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The shrinking projection method for Generalized mixed
Equilibrium Problems and Fixed Point Problems in
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ABSTRACT: The purpose of this paper is to introduce the iterative algorithms basing on the
shrinking projection method for finding a common element of the set of common fixed points
of two families of quasi-φ-nonexpansive mappings and the set of solutions of the generalized
mixed equilibrium problems in the framework of Banach spaces. Our results improve and
extend the corresponding results announced by many others.
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1. Introduction

Let E be a Banach space and let E∗ be the dual of E and let C be a closed convex subset of E.
Let J be the normalized duality mapping from E into 2E∗ given by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖}, ∀x ∈ E,

where E∗ denoted the dual space of E and 〈·, ·〉 the generalized duality pairing between E and
E∗. It is well known that if E∗ is uniformly convex, then J is uniformly continuous on bounded
subsets of E. Some properties of the duality mapping have been given in [11, 32, 39].

Let Θ : C × C → R be a bifunction, ϕ : C → R be real-valued function, and Ψ : C → E∗ be a
nonlinear mapping. The generalized mixed equilibrium problem is to find u ∈ C such that

Θ(u, y) + 〈Ψu, y − u〉+ ϕ(y)− ϕ(u) ≥ 0, ∀y ∈ C.(1)

The set of solutions to (1) is denoted by GMEP(Θ, ϕ, Ψ), i.e.,

GMEP(Θ, ϕ, Ψ) = {u ∈ C : Θ(u, y) + 〈Ψu, y − u〉+ ϕ(y)− ϕ(u) ≥ 0, ∀y ∈ C}.(2)

Special examples are as follows:
(I) If Ψ = 0, the problem (1) is equivalent to finding u ∈ C such that

Θ(u, y) + ϕ(y)− ϕ(u) ≥ 0, ∀y ∈ C,(3)
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which is called the mixed equilibrium problem (see [6]). The set of solutions to (3) is denoted
by MEP.

(II) If Θ = 0, the problem (1) is equivalent to finding u ∈ C such that

〈Ψu, y − u〉+ ϕ(y)− ϕ(u) ≥ 0, ∀y ∈ C,(4)

which is called the mixed variational inequality of Browder type (see [3]). The set of solutions
to (4) is denoted by VI(C, A, ϕ).

If C is a nonempty closed convex subset of a Hilbert space H and PC : H → C is the metric
projection of H onto C, then PC is nonexpansive. This fact actually characterizes Hilbert spaces
and, consequently, it is not available in more general Banach spaces. In this connection, Alber
[1] recently introduced a generalized projection operator C in a Banach space E which is an
analogue of the metric projection in Hilbert spaces.

Consider the functional φ : E × E → R defined by

(5) φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2

for all x, y ∈ E, where J is the normalized duality mapping from E to E∗. Observe that, in a
Hilbert space H, (40) reduces to φ(y, x) = ‖x − y‖2 for all x, y ∈ H. The generalized projection
ΠC : E → C is a mapping that assigns to an arbitrary point x ∈ E the minimum point of the
functional φ(y, x), that is, ΠCx = x∗, where x∗ is the solution to the minimization problem:

(6) φ(x∗, x) = inf
y∈C

φ(y, x).

The existence and uniqueness of the operator ΠC follows from the properties of the functional
φ(y, x) and strict monotonicity of the mapping J (see, for example, [1, 2, 9, 28]). In Hilbert
spaces, ΠC = PC. It is obvious from the definition of the function φ that

(1) (‖y‖ − ‖x‖)2 6 φ(y, x) 6 (‖y‖+ ‖x‖)2 for all x, y ∈ E.
(2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, Jz − Jy〉 for all x, y, z ∈ E.
(3) φ(x, y) = 〈x, Jx − Jy〉+ 〈y − x, Jy〉 6 ‖x‖‖Jx − Jy‖+ ‖y − x‖‖y‖ for all x, y ∈ E.
(4) If E is a reflexive, strictly convex and smooth Banach space, then, for all x, y ∈ E,

φ(x, y) = 0 if and only if x = y.

For more detail see [11, 32]. Let C be a closed convex subset of E, and let T be a mapping
from C into itself. We denote by F(T) the set of fixed point of T. A point p in C is said to be
an asymptotic fixed point of T [29] if C contains a sequence {xn} which converges weakly to
p such that limn→∞ ‖xn − Txn‖ = 0. The set of asymptotic fixed points of T will be denoted
by F̂(T). A mapping T from C into itself is called nonexpansive if ‖Tx − Ty‖ 6 ‖x − y‖ for
all x, y ∈ C and relatively nonexpansive [8, 10, 12] if F̂(T) = F(T) and φ(p, Tx) 6 φ(p, x)
for all x ∈ C and p ∈ F(T). The asymptotic behavior of relatively nonexpansive mappings
which was studied in [8, 10, 12] is of special interest in the convergence analysis of feasibility,
optimization and equilibrium methods for solving the problems of image processing, ratio-
nal resource allocation and optimal control. The most typical examples in this regard are the
Bregman projections and the Yosida type operators which are the cornerstones of the common
fixed point and optimization algorithms discussed in [9] (see also the references therein).

The mapping T is said to be φ-nonexpansive if φ(Tx, Ty) ≤ φ(x, y) for all x, y ∈ C. T is said
to be quasi-φ-nonexpansive if F(T) 6= ∅ and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F(T).

Remark 1.1. The class of quasi-φ-nonexpansive is more general than the class of relatively
nonexpansive mappings [8, 10, 21, 24, 25] which requires the strong restriction F̂(T) = F(T).

Next, we give some examples which are closed quasi-φ-nonexpansive [27].

Example 1.2. (1). Let E be a uniformly smooth and strictly convex Banach space and A be a
maximal monotone mapping from E to E such that its zero set A−10 is nonempty. Then Jr =
(J + rA)−1 is a closed quasi-φ-nonexpansive mapping from E onto D(A) and F(Jr) = A−10.

(2). Let ΠC be the generalized projection from a smooth, strictly convex and reflexive Banach
space E onto a nonempty closed convex subset C of E. Then ΠC is a closed and quasi-φ-
nonexpansive mapping from E onto C with F(ΠC) = C.
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On the other hand, One classical way to study nonexpansive mappings is to use contractions
to approximate a nonexpansive mapping (see [4]). More precisely, let t ∈ (0, 1) and define a
contraction Gt : C → C by Gtx = tx0 + (1 − t)Tx for all x ∈ C, where x0 ∈ C is a fixed point
in C. Applying Banach’s Contraction Principle, there exists a unique fixed point xt of Gt in
C. It is unclear, in general, what is the behavior of xt as t → 0 even if T has a fixed point.
However, in the case of T having a fixed point, Browder [4] proved that the net {xt} defined
by xt = tx0 + (1 − t)Txt for all t ∈ (0, 1) converges strongly to an element of F(T) which is
nearest to x0 in a real Hilbert space. Motivated by Browder [4], Halpern [16] proposed the
following innovation iteration process:

(7) x0 ∈ C, xn+1 = αnx0 + (1− αn)Txn, n > 0

and proved the following theorem.

Theorem H. Let C be a bounded closed convex subset of a Hilbert space H and let T be a nonexpan-
sive mapping on C. Define a real sequence {αn} in [0, 1] by αn = n−θ , 0 < θ < 1. Define a sequence
{xn} by (7). Then {xn} converges strongly to the element of F(T) nearest to u.

Recently, Martinez-Yanes and Xu [20] has adapted Nakajo and Takahashi’s [23] idea to mod-
ify the process (7) for a single nonexpansive mapping T in a Hilbert space H:

(8)



x0 = x ∈ Cchosen arbitrary,
yn = αnx0 + (1− αn)Txn,
Cn = {v ∈ C : ‖yn − v‖2 6 ‖xn − v‖2 + αn(‖x0‖2 + 2〈xn − x0, v〉)},
Qn = {v ∈ C : 〈xn − v, x0 − xn〉 > 0},
xn+1 = PCn∩Qn x0,

where PC denotes the metric projection from H onto a closed convex subset C of H. They
proved that if {αn} ⊂ (0, 1) and limn→∞ αn = 0, then the sequence {xn} generated by (8)
converges strongly to PF(T)x.

In [25](see also [21]), Qin and Su improved the result of Martinez-Yanes and Xu [20] from
Hilbert spaces to Banach spaces. To be more precise, they proved the following theorem.

Theorem QS. Let E be a uniformly convex and uniformly smooth Banach space, C be a nonempty
closed convex subset of E and T : C → C be a relatively nonexpansive mapping. Assume that {αn} is a
sequence in (0, 1) such that limn→∞ αn = 0. Define a sequence {xn} in C by the following algorithm:

(9)



x0 = x ∈ Cchosen arbitrary,
yn = J−1(αn Jx0 + (1− αn)JTxn),
Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, yn) + (1− αn)φ(v, xn)},
Qn = {v ∈ C : 〈xn − v, Jx0 − Jxn〉 > 0},
xn+1 = ΠCn∩Qn x0.

where J is the single-valued duality mapping on E. If F(T) is nonempty, then {xn} converges to
ΠF(T)x0.

Recently, Plubtieng and Ungchittrakool [24], still in the framework of Banach spaces, intro-
duced the following hybrid projection algorithm for a pair of relatively nonexpansive map-
pings:

(10)



x0 = x ∈ Cchosen arbitrary,
yn = J−1(αn Jx0 + (1− αn)Jzn),

zn = J−1(β
(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn),

Hn = {z ∈ C : φ(z, yn) 6 φ(z, xn) + αn(‖x0‖2 + 2〈z, Jxn − Jx〉)},
Wn = {z ∈ C : 〈xn − z, Jx − Jxn〉 > 0},
xn+1 = PHn∩Wn x, n = 0, 1, 2, ...,
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where {αn}, {β
(1)
n }, {β

(2)
n } and {β

(3)
n } are sequences in [0, 1] with β

(1)
n + β

(2)
n + β

(3)
n = 1 for all

n ∈ N∪ {0} and T, S are relatively nonexpansive mappings and J is the single-valued duality
mapping on E. They proved that the sequence {xn} generated by (10) converges strongly to a
common fixed point of T and S.

Very recently, Qin, Cho, Kang and Zhou [26] introduced a new hybrid projection algorithm
for two families of quasi-φ-nonexpansive mappings which more general than relatively non-
expansive mappings to have strong convergence theorems in the framework of Banach spaces.
To be more precise, they proved the following theorem:

Theorem QCKZ. Let E be uniformly convex and uniformly smooth Banach space, and let
C be a nonempty closed convex subset of E. Let {Si}i∈I and {Ti}i∈I be two families of closed
quasi-φ-nonexpansive mappings of C into itself with F := ∩i∈I F(Ti) ∩ ∩i∈I F(Si) is nonempty,
where I is an index set. Let the sequence {xn} be generated by the following manner:

(11)



x0 = x ∈ Cchosen arbitrary,

zn,i = J−1(β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn),

yn,i = J−1(αn,i Jx0 + (1− αn,i)Jzn,i),
Cn,i = {u ∈ C : φ(u, yn,i) 6 φ(u, xn) + αn,i(‖x0‖2 + 2〈u, Jxn − Jxn〉)},
Cn = ∩i∈ICn,i,
Q0 = C,
Qn = {u ∈ Qn−1 : 〈xn − u, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn x0, n = 0, 1, 2, . . . ,

where J is the duality mapping on E, {αn,i}, {β
(i)
n,i}(i = 1, 2, 3, . . . ) are sequences in (0, 1) such

that

(i) β
(1)
n,i + β

(2)
n,i + β

(3)
n,i = I for all i ∈ I

(ii) limn→∞ αn,i = 0 for all i ∈ I; and
(iii) lim infn→∞ β

(2)
n,i β

(3)
n,i > 0 and limn→∞ β

(1)
n,i = 0 for all i ∈ I.

Then the sequence {xn} converges strongly to ΠFx0.

On the other hand, let f : C × C → R be a bifunction. The equilibrium problem for f is to
find x̂ ∈ C such that

f (x̂, y) ≥ 0, ∀y ∈ C.(12)

The set of solutions of (12) is denoted by EP( f ).
Numerous problems in physics, optimization, and economics reduce to find a solution of

the equilibrium problem. Some methods have been proposed to solve the equilibrium prob-
lem in a Hilbert space; see, for instance, Blum and Oettli [5], Combettes and Hirstoaga [7], and
Moudafi [22]. On the other hand, there are some methods for approximation of fixed points of
Fixed Point Theory and Applications a nonexpansive mapping. Recently, Tada and Takahashi
[30, 31] and Takahashi and Takahashi [37] obtained weak and strong convergence theorems for
finding a common element of the set of solutions of an equilibrium problem and the set of fixed
points of a nonexpansive mapping in a Hilbert space. In particular, Tada and Takahashi [31]
established a strong convergence theorem for finding a common element of two sets by using
the hybrid method introduced in Nakajo and Takahashi [23]. They also proved such a strong
convergence theorem in a uniformly convex and uniformly smooth Banach space. Recently,
Takahashi et al. [38] introduced a hybrid method which is different from Nakajo and Taka-
hashis hybrid method. It is called the shrinking projection method. They obtained the strong
convergence theorem in the frame work of Hilbert spaces. Based on the so-called shrinking
projection method of Takahashi et al. [38], Takahashi and Zembayashi [36] introduced the



115 R. Wangkeeree, U. Kamraksa / Journal of Nonlinear Analysis and Optimization 1 (2010), 111-129115 R. Wangkeeree, U. Kamraksa / Journal of Nonlinear Analysis and Optimization 1 (2010), 111-129115 R. Wangkeeree, U. Kamraksa / Journal of Nonlinear Analysis and Optimization 1 (2010), 111-129

following iterative scheme :

(13)



x0 = x ∈ C, C0 = C,
yn = J−1(αn Jxn + (1− αn)JTxn),
un ∈ C such that f (un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, xn)},
xn+1 = ΠCn+1 x0, ∀n ≥ 0,

where J is the single-valued duality mapping on E and ΠC is the generalized projection from
E onto C. They proved that the sequence {xn} defined by (13) converges strongly to q =
ΠF(T)∩EP( f )x0 under appropriate conditions imposed on the parameters.

Motivated and inspired by Iiduka and Takahashi [17], Martinez-Yanes and Xu [20], S. Mat-
sushita and W. Takahashi [21], Plubtieng and Ungchittrakool [24], Qin and Su [25], Qin, Cho,
Kang and Zhou[26], Takahashi et al. [38] and Takahashi and Zembayashi [36], we introduce a
new hybrid projection algorithm basing on the shrinking projection method for two families of
quasi-φ-nonexpansive mappings which more general than relatively nonexpansive mappings
to have strong convergence theorems for approximating the common element of the set of com-
mon fixed points of two families of quasi-φ-nonexpansive mappings and the set of solutions
of the equilibrium problem in the framework of Banach spaces.

2. Preliminaries

A Banach space E is said to be strictly convex if ‖ x+y
2 ‖ < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1

and x 6= y. It is also said to be uniformly convex if limn→∞ ‖xn − yn‖ = 0 for any two sequences
{xn}, {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞ ‖ xn+yn

2 ‖ = 1. Let U = {x ∈ E : ‖x‖ =
1} be the unit sphere of E. Then the Banach space E is said to be smooth provided

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly
for x, y ∈ U. It is well know that if E is smooth, then the duality mapping J is single valued.
It is also known that if E is uniformly smooth, then J is uniformly norm-to-norm continuous
on each bounded subset of E. Some properties of the duality mapping have been given in
[14, 28, 32, 33]. A Banach space E is said to have Kadec-Klee property if a sequence {xn} of E
satisfying that xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, then xn → x. It is known that if E is uniformly
convex, then E has the Kadec-Klee property; see [14, 32, 33] for more details. Let E be a smooth
Banach space.

Now we collect some definitions and lemmas which will be used in the proofs for the main
results in the next section. Some of them are known; others are not hard to derive.

Lemma 2.1 (Kamimura and Takahashi [18]). Let E be a uniformly convex and smooth Banach space
and let {yn}, {zn} be two sequences of E such that either {yn} or {zn} is bounded. If limn→∞ φ(yn, zn) =
0, then limn→∞ ‖yn − zn‖ = 0.

Lemma 2.2 (Alber [1], Alber and Reich [2], Kamimura and Takahashi [18]). Let C be a nonempty
closed convex subset of a smooth Banach space E and x ∈ E. Then, x0 = ΠCx if and only if 〈x0 −
y, Jx − Jx0〉 > 0 for y ∈ C.

Lemma 2.3 (Alber [1], Alber and Reich [2], Kamimura and Takahashi [18]). Let E be a reflexive,
strictly convex and smooth Banach space, let C be a nonempty closed convex subset of E and let x ∈ E.
Then

φ(y, ΠCx) + φ(ΠCx, x) 6 φ(y, x)

for all y ∈ C.
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Lemma 2.4 (Qin et al. [26]). Let E be a uniformly convex and smooth Banach space, C be a closed
convex subset of E and T be a closed and quasi-φ-nonexpansive mapping from C into itself. Then F(T)
is a closed convex subset of C.

Let E be a reflexive strictly convex, smooth and uniformly Banach space and the duality
mapping from E to E∗. Then J−1 is also single-valued, one to one, surjective, and it is the
duality mapping from E∗ to E. We make use of the following mapping V studied in Alber [1],

(14) V(x, x∗) = ‖x2‖ − 2〈x, x∗〉+ ‖x‖2

for all x ∈ E and x∗ ∈ E∗. Obviously, V(x, x∗) = φ(x, J−1(x∗)). We know the following lemma:

Lemma 2.5 (Kamimura and Takahashi [18]). Let E be a reflexive, strictly convex and smooth Banach
space, and let V be as in (14). Then

V(x, x∗) + 2〈J−1(x∗)− x, y∗〉 ≤ V(x, x∗ + y∗)

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.6 ([13, Lemma 1.4]). Let X be a uniformly convex Banach space and Br(0) = {x ∈ E :
‖x‖ 6 r} be a closed ball of X. Then there exists a continuous strictly increasing convex function
g : [0, ∞) → [0, ∞) with g(0) = 0 such that

(15) ‖λx + µy + γz‖2 6 λ‖x‖2 + µ‖y‖2 + γ‖z‖2 − λµg(‖x − y‖),

for all x, y, z ∈ Br(0) and λ, µ, γ ∈ [0, 1] with λ + µ + γ = 1.

For solving the equilibrium problem, let us assume that a bifunction f satisfies the following
conditions:

(A1) f (x, x) = 0 for all x ∈ C;
(A2) f is monotone, that is, f (x, y) + f (y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim sup
t↓0

f (tz + (1− t)x, y) ≤ f (x, y);(16)

(A4) for all x ∈ C, f (x, ·) is convex and lower semicontinuous.
For example, let A be a continuous and monotone operator of C into E∗ and define

f (x, y) = 〈Ax, y − x〉, ∀x, y ∈ C.

Then, f satisfies (A1)-(A4).

Lemma 2.7 (Blum and Oettli [5]). Let C be a closed convex subset of a smooth, strictly convex, and
reflexive Banach spaces E, let f be a bifunction from C×C → R satisfying (A1)− (A4), and let r > 0
and x ∈ E. Then, there exists u ∈ C such that

f (u, y) +
1
r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C.(17)

Lemma 2.8 (Takahashi and Zembayashi [35]). Let C be a closed convex subset of a uniformly
smooth, strictly convex, and reflexive Banach space E, and let f be a bifunction from C × C to R

satisfying (A1)− (A4). For all r > 0 and x ∈ E, define a mapping

Trx =
{

u ∈ C : f (z, y) +
1
r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C

}
.(18)

Then, the following hold:
(1) Tr is single-valued;
(2) Tr is a firmly nonexpansive-type mapping [19], that is, for all x, y ∈ E,

〈Trx − Try, JTrx − JTry〉 ≤ 〈Trx − Try, Jx − Jy〉;(19)

(3) F(Tr) = EP( f );
(4) EP( f ) is closed and convex.
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Lemma 2.9 (Takahashi and Zembayashi [35]). Let C be a closed convex subset of a smooth, strictly
convex, and reflexive Banach space E, let Θ be a bifunction from C × C to R satisfying (A1)− (A4),
and let r > 0. Then, for all x ∈ E and q ∈ F(Tr),

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x).

Lemma 2.10. Let C be a closed convex subset of a smooth, strictly convex, and reflexive Banach spaces
E, let Θ be a bifunction from C × C → R satisfying (A1)− (A4). Let Ψ : C → E∗ be a continuous
and monotone operator and ϕ : C → R be a lower semi-continuous and convex function. Let r > 0 be
any given number and x ∈ E be any given point. Then, there exists u ∈ C such that

Θ(x, y) + ϕ(y)− ϕ(x) + 〈Ψx, y − x〉+
1
r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C.(20)

Proof. We define a bifunction f : C × C → R by

(21) f (x, y) = Θ(x, y) + ϕ(y)− ϕ(x) + 〈Ψx, y − x〉, ∀x, y ∈ C.

Next, we prove that the bifunction f satisfies condition (A1)-(A4):
(A1) f (x, x) = 0 for all x ∈ C.
Since f (x, x) = Θ(x, x) + ϕ(x)− ϕ(x) + 〈Ψx, x − x〉 = 0, for all x ∈ C.
(A2) f is monotone, i.e., f (x, y) + f (y, x) ≤ 0 for all x, y ∈ C.
From the definition of f we have

f (x, y) + f (y, x) = Θ(x, y) + ϕ(y)− ϕ(x) + 〈Ψx, y − x〉+ Θ(y, x) + ϕ(x)− ϕ(y) + 〈Ψx, x − y〉
= Θ(x, y) + Θ(y, x) ≤ 0.

(A3) for each x, y, z ∈ C,
lim sup

t↓0
f (tz + (1− t)x, y) ≤ f (x, y).

Since

lim sup
t↓0

f (tz + (1− t)x, y)

= lim sup
t↓0

[Θ(tz + (1− t)x, y) + ϕ(y)− ϕ(tz + (1− t)x) + 〈Ψx, y − (tz + (1− t)x)〉]

≤ lim sup
t↓0

Θ(tz + (1− t)x, y) + ϕ(y)− lim inf
t↓0

ϕ(tz + (1− t)x) + 〈Ψx, y〉 − lim inf
t↓0

〈Ψx, tz + (1− t)x〉

≤ tΘ(x, y) + (1− t)Θ(x, y) + ϕ(y)− ϕ(x) + 〈Ψx, y〉 − 〈Ψx, x〉
= Θ(x, y) + ϕ(y)− ϕ(x) + 〈Ψx, y − x〉 = f (x, y).

(A4) for each x ∈ C, y 7→ Θ(x, y) is a convex and lower semicontinuous.
For each x ∈ C, ∀t ∈ (0, 1) and ∀y, z ∈ C, since G satisfies (A4), we have

f (x, ty + (1− t)z) = Θ(x, ty + (1− t)z) + ϕ(ty + (1− t)z)− ϕ(x) + 〈Ψx, (ty + (1− t)z)− x〉
≤ tΘ(x, y) + (1− t)Θ(x, z) + tϕ(y) + (1− t)ϕ(z)− ϕ(x) + 〈Ψx, (ty + (1− t)z)− x〉
= t[Θ(x, y) + ϕ(y)− ϕ(x) + 〈Ψx, y − x〉]

+ (1− t)[Θ(x, z) + ϕ(z)− ϕ(x) + 〈Ψx, z − x〉]
= t f (x, y) + (1− t) f (x, z).

So, y 7→ f (x, y) is convex.
Similarly, we can prove that y 7→ f (x, y) is lower semicontinuous. Hence f satisfies condition
(A1)-(A4). Applying Lemma 2.7, there exists u ∈ C such that

f (u, y) +
1
r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C.

That is

Θ(x, y) + ϕ(y)− ϕ(x) + 〈Ψx, y − x〉+
1
r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C.

This is completes the proof. �
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3. Main Results

In this section, we prove two strong convergence theorems for approximating the common
element of the set of common fixed points of two families of quasi-φ-nonexpansive mappings
and the set of solutions of the generalized mixed equilibrium problem in the framework of a
real Banach space.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space and C be a nonempty
closed convex subset of E. Let Ψ : C → E∗ be a continuous and monotone operator and ϕ : C → R

be a a lower semi-continuous and convex function. Let Θ be a bifunction from C × C to R satisfying
(A1) − (A4), let {Ti}i∈I and {Si}i∈I be two families of closed quasi-φ-nonexpansive mappings Ti,
Si : C → C such that the common fixed point set F :=

⋂
i∈I F(Ti) ∩

⋂
i∈I F(Si) ∩ GMEP(Θ, ϕ, Ψ) is

nonempty , where I is an index set. Let {xn} be a sequence generated by the following manner:

(22)



x0 ∈ C chosen arbitrary and C0,i = C, ∀i ∈ I,

zn,i = J−1(β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn),

yn,i = J−1(αn,i Jx0 − (1− αn,i)Jzn,i),
un,i ∈ C such that Θ(uni , y) + ϕ(y)− ϕ(un,i)+
〈Ψun,i, y − un,i〉+ 1

rn,i
〈y − un,i, Jun,i − Jyn,i〉 ≥ 0, ∀y ∈ C,

Cn+1,i = {u ∈ Cn,i : φ(u, un,i) ≤ φ(u, xn) + αn,i(‖x‖2 + 2〈u, Jxn − Jx0〉)},
Cn+1 =

⋂
i∈I Cn+1,i,

xn+1 = ΠCn+1 x0, ∀n ≥ 0,

where J is a duality mapping on E, {αn,i}, {β
(i)
n,i} (i = 1, 2, 3) and {rn,i} are sequences in (0, 1)

satisfying
(a) limn→∞ αn,i = 0 for each i ∈ I;
(b) {rn,i} ⊂ [a, ∞) for some a > 0 and for all i ∈ I;
(c) β

(1)
n,i + β

(2)
n,i + β

(3)
n,i = 1 for each i ∈ I and if one of the following conditions is satisfied

(c-1) lim infn→∞ β
(1)
n,i β

(l)
n,i > 0 for all l = 2, 3 and for all i ∈ I and

(c-2) lim infn→∞ β
(2)
n,i β

(3)
n,i > 0 and lim infn→∞ β

(1)
n,i = 0 for each i ∈ I.

Then the sequence {xn} converges strongly to ΠFx0.

Proof. Let the bifunction f : C × C → R be defined by (21). Therefore, the mixed equilibrium
problem (1) is equivalent to the following equilibrium problem: find u ∈ C such that

f (u, y) ≥ 0, ∀y ∈ C,

and (66) can be written as:

(23)



x0 ∈ C chosen arbitrary and C0,i = C, ∀i ∈ I,

zn,i = J−1(β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn),

yn,i = J−1(αn,i Jx0 − (1− αn,i)Jzn,i),
un,i ∈ C such that f (uni , y) + 1

rn,i
〈y − un,i, Jun,i − Jyn,i〉 ≥ 0, ∀y ∈ C,

Cn+1,i = {u ∈ Cn,i : φ(u, un,i) ≤ φ(u, xn) + αn,i(‖x‖2 + 2〈u, Jxn − Jx0〉)},
Cn+1 =

⋂
i∈I Cn+1,i,

xn+1 = ΠCn+1 x0, ∀n ≥ 0.

Since the bifunction f satisfies conditions (A1) - (A4), from Lemma 2.10, for given r > 0 and
x ∈ C, we define Tr : C → 2C by

Tr(x) = {u ∈ C : f (u, y) +
1
r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C}.

Moreover, Tr satisfies the conclusions in Lemma 2.8. We divide the proof of Theorem 3.1 into
seven steps:
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Step 1. Show that ΠFx0 and ΠCn+1 x0 are well defined.

By Lemma 2.4, we know that
⋂

i∈I F(Ti) ∩
⋂

i∈I F(Si) is closed and convex. From Lemma 2.8
(4), we also have EP( f ) is closed and convex. Hence F :=

⋂
i∈I F(Ti) ∩

⋂
i∈I F(Si) ∩ EP( f ) is a

nonempty, closed, and convex subset of C. Consequently, ΠFx0 is well defined.
From the definition of Cn, it is obvious that Cn is closed for each n ≥ 0. We show that Cn+1

is convex for each n ≥ 0. Notice that

Cn+1,i = {u ∈ Cn,i : φ(u, un,i) ≤ φ(u, xn) + αn,i(‖x0‖2 + 2〈u, Jxn − Jx0〉)}
is equivalent to

C′
n+1,i = {u ∈ Cn,i : 2〈u, Jxn − Jyn,i〉 − 2αn,i〈u, Jxn − Jx0〉 ≤ ‖xn‖2 − ‖yn,i‖2 + αn,i‖x0‖2}.

It is easy to see that C′
n+1,i is closed and convex for all n ≥ 0 and i ∈ I. Therefore, Cn+1 =⋂

i∈I Cn+1,i =
⋂

i∈I C′
n+1,i is closed and convex for every n ≥ 0. This shows that ΠCn+1 x0 is

well-defined.

Step 2. Show that F ⊂ Cn for all n ≥ 0.

First, we observe that un,i = Trn,i yn,i for all n ≥ 1 and F ⊂ C0 = C. For any w ∈ F and all
i ∈ I, one has

φ(w, zn,i) = φ(w, J−1(β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn))

= ‖w‖2 − 2〈w, β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn)〉

+ ‖β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn‖2

≤ ‖w‖2 − 2β
(1)
n,i 〈w, Jxn〉 − 2β

(2)
n,i 〈w, JTixn〉 − 2β

(3)
n,i 〈w, JSixn〉

+ β
(1)
n,i ‖xn‖2 + β

(2)
n,i ‖Tixn‖2 + β

(3)
n,i ‖JSixn‖2

= β
(1)
n,i φ(w, xn) + β

(2)
n,i φ(w, Tixn) + β

(3)
n,i φ(w, Sixn)

≤ β
(1)
n,i φ(w, xn) + β

(2)
n,i φ(w, xn) + β

(3)
n,i φ(w, xn)

= φ(w, xn)

and hence

φ(w, un,i) = φ(w, Trn,i yn,i)
≤ φ(w, yn,i)

= φ(w, J−1(αn,i Jx0 − (1− αn,i)Jzn,i)

= ‖w‖2 − 2〈w, αn,i Jx0 − (1− αn,i)Jzn,i〉+ ‖αn,i Jx0 − (1− αn,i)Jzn,i‖2

≤ ‖w‖2 − 2αn,i〈w, Jx0〉 − 2(1− αn,i)〈w, Jzn,i〉+ αn,i‖x0‖2 + (1− αn,i)‖zn,i‖2

= αn,iφ(w, x0) + (1− αn,i)φ(w, zn,i)
≤ αn,iφ(w, x0) + (1− αn,i)φ(w, xn)
= φ(w, xn) + αn,i[φ(w, x0)− φ(w, xn)]

≤ φ(w, xn) + αn,i(‖x0‖2 + 2〈w, Jxn − Jx0〉).(24)

This show that w ∈ Cn+1,i for each i ∈ I. That is, w ∈ Cn+1 =
⋂

i∈I Cn+1,i for all n ≥ 0.
Hence F ⊂ Cn for all n ≥ 0.

Step 3. Show that limn→∞ φ(xn, x0) exists.

We note that Cn+1,i ⊂ Cn,i for all n ≥ 0 and for all i ∈ I. Hence

Cn+1 = ∩i∈ICn+1,i ⊂ Cn = ∩i∈ICn,i.

From xn+1 = ΠCn+1 x0 ∈ Cn+1 ⊂ Cn and xn = ΠCn x0 ∈ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 1.(25)
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This is, {φ(xn, x0)} is nondecreasing. On the other hand, from Lemma 2.3, we have

φ(xn, x0) = φ(ΠCn x0, x0) ≤ φ(w, x0)− φ(w, xn) ≤ φ(w, x0).(26)

for each w ∈ F ⊂ Cn. Combining (25) and (26), we obtain that limit {φ(xn, x0)} exists.

Step 4. Show that {xn} is a convergent sequence in C.

Since xm = ΠCm x0 ∈ Cm ⊂ Cn for m ≥ n, by Lemma 2.3, We also have

φ(xm, xn) = φ(xm, ΠQn x0)
≤ φ(xm, x0)− φ(ΠQn x0, x0)
= φ(xm, x0)− φ(xn, x0).(27)

Letting m, n → ∞ in (27), one has φ(xm, xn) → 0. It follows from Lemma 2.1 that ‖xm − xn‖ → 0
as m, n → ∞. Hence {xn} is a Cauchy sequence. Since E is a Banach space and C is closed and
convex, one can assume that

xn → p ∈ C (n → ∞).(28)

Step 5. Show that p ∈ ⋂
i∈I F(Ti) ∩

⋂
i∈I F(Si) ∩ GMEP(Θ, ϕ, Ψ).

(a) We first will show that p ∈ ⋂
i∈I F(Ti) ∩

⋂
i∈I F(Si). Taking m = n + 1 in (27), we obtain.

lim
n→∞

φ(xn+1, xn) = 0.(29)

From Lemma 2.1, one has

lim
n→∞

‖xn+1 − xn‖ = 0.(30)

Noticing that xn+1 = ΠCn+1 x0 ∈ Cn+1, from the definition of Cn+1, for every i ∈ I, we obtain

φ(xn+1, un,i) ≤ φ(xn+1, xn) + αn,i(‖x0‖2 + 2〈xn+1, Jxn − Jx0〉).

It follows from (29) and limn→∞ αn,i = 0 that

lim
n→∞

φ(xn+1, un,i) = 0, ∀i ∈ I.(31)

From Lemma 2.1, we have limn→∞ ‖xn+1 − un,i‖ = 0. This together with (30) implies that

lim
n→∞

‖xn − un,i‖ = 0, ∀i ∈ I.(32)

Since J is uniformly norm-to-norm continuous on bounded sets, for every i ∈ I, one has

lim
n→∞

‖Jxn − Jun,i‖ = lim
n→∞

‖Jxn+1 − Jxn‖ = 0.(33)

It follows from xn → p as n → ∞ that

un,i → p as n → ∞, ∀i ∈ I.(34)

Let r = supn≥1{‖xn‖, ‖Tixn‖, ‖Sixn‖} for every i ∈ I. Therefore Lemma 2.6 implies that
there exists a continuous strictly increasing convex function g : [0, ∞) → [0, ∞) satisfying
g(0) = 0 and (15)
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Case I. Assume that (c-1) holds. We observe that

φ(w, un,i) = φ(w, Trn,i yn,i)
≤ φ(w, yn,i)

= φ(w, J−1(β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn))

= ‖w‖2 − 2〈w, β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn〉

+ ‖β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn‖2

≤ ‖w‖2 − 2β
(1)
n,i 〈w, Jxn〉 − 2β

(2)
n,i 〈w, JTixn〉 − 2β

(3)
n,i 〈w, JSixn〉

+ β
(1)
n,i ‖xn‖2 + β

(2)
n,i ‖Tixn‖2 + β

(3)
n,i ‖Sixn‖2

− β
(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖)

= β
(1)
n,i φ(w, xn) + β

(2)
n,i φ(w, Tixn) + β

(3)
n,i φ(w, Sixn)

− β
(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖)

≤ β
(1)
n,i φ(w, xn) + β

(2)
n,i φ(w, xn) + β

(3)
n,i φ(w, xn)− β

(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖)

= φ(w, xn)− β
(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖).

This implies that

β
(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖) ≤ φ(w, xn)− φ(w, un,i), ∀i ∈ I.(35)

On the other hand, for every i ∈ I, one has

φ(w, xn)− φ(w, un,i) = ‖xn‖2 − ‖un,i‖2 − 2〈w, Jxn − Jun,i〉
≤ ‖xn − un,i‖(‖xn‖+ ‖un,i‖) + 2‖w‖‖Jxn − Jun,i‖.

It follows that (32) and (33) that

φ(w, xn)− φ(w, un,i) → 0 (n → ∞), ∀i ∈ I.(36)

Observing that assumption lim infn→∞ β
(1)
n,i β

(2)
n,i > 0, (35) and (36), one has

g(‖Jxn − JTixn‖) → 0 (n → ∞), ∀i ∈ I.

It follows from the property of the function g that

‖Jxn − JTixn‖ → 0 (n → ∞), ∀i ∈ I.(37)

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, for each i ∈ I, one has

lim
n→∞

‖xn − Tixn‖ = 0.(38)

In a similar way, one has

lim
n→∞

‖xn − Sixn‖ = 0.(39)

Noticing (28), (38), (39) and the closedness of Ti and Si that p ∈ ⋂
i∈I F(Ti) ∩

⋂
i∈I F(Si).
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Case II. Assume that (c-2) holds. We observe that

φ(w, un,i) = φ(w, Trn,i yn,i)
≤ φ(w, yn,i)

= φ(w, J−1(β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn))

= ‖w‖2 − 2〈w, β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn〉

+ ‖β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn‖2

≤ ‖w‖2 − 2β
(1)
n,i 〈w, Jxn〉 − 2β

(2)
n,i 〈w, JTixn〉 − 2β

(3)
n,i 〈w, JSixn〉

+ β
(1)
n,i ‖xn‖2 + β

(2)
n,i ‖Tixn‖2 + β

(3)
n,i ‖Sixn‖2

− β
(2)
n,i β

(3)
n,i g(‖JSixn − JTixn‖)

= β
(1)
n,i φ(w, xn) + β

(2)
n,i φ(w, Tixn) + β

(3)
n,i φ(w, Sixn)

− β
(2)
n,i β

(3)
n,i g(‖JTixn − JSixn‖)

≤ β
(1)
n,i φ(w, xn) + β

(2)
n,i φ(w, xn) + β

(3)
n,i φ(w, xn)− β

(2)
n,i β

(3)
n,i g(‖JTixn − JSixn‖)

= φ(w, xn)− β
(2)
n,i β

(3)
n,i g(‖JTixn − JSixn‖).

This implies that

β
(2)
n,i β

(3)
n,i g(‖JTixn − JSixn‖) ≤ φ(w, xn)− φ(w, un,i), ∀i ∈ I.(40)

On the other hand, for every i ∈ I, one has

φ(w, xn)− φ(w, un,i) = ‖xn‖2 − ‖un,i‖2 − 2〈w, Jxn − Jun,i〉
≤ ‖xn − un,i‖(‖xn‖+ ‖un,i‖) + 2‖w‖‖Jxn − Jun,i‖.

It follows that (32) and (33) that

φ(w, xn)− φ(w, un,i) → 0 (n → ∞), ∀i ∈ I.(41)

Observing that assumption lim infn→∞ β
(2)
n,i β

(3)
n,i > 0, (40) and (41), one has

g(‖JTixn − JSixn‖) → 0 (n → ∞), ∀i ∈ I.

It follows from the property of the function g that

‖JTixn − JSixn‖ → 0 (n → ∞), ∀i ∈ I.(42)

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, for each i ∈ I, one has

lim
n→∞

‖Tixn − Sixn‖ = 0.(43)

On the other hand, for each i ∈ I, one has

φ(Tixn, un,i) = φ(Tixn, Trn,i yn,i)
≤ φ(Tixn, yn,i)

= φ(Tixn, J−1(β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn))

= ‖Tixn‖2 − 2〈Tixn, β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn〉

+ ‖β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn‖2

≤ ‖Tixn‖2 − 2β
(1)
n,i 〈Tixn, Jxn〉 − 2β

(2)
n,i 〈Tixn, JTixn〉

− 2β
(3)
n,i 〈Tixn, JSixn〉+ β

(1)
n,i ‖xn‖2 + β

(2)
n,i ‖Tixn‖2 + β

(3)
n,i ‖Sixn‖2

≤ β
(1)
n,i φ(Tixn, xn) + β

(3)
n,i φ(Tixn, Sixn).(44)
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Observe that

φ(Tixn, Sixn) = ‖Tixn‖2 − 2〈Tixn, JSixn〉+ ‖Sixn‖2

= ‖Tixn‖2 − 2〈Tixn, JTixn〉+ 2〈Tixn, JTixn − JSixn〉+ ‖Sixn‖2

≤ ‖Sixn‖2 − ‖Tixn‖2 + 2‖Sixn‖‖JTixn − JSixn‖
≤ ‖Sixn − Tixn‖(‖Sixn‖+ ‖Tixn‖) + 2‖Sixn‖‖JTixn − JSixn‖.

It follows from (42) and (43) that

lim
n→∞

φ(Tixn, Sixn) = 0, ∀i ∈ I.(45)

Noticing that β
(1)
n,i → 0 as n → ∞, (44) and (45), one arrives at

lim
n→∞

φ(Tixn, un,i) = 0, ∀i ∈ I.(46)

From Lemma 2.1, one obtains

lim
n→∞

‖Tixn − un,i‖ = 0, ∀i ∈ I.(47)

Hence

‖Tixn − xn‖ ≤ ‖Tixn − un,i‖+ ‖un,i − xn‖, ∀i ∈ I.(48)

It follows from (32) and (47) that

lim
n→∞

‖Tixn − xn‖ = 0, ∀i ∈ I.(49)

Moreover, we observe that

‖Sixn − xn‖ ≤ ‖Sixn − Tixn‖+ ‖Tixn − xn‖, ∀i ∈ I.(50)

Combining (43) with (49), one obtains limn→∞ ‖Sixn − xn‖ = 0 for each i ∈ I. Noticing (28), it
follows from the closedness of Ti and Si and xn → p that p ∈ ⋂

i∈I F(Ti) ∩
⋂

i∈I F(Si).

(b) We next show that p ∈ GMEP(Θ, ϕ, Ψ).

From (40), we see

φ(u, yn,i) ≤ φ(u, xn,i).(51)

From un,i = Trn,i yn,i and Lemma 2.8, one has

φ(un, yn,i) = φ(Trn,i yn,i, yn,i)
≤ φ(w, yn,i)− φ(w, Trn,i yn,i)
≤ φ(w, xn,i)− φ(w, Trn,i yn,i)
= φ(w, xn,i)− φ(w, un,i).(52)

It follows from (41) that

φ(un,i, yn,i) → 0 as n → ∞, ∀i ∈ I.(53)

Noticing Lemma 2.1, one sees

‖un,i − yn,i‖ → 0 as n → ∞, ∀i ∈ I.(54)

Since J is uniformly norm-to-norm continuous on bounded sets, one has

lim
n→∞

‖Jun,i − Jyn,i‖ = 0, ∀i ∈ I.(55)

From the assumption rn,i ≥ a, one sees

lim
n→∞

‖Jun,i − Jyn,i‖
rn,i

= 0.(56)

Noticing that un,i = Trn,i yn,i, one obtains

f (un,i, y) +
1

rn,i
〈y − un,i, Jun,i − Jy〉 ≥ 0, ∀y ∈ C.(57)
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From (A2), one arrives at

‖y − un,i‖
‖Jun,i − Jyn,i‖

rn,i
≥ 1

rn,i
〈y − un,i, Jun,i − Jyn,i〉 ≥ − f (un,i, y) ≥ f (y, un,i), ∀y ∈ C.(58)

By taking the limit as n → ∞ in the above inequality and from (A4) and (34), one has

f (y, p) ≤ 0, ∀y ∈ C.(59)

For all 0 < t < 1 and y ∈ C, define yt = ty + (1 − t)p. Noticing that y, p ∈ C, one obtains
yt ∈ C, which yields that f (yt, p) ≤ 0. It follows from (A1) that

0 = f (yt, yt) ≤ t f (yt, y) + (1− t) f (yt, p) ≤ t f (yt, y).(60)

That is,

f (yt, y) ≥ 0.(61)

Let t ↓ 0, from (A3), we obtain f (p, y) ≥ 0, for all y ∈ C. We have p ∈ EP( f ) that is p ∈
GMEP(Θ, ϕ, Ψ). From (a) and (b), we conclude that p ∈ F.

Step 6. Show that p = ΠFx0.

From xn = ΠCn x0, we have

〈Jx0 − Jxn, xn − z〉 ≥ 0, ∀z ∈ Cn.(62)

Since F ⊂ Cn, we also have

〈Jx0 − Jxn, xn − u〉 ≥ 0, ∀u ∈ F.(63)

By taking limit in (63), we obtain that

〈Jx0 − Jp, p − u〉 ≥ 0, ∀u ∈ F.(64)

By Lemma 2.2, we can conclude that p = ΠFx0. This completes the proof. �

If β
(1)
n,i = 0 for all n ≥ 0 and Ti = Si for all i ∈ I in Theorem 3.1, then we have the following.

Corollary 3.2. Let E be a uniformly convex and uniformly smooth Banach space and C be a nonempty
closed convex subset of E. Let Ψ : C → E∗ be a continuous and monotone operator and ϕ : C → R

be a real-valued function. Let Θ be a bifunction from C × C to R satisfying (A1)− (A4), let {Ti}i∈I
be a family of closed quasi-φ-nonexpansive mappings Ti : C → C such that the common fixed point
set F :=

⋂
i∈I F(Ti) ∩ GMEP(Θ, ϕ, Ψ) is nonempty, where I is an index set. Let {xn} be a sequence

generated by the following manner:

(65)



x0 ∈ C chosen arbitrary and C0,i = C, ∀i ∈ I,
yn,i = J−1(αn,i Jx0 − (1− αn,i)Tixn),
un,i ∈ C such that Θ(uni , y) + ϕ(y)− ϕ(un,i)+
〈Ψun,i, y − un,i〉+ 1

rn,i
〈y − un,i, Jun,i − Jyn,i〉 ≥ 0, ∀y ∈ C,

Cn+1,i = {u ∈ Cn,i : φ(u, un,i) ≤ φ(u, xn) + αn,i(‖x‖2 + 2〈u, Jxn − Jx0〉)},
Cn+1 =

⋂
i∈I Cn+1,i,

xn+1 = ΠCn+1 x0, ∀n ≥ 0,

where J is a duality mapping on E, {αn,i}, (i = 1, 2, 3) and {rn,i} are sequences in (0, 1) satisfying
(a) limn→∞ αn,i = 0 for each i ∈ I;
(b) {rn,i} ⊂ [a, ∞) for some a > 0 and for all i ∈ I;

Then the sequence {xn} converges strongly to ΠFx0.

Remark 3.3. Corollary 3.2 improves Theorem 3.1 of Takahashi and Zembayashi [36] in the
following senses:

(1) from the class of relatively nonexpansive mappings to the more general class of quasi-φ-
nonexpansive mappings.

(2) from one mapping to a family of mappings.



125 R. Wangkeeree, U. Kamraksa / Journal of Nonlinear Analysis and Optimization 1 (2010), 111-129125 R. Wangkeeree, U. Kamraksa / Journal of Nonlinear Analysis and Optimization 1 (2010), 111-129125 R. Wangkeeree, U. Kamraksa / Journal of Nonlinear Analysis and Optimization 1 (2010), 111-129

(3) from the problem of finding the solutions of the equilibrium problem to the problem of
finding the solutions of the generalized mixed equilibrium problem.

Corollary 3.4. Let E be a uniformly convex and uniformly smooth Banach space and C be a nonempty
closed convex subset of E. Let {Ti}i∈I and {Si}i∈I be two families of closed quasi-φ-nonexpansive
mappings Ti, Si : C → C such that the common fixed point set F :=

⋂
i∈I F(Ti) ∩

⋂
i∈I F(Si) is

nonempty, where I is an index set. Let {xn} be a sequence generated by the following manner:

(66)



x0 ∈ C chosen arbitrary and C0,i = C, ∀i ∈ I,

zn,i = J−1(β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn),

yn,i = J−1(αn,i Jx0 − (1− αn,i)Jzn,i),
Cn+1,i = {u ∈ Cn,i : φ(u, yn,i) ≤ φ(u, xn) + αn,i(‖x‖2 + 2〈u, Jxn − Jx0〉)},
Cn+1 =

⋂
i∈I Cn+1,i,

xn+1 = ΠCn+1 x0, ∀n ≥ 0,

where J is a duality mapping on E, {αn,i} and {β
(i)
n,i} (i = 1, 2, 3) are sequences in (0, 1) satisfying

(a) limn→∞ αn,i = 0 for each i ∈ I;
(b) β

(1)
n,i + β

(2)
n,i + β

(3)
n,i = 1 for each i ∈ I and if one of the following is satisfied.

(b-1) lim infn→∞ β
(1)
n,i β

(l)
n,i > 0 for all l = 2, 3 and for all i ∈ I and

(b-2) lim infn→∞ β
(2)
n,i β

(3)
n,i > 0 and lim infn→∞ β

(1)
n,i = 0 for each i ∈ I.

Then the sequence {xn} converges strongly to ΠFx0.

Proof. Put f (x, y) = 0, for all x, y ∈ C, Ψ = ϕ = 0 and {rn,i} = {1}, ∀i ∈ I in Theorem
3.1. Thus, we have un,i = yn,i. Then the sequence {xn} generated in Corallary 3.4 converges
strongly to ΠFx0. �

Remark 3.5. (1) We note that the iterative method imposed in Corollary 3.4 bases on the shrink-
ing projection method which is different from the iterative method imposed in Theorem QCKZ
based on the hybrid method.

(2) We can obtain the Corollary 3.4 by using either the condition (b-1) or (b-2).

Theorem 3.6. Let E be a uniformly convex and uniformly smooth Banach space and C be a nonempty
closed convex subset of E. Let Ψ : C → E∗ be a continuous and monotone operator and ϕ : C → R be
a real-valued function. Let Θ be a bifunction from C × C to R satisfying (A1)− (A4), let {Ti}i∈I and
{Si}i∈I be two families of closed quasi-φ-nonexpansive mappings Ti, Si : C → C such that the common
fixed point set F :=

⋂
i∈I F(Ti) ∩

⋂
i∈I F(Si) ∩ GMEP(Θ, ϕ, Ψ) is nonempty , where I is an index set.

Let {xn} be a sequence generated by the following manner:

(67)



x0 ∈ C chosen arbitrary,

zn,i = J−1(β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn),

yn,i = J−1(αn,i Jx0 − (1− αn,i)Jzn,i),
un,i ∈ C such that Θ(uni , y) + ϕ(y)− ϕ(un,i)+
〈Ψun,i, y − un,i〉+ 1

rn,i
〈y − un,i, Jun,i − Jyn,i〉 ≥ 0, ∀y ∈ C,

Hn,i = {u ∈ C : φ(u, un,i) ≤ φ(u, xn) + αn,i(‖x‖2 + 2〈u, Jxn − Jx0〉)},
Hn =

⋂
i∈I Hn,i,

W0 = C,
Wn = {u ∈ Wn−1 : 〈xn − u, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wn x0, ∀n ≥ 0,

where J is a duality mapping on E, {αn,i}, {β
(i)
n,i} (i = 1, 2, 3) are sequences in (0, 1) such that

(a) limn→∞ αn,i = 0 for each i ∈ I;
(b) {rn,i} ⊂ [a, ∞) for some a > 0 and for all i ∈ I;
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(c) β
(1)
n,i + β

(2)
n,i + β

(3)
n,i = 1 for each i ∈ I and if either

(c-1) lim infn→∞ β
(1)
n,i β

(l)
n,i > 0 for all l = 2, 3 and for all i ∈ I or

(c-2) lim infn→∞ β
(2)
n,i β

(3)
n,i > 0 and lim infn→∞ β

(1)
n,i = 0 for each i ∈ I.

Then the sequence {xn} converges strongly to ΠFx0.

Proof. We define a bifunction f : C × C → R by

f (x, y) = Θ(x, y) + ϕ(y)− ϕ(x) + 〈Ψx, y − x〉, ∀x, y ∈ C.

From Lemma 2.10, we have the bifunction f satisfies condition (A1)-(A4). Therefore, the mixed
equilibrium problem (1) is equivalent to the following equilibrium problem: find u ∈ C such
that

f (u, y) ≥ 0, ∀y ∈ C,

and (67) can be written as:

(68)



x0 ∈ C chosen arbitrary,

zn,i = J−1(β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn),

yn,i = J−1(αn,i Jx0 − (1− αn,i)Jzn,i),
un,i ∈ C such that f (uni , y) + 1

rn,i
〈y − un,i, Jun,i − Jyn,i〉 ≥ 0, ∀y ∈ C,

Hn,i = {u ∈ C : φ(u, un,i) ≤ φ(u, xn) + αn,i(‖x‖2 + 2〈u, Jxn − Jx0〉)},
Hn =

⋂
i∈I Hn,i,

W0 = C,
Wn = {u ∈ Wn−1 : 〈xn − u, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wn x0, ∀n ≥ 0,

It is obvious that Hn ∩ Wn is closed and convex. Now we show that F ⊂ Hn ∩ Wn for all
n ≥ 0. First, we show that F ⊂ Hn for all n ≥ 0. For ∀w ∈ F and all i ∈ I, one has

φ(w, zn,i) = φ(w, J−1(β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn))

= ‖w‖2 − 2〈w, β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn)〉

+ ‖β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn‖2

≤ ‖w‖2 − 2β
(1)
n,i 〈w, Jxn〉 − 2β

(2)
n,i 〈w, JTixn〉 − 2β

(3)
n,i 〈w, JSixn〉

+ β
(1)
n,i ‖xn‖2 + β

(2)
n,i ‖Tixn‖2 + β

(3)
n,i ‖JSixn‖2

= β
(1)
n,i φ(w, xn) + β

(2)
n,i φ(w, Tixn) + β

(3)
n,i φ(w, Sixn)

≤ β
(1)
n,i φ(w, xn) + β

(2)
n,i φ(w, xn) + β

(3)
n,i φ(w, xn)

= φ(w, xn)
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and then

φ(w, un,i) = φ(w, Trn,i yn,i)
≤ φ(w, yn,i)

= φ(w, J−1(αn,i Jx0 − (1− αn,i)Jzn,i)

= ‖w‖2 − 2〈w, αn,i Jx0 − (1− αn,i)Jzn,i〉+ ‖αn,i Jx0 − (1− αn,i)Jzn,i‖2

≤ ‖w‖2 − 2αn,i〈w, Jx0〉 − 2(1− αn,i)〈w, Jzn,i〉+ αn,i‖x0‖2 + (1− αn,i)‖zn,i‖2

= αn,iφ(w, x0) + (1− αn,i)φ(w, zn,i)
≤ αn,iφ(w, x0) + (1− αn,i)φ(w, xn)
= φ(w, xn) + αn,i[φ(w, x0)− φ(w, xn)]

≤ φ(w, xn) + αn,i(‖x0‖2 + 2〈w, Jxn − Jx0〉).(69)

This show that w ∈ Hn,i for each i ∈ I. That is, w ∈ Hn =
⋂

i∈I Hn,i for all n ≥ 0.
Next, we show that F ⊂ Wn for all n ≥ 0. In fact, we prove this by induction. For n = 0, we

have F ⊂ C = W0. Assume that F ⊂ Hn−1 for some n ≥ 1, we will show that F ⊂ Wn for the
same n ≥ 1. Since xn is the projection of x0 onto Hn−1 ∩Wn−1, by Lemma 2.2, we have

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn−1 ∩ Qn−1.(70)

Since F ⊂ Hn−1 ∩Wn−1 by the induction assumptions, the last inequality holds, in particular,
for all w ∈ F. This together with the definition of Wn implies that F ⊂ Wn. Thus we proved
that F ⊂ Hn ∩Wn, ∀n ≥ 0. This means that {xn} is well define.

From the definition of Wn, we know that

〈xn − z, Jx − Jxn〉 ≥ 0, ∀z ∈ Wn.

So by Lemma 2.2 we have xn = ΠWn x. If we instead Cn by Wn and Cn+1 by Hn in the proof of
Theorem 3.1, and notice that xn+1 = ΠHn∩Wn x ∈ Hn ∩Wn ⊂ Wn, we have

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn − un,i‖ = 0.(71)

Since J is uniformly norm-to-norm continuous on bounded set, we have

lim
n→∞

‖Jxn − Jun,i‖ = 0.(72)

Thus the proof that {xn} converges strongly to ΠFx follows on the lines of Theorem 3.1. �
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