ﬁnHPHan Xn|l + ’1 —Bur1 1— Ba [(Lf Cen) [ + [1Knynll)
1 A
+ I ((laygr — Xl st — Pl A%l + = [rasr — ral L
1- ,Bn+1 a

N
+L Z ‘/\n—&-l,i - An,i‘)
i=1

Kyl 0
< low = 2l + 15 ng o1 _"5 [ Gen) ]+ ([ Knyal])
n n
Tn+1 Tn+1 1 A
D — A _ = —rulL
+ 1— ﬁn |ri’l+l }’n|H an + _ ,Bn+1 a |ri’l+] Tn|
Yn+1
— L A —A
+1_ﬁn+1 §| n+1,i nz|
Therefore
Kp+1 14
21 = 2u | = X1 =2l < 15 ng o1 _nﬁn\(Hf(xn)H + (| Knynll)
n
TYn+1 Yn+1 1 o
—_— - A _ . — —1ry|L
+ 1—Bunt [Pni1 — 1|l xn||+1—ﬁn+1 a"’n+1 Tnl
(28) b S Al

1_ﬁ”+1 i=1



161 B. Rodjanadid / Journal of Nonlinear Analysis and Optimization 1 (2010), 151-167

Applying the conditions (C2), (D1), (E1) and (F1) and taking the superior limit as n — oo
to (28), we have

limsup({|z,11 = zall = | Xn41 = 2[]) = 0.
n—oo
Hence, by Lemma 2.5, we have lim ||z, — x,|| = 0. This implies that
n—oo
(29) nlgrolo X011 = xu = nlgrolo(l = Bn)llzn — xul| = 0.

Using (C2), (27) and (29), we have

(30) Jim{|yns1 = yall = 0.
Next we show that lim ||x, — y,|| = 0and lim ||K,y, — y.| = 0.
n—oo n—o0

Since xy41 = anf(xn) + PnXn + YuKuyn, we obtain

|30 — Kyl < 20 — xnsa || + [|xn41 — Kaya|
= [|xn — Xpp1 || + llwnf (xn) + Buxn + YuKnyn — Kuya||
= [lxn = x| + [Jan f (xn) + Buxn — (1 = ) K|
= |lxn — xnsall + [|anf (xn) + Buxn — (an + Bn) Kunyn||
< lxn = xnsal| + anll £ (xn) = Kuynll + Bullxn — Knyn|

and hence
1 %
(31) |20 — Kyl < 1- Bn [0 — X1 + 1 —nﬁn 1f (xn) — Knyn]-
Since a;, — 0 and ||x, — x,,41]| — 0as n — oo, (31) implies that
(32) nlgr(}o [[xn — Knyn|| = 0.

From (14) and monotonicity of A and nonexpansivity of T;,, we have

[ Xn41 — PHZ = ||D‘nf(xn) + Bnxn + YuKuyn — PH2

< || f(xn) — plI* + Bullxn — plI* + Yol Knyn — plI?

< aullf (xn) =PI+ Bullxn — pII* + vallyn — plI?

= tnll f(xn) = PP + Bullxn — PP + 1ull Ty, (20 — 10 Axn) = Tr,, (p — ra Ap) |I?
< f(xn) — plI* + Bullxn — PHZ + 7l (X0 — 0 Axa) — (p — 12 Ap)|?

= tullf(xn) = P> + Bullxn — plI> + vall (%0 = p) — ru(Axy — Ap)|?

| f () = PIIP + Bullxn = plI® + vulll2n — plI* = 2 (xn — p, Axy — Ap)
+ 1yl Axy — Ap|)?)
< f(xn) — sz + Bull2cn — PH2 + Yu(|[xn — PHZ — 2rpa || Axy — APHZ
+ 1yl Axy — Ap|)?)
= tnl| f(xn) = PIIP + Bullxn — pI* + vullxn — plI* = 2rwyne]| Ax, — Ap||?
+ Yury | Axn = Ap|)®
(33) = || f (xn) = pIIP + (1 = @) |20 — plI* + yurn(ra — 20)|| Axy — Ap|*.
By (33), we have

Yuln (20 — 1) || Axy — AP”2 < aullf(xn) — PHZ + (1 —ay)[|xn — PHZ — [[xn41 — PHZ
= | f(xn) = plI* = anllen = plI* + 120 — plI> = X001 — pI?
(34) <l f(xn) = plI* — anllxn — plI> + %0 — xpsa | (120 = pll + X001 — pII)-
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Since, 0 < ¢ <r, <d < 2«, we have
(35)
Tue(2a —d)|| Axy — Apl® < anl| f(xn) = pIIP = anllxn = P>+ 100 — X [ (120 = pIl 4 %031 = pI])-

From a, — 0, ||x, — x,41|| — 0 and the boundedness of {x,} and {f(x,)}, we have
(36) r}m.}o |Ax, — Ap|| = 0.

Since T;, is a firmly nonexpansive, we have

lyn — PHZ = ||Ty, (xn — 10 Axy) — Ty, (p — VHAP)HZ
< (T, (xn = 1 Axn) — Ty, (p — 1 Ap), (xn — 10 Axy) = (p — ruAp))
= (Yn — p, (xn — 10 Axn) — (p — 12 Ap))
1
= 5 Ilyn — pl> + [ (xn — raAxn) — (p = ra AP)I> = | (yn — p)

— ((xn —1rnAxn) — (p — ”nAP))HZ)

1
5 Ulyn = plI* + [l = pl1* = [ (xn = ya) = ra(Axu — Ap) )

(VAN

1
= E(Hyn - PHz + {20 — PHz — [|xn _ynHz + 2rp(xXn — Yn, Axy — Ap)

(37) — 13| Ax, — Ap|?)

and hence

(38) lyn — PHZ < lxn — PHZ — [|xn — ynHZ + 27| %0 — yulll|Axn — Ap||.
It follows that

xn41 — plI> < anllf () = pIIP + Bullxn — plI> + yullyn — plI?
< an | f(xn) — PHz + Bullxn — PHZ + Yn (|20 — PHZ — |lxn — ]/nHz
+ 27| xn — yulll|Axn — Apl|)
= | f(xn) = P> + Bullxn — pIIP + Yallxn — plI> — yullxn — yal®
+ 29utnl| X0 — yull | Axy — Ap||
= anl| f(xn) — PHZ + (1 —an)lxn — PHZ — Ynllxn — ynHZ
+ 29utn|xn — yull[|Axn — Apl].
This implies
YallXn = yull® < anll f(xn) = plI* + [0 — pIIP = 2031 — P> — anllxn — pl|?
+ 29| X0 — Yull[|Axy — Ap|
< aul £ (xn) = plI* + 10 — xusa | (10 = pll + 2041 — p1I)
(39) —“onn_PHz+2'Yn”onn_ynHHAxn_APH~

Since a, — 0, ||xy — xp11|| — 0, ||Ax, — Ap|| — 0and the sequences {x,},{y.} and {f(x,)}
are bounded, it follows from (39) that

(40) r}ijr;ollxn—ynll =0.
From [[Knyn — yull < [Knyn — xull + |20 — vl

by (32) and (40), we have

(41) y}l_r};‘o 1Ky = ynll = 0.

Next, we show that
(42) limsup(f(x*) —x*, x, —x*) <0,

n—00
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where x* = Poy Feryna f(x*). To show this inequality, we can choose a subsequence {yy, } of
{yn} such that

43) lim (F(x) = 2%,y — 2"} = limsup(f(x") — 2",y — x°).

1—0c0 n—00

Since {yy, } is bounded, there exists a subsequence {yy, } of {yx,} which converges weakly to
w. Without loss of generality, we can assume that y,, — w. From ||K,y, — yx|| — 0, so we have
Kuyn, — w. Let us show w € NN F(T;) N Q.

First, we show w € Q. Since y, = T}, (x, — r,Axy), for any z € C we have

1
D(yn,z) + 9(2) — ¢(yn) + (Axn, z — yn) + <Z — Yn,Yn — Xn) > 0.
From (A2) we have

@(z) = @(yn) + (Axn,z — yn) + ! —(Z = Yn, Yn — Xn) = —DP(yn,z) > D(z,yn),

n
and hence

n; xnl-
(44) 4)(2) - q)(yni) + (Axnl.,z - yni> + <Z — Ynjs y]r7> > @(Z,yni),

n;
Puty; =tz+ (1 —t)wforallt € (0,1] and z € C. Then we have y; € C. From (44) we have
P(ye) = @(Yu) + (Yt = Y, Ayt)

> Yt = Ynir Ayt) — (Yt — Yny AxXns) — Yt — Yy,

Yni —
r

ni

) 4 Dy, )

Y + D (Y, Yn,)-

- <yt - y”i’Ayt o Ay”z‘> + <yf - yni,Ayn,v - Axni> - <yf — Yny ynii’_

n;
Since ||yn, — xn,|| — 0, we have ||Ay,, — Ax,,|| — 0. Further, from monotonicity of A, we have

Yt = Yniy Ayt — Ayn;) >0

Thus from the weakly semicontinuity of ¢ and (A4), we have

(45) ¢(yt) — (W) + (1 — w, Ayr) = P(yr,w) as i — oo.
From (A1), (A4), (45) and the convexity of ¢ , we also have
= Dy ye) + @(ye) — ¢(vr)
= @(ys, (tz+ (1 - Hw)) + qv(tz + (1 =Hw) =yt
< 1Oy, 2) + (1= )P (yr, ) + t9(2) + (1 = H)p(w) = ¢(y:)
<ty z) + (1= D) (@) — ¢(w) + (Y — w, Ayr)) + t(2) + (1 = H)o(w) — @(yi)
= t®(ys,2) = t(ye) + (1 = 1)y — w, Ays) + t9(2)
46) =Py z) = ¢(yr) + ¢(2)] + (1 = HH(z — w, Ayy)
Dividing by t, we have
D(yr,z) — () +9(z) + (1 —t)(z —w, Ay) 20, VzeC.
Letting t — 0, it follows from (A3) and the weakly semicontinuity of ¢ that
(47) P(w,z) —p(w)+¢(z)+ (z—w,Aw) >0, VzeC.

Therefore w € ). Next, we show that w € NN F(T;). Assume that there exists j € {1,2,...,N}
such that w # Tjw. By Lemma 2.10, we have w # Kw.
Since y,,, — w and w # Kw, by Opial’s condition [8] and (41) and Lemma 2.11, we have

liminf [y, — | < Hmin [ly,, — K|
1— 00 1—00
< timinf(|lyn, — K | + K, — Knol] + | Ko — Keo])

< liminf |y, - w||
1—00
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which is a contradiction. Thus w = Kw and w € F(K) = NN, F(T;). Hence w € NY F(T;) N Q).
Since x* = P p(1)naf(x"), we have

limsup(f(x*) — x*, x, —x") = Im (f(x*) — x*, x,p, — x¥)

) = lim (f(x*) — x*, ¥, — x7)
(43) = (f(x*) — x*,w —x*) <0.

Finally, we prove that {x, } and {y,} converge strongly to x*. From (13), we obtain

||x”+1 - x*||2 = <“nf(xn) + ,ann + ’)’nKnyn —x7, Xn4+1 — x*)
= D‘”(f(x") - X*/ Xn+1 — x*> + :BH <xﬂ - X*/ Xn41 — X*> + ')’n<Kn]/n - X*, Xn+1 — x*>
< () = F(6), X1 — X7+ i (F(&") = 5, 20 — x°)

1 * * 1 * *
5 Bnllln = 217+ llawsr = 27112 + Syn (1K = %7 |2 + [l 2 = 2[1%)

1 * * * * *
< S = an)(flon = 2|2+ [enr = 27[%) + n(f () = 2%, 2000 — x7)
1 *\ |12 * (|12
+ 5t ([Lf (n) = FO + [l —x7%)
1 * * * * *
< S = an) (oo = 2|2+ [enr = 27[1%) + an(f () = 2%, 200 — 27)
1 2 4 L .
+ ol — 2 + S — 2P
_ 1 o 2 k(2 1 % ]|2 *) ¥ ok
(49) = 2(1 (1= p%))|xn — 7 +2Hxn+1 X7+ an(f(x7) = %%, Xppq — x7),
which implies that
i1 = %12 < (1= (1 = p2)) [ — 5[ + 2000 (F(x") = X, g1 — )
* 2 * * *
= (1= ay(1 = %) [Jx0 — x*[> + an(1 - %) - (1_7{)2)<f(x ) =X, Xpp1 — x7)
(50) = (1= 6n)l|xn — x*||> + 8u0,
where 6, = a,(1 — p?) and 0,, = u%fﬂ)(f(x*) — X*, X417 — x*). It is easy to see that ) 6, =
n=1
o0 and limsup o, < 0. Applying Lemma 2.4 to (50), we conclude that x, — x* asn — co.
n—oo
Consequently, {y, } converge strongly to x*. This completes the proof. U

Corollary 3.2. Let H be a Hilbert space, C a closed convex nonempty subset of H, ¢ : C — IR a proper
lower semicontinuous and convex functional, ® : C x C — R a bifunction satisfying (A1)-(A4),
{T;}N, a finite family of nonexpansive mappings of C into itself such that N\ F(T;) " MEP(®, ¢) #
0 and f a p—contraction of C into itself. Moreover, let {a,},{Bn} and {yn} are three sequences in
(0,1) with ay + Bu + vn = 1, {An; 1N, a sequence in [a,b] with 0 < a < b < 1and {r,} a sequence
in [0,2«] for all n € IN. Assume that:

(i) either (B1) or (B2) holds;

(ii) the sequence {r,} satisfies

CHO<c<r,<d<2a and

[ee]
(C2) Zl |rn+1 - rn’ < 00;
o

(iii) the secﬁtence {a,} satisfies
(D1) lim «;, = 0; and
n—oo

D2) ¥ ay = o

n=0
(iv) the sequence {B,} satisfies
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(E1) 0 < liminf B, <limsup B, < 1;
n—oo

n—oo
(v) the finite family of sequences {A,; } | satisfies
(F1) lim |A,q1; — Api| =0 foreveryi € {1,2,...,N}.
n—oo
For every n € IN, let K,, be a K—mapping generated by T1, To, ..., T and A1, Aup, ..., AN and let
{xn} and {y,} be sequences generated by xo € C and

@ (yn, x) + @(x) — @(yn) + %(x —YnYn —Xn) 20, Vx€C
Xn+1 = ‘an(xn) + ,ann + 'YnKnyn-

Then both {x,,} and {yn} converge strongly to x* = Poy p(1ynmep(a,9)f (X7)-
Proof. Put A = 0. Then, for all « € (0, c0), we have that
(x —y, Ax — Ay) > «a||Ax — Ay|*>, Vx,y€C.

Hence all the conditions of Theorem 3.1 are satisfied. Therefore the corollary is obtained by
Theorem 3.1. U

Corollary 3.3. Let H be a Hilbert space, C a closed convex nonempty subset of H, A an a—inverse
strongly monotone mapping of C into H, ® : C x C — R a bifunction satisfying (A1)-(A4), {T;}Y,
a finite family of nonexpansive mappings of C into itself such that NN F(T;) NEP # 0 and f a
p—contraction of C into itself. Moreover, let {a,},{Bn} and {yn} are three sequences in (0,1) with
an + Bn+ vn = 1, {Ani} N a sequence in [a,b] with 0 < a < b < 1and {r,} a sequence in [0,2a]
forall n € IN. Assume that:
(i) the sequence {ry} satisfies
CHO<c<r,<d<2aand

(CZ) El |rn+1 - Tn’ < 00,
e

(ii) the secﬁtence {a, } satisfies
(D1) lim «, = 0; and
n—oo

D2) ¥ ay = o;

n=0
(iii) the sequence {Bn} satisfies
(E1) 0 < liminfB, <limsup B, < 1;

n—oo
(iv) the finite family of sequences {A,,;} I | satisfies
(F1) lim |Ayq1;— Ayi| =0 foreveryi € {1,2,...,N}.
n—o0o
For every n € IN, let K,, be a K—mapping generated by Ty, T»,..., Ty and Ay1,Anp, ..., Ay N and let
{xn} and {y, } be sequences generated by xo € C and

D(yu, x) + (Axp, X — yn) + %(x —Yn,Yn —Xxn) >0, Vx €C
Xn+1 = “nf(xn) + ,ann + ’)’nKnyn'

Then both {x, } and {y,} converge strongly to x* = PﬂfilF(Ti)ﬁEPf(x*)'

Proof. Put ¢ = 0 in Theorem 3.1. Hence all the conditions of Theorem 3.1 are satisfied. There-
fore the corollary is obtained by Theorem 3.1. O

Corollary 3.4. Let H be a Hilbert space, C a closed convex nonempty subset of H, ® : C x C — R
a bifunction satisfying (A1)-(A4), {T;}X., a finite family of nonexpansive mappings of C into itself
such that NN F(T;) N EP(®) # 0and f a p—contraction of C into itself. Moreover, let {a,}, {Bn}
and {7y} are three sequences in (0,1) with an + Bn + vn = 1, {Ay; Y, a sequence in [a, b] with
0<a<b<land{r,} asequencein [0,2«] forall n € N. Assume that:
(i) the sequence {ry} satisfies
CHOo<c<r,<d<2aand
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(€2) % lrua =1l < o0

n=1
(ii) the sequence {ay} satisfies
(D1) lim ay, = 0; and
n—oo

D2) ¥ ay = o
=0

n—=
(iii) the sequence { By} satisfies
(E1) 0 < liminf B, <limsup B, < 1;
n—oo 0

n—
(iv) the finite family of sequences {A,; } N | satisfies
(F1) lim |Ayq1; —Ayi| =0 foreveryi € {1,2,...,N}.
n—oo

For every n € IN, let K,, be a K—mapping generated by T1, To, ..., T and Ay1,Anp, ..., AN and let
{xn} and {y,} be sequences generated by xo € C and

D (Y, X) + (X = Yn,Yn — xu) 20, Vx€C
Xn+1 = “nf(xn) + ,ann + ’)’nKnyn~

Then both {x,,} and {yn} converge strongly to x* = Poy p(r)nep(e)f(X7)-

Proof. Put ¢ = 0 and A = 0 in Theorem3.1. Hence the corollary is obtained by Theorem
3.1. |
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