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1. INTRODUCTION

It is essential for many fields of study, including mathematics, to have fixed
points. The conditions under which maps have solutions are given by fixed point
results. In particular, fixed point methods have been applied in many fields, such
as informatics, biology, chemistry, economics, and engineering. Determining the
precise value of the intended fixed point is a crucial and ultimately the last step in
solving the problem, but determining its existence is a crucial initial step. Using
an iterative procedure is one of the best ways to obtain the intended fixed point. A
number of researchers have recently shown interest in these areas and have developed
iterative procedures that have been investigated to estimate fixed points for a larger
class of nonexpansive mappings as well as for nonexpansive mappings. The existence
of a fixed point is very important in several areas of mathematics and other sciences.
The numerous numbers of researchers attracted in these direction and developed
iterative process has been investigated to approximate fixed point for not only
nonexpansive mapping, but also for some wider class of nonexpansive mappings.
This is an active area of research, several well known scientists in the world paid and
still pay attention to the qualitative study of iteration methods. The well-known
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Banach contraction theorem use Picard iteration process [28] for approximation
of fixed point. Some of the well-known iterative processes are those of Mann [24],
Ishikawa [17], Noor [25], SP-iteration [29], Picard Normal S-iteration [18] and so on.
Let X be a real Banach space and M be a nonempty subset of X, and G : M — M
be a mapping. We have {7,},{o,} and {k,} real sequences in [0,1]. Recently,
Phuengrattana and Suantai ([29]) defined the SP-iteration as follows:

Zn = (1 - an)un + Knguna
Un = (1 - O'n)zn + 0,.G2n, (11)
Unt1 = (1 — 1)U + 7 G0p, Vn € N|

where u; € M. They showed that the Mann, Ishikawa, Noor and SP-iterations
are equivalent and the SP-iteration converges better than the others for the class
of continuous and nondecreasing functions. In 2014, Kadioglu and Yildirim [18]
introduced Picard Normal S-iteration process and they established that the rate
of convergence of the Picard Normal S-iteration process is faster than other fixed
point iteration process that was in existence then. The Picard Normal S-iteration
[18] as follows:

Zn = (1 - Un)un + Ungun;

v = (1 — 7)) 2n + TnG2n, (1.2)

Up+1 = Gup, VN € N,
where u; € M.

In 2021, Temir and Korkut [35] introduced SP*-iteration process and they es-
tablished that the rate of convergence of the SP*-iteration scheme is faster than
above iteration processes. Now we give SP*-iteration process:for arbitrary u; € M
construct a sequence {u,} by

Zn = g((l - ’in)un + Hngun)a
Un = g((l - Un)zn + Ungzn)a (13)
Unt1 = G((1 = 1) vn + 7,Gvy), Vn € N.

Some generalizations of nonexpansive mappings and the study of related fixed
point theorems have been intensively carried out over past decades [1, 4, 14, 26,

, 33, 34, 36, 37]. A class of generalized nonexpansive mappings (in short GNMs)
on a nonempty subset M of a Banach space X has been defined by Suzuki [33].
Such mappings were referred to as belonging to the class of mappings satisfying
condition (C') (also referred as Suzuki GNM), which properly includes the class of
nonexpansive mappings. Every self-mapping G on M providing condition (C) has
an almost fixed point sequence for a nonempty bounded and convex subset M.
Two new classes of GNMs that are wider than those providing the condition (C)
were presented in 2011 by Garcia-Falset et al. [14], while retaining their fixed point
properties. The resulting property was called condition (E) (in the sequel, the class
of mappings satisfying condition (F) will be referred to as Garcia-Falset-generalized
nonexpansive mappings or Garcia-Falset mappings).

In this paper, we apply SP*-iteration (1.3) for operators with property (F) in
the context of C'AT'(0) space as follows

Zn = g((l - fin)un D Kngun)7
Un = g((l - Un)zn S2) Ungzn)7 (14)
Unt1 = G((1 — 7))V @ T0GVp),Vn € N,

where M is a nonempty closed convex subset of a CAT(0) space, u;1 € M, {7,},
{on} and {k,} € [0,1].
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Inspired and motivated by these facts, in this paper, we prove some convergence
theorems of SP*-iterative process generated by (1.4) to fixed point of operators with
Property (F) in CAT(0) spaces. In 2021, Temir and Korkut [35] introduced the it-
erative process generated by (1.4) (SP*-iteration process) and they established that
the rate of convergence of the SP*-iteration process is faster than the SP-iteration
process and the Picard Normal S-iteration process. Since only the convergence
analysis of the SP*-iterative process was studied in [35], we also prove the stability
of the SP*-iterative process in this study. In addition, we provide an example that
satisfies condition (F) but the mapping is neither a generalized a-nonexpansive
mapping nor does it satisfy condition (C).

2. PRELIMINARIES

First we present some basic concepts and definitions.

Let G be a self-mapping defined on a nonempty subset of a CAT(0) space. A
point u € M is called a fixed point of G if Gu = u and we denote by Fiz(G) the set
of fixed points of G, that is, Fiz(G) = {u € M : Gu = u}. A mapping G : M — M
is called contraction if there exists § € [0,1) such that

d(Gu, Gv) < 6d(u,v),

for all u,v € M. If # = 1 in inequality above, then G is said to be a nonexpansive
mapping.

Definition 2.1. A mapping G : M — M satisfies condition (C') on M if for all
u,v € M, 3d(u,Gu) < d(u,v) = d(Gu, Gv) < d(u,v).

Suzuki [33] showed that the mapping satisfying condition (C) is weaker than
nonexpansiveness and stronger than quasi-nonexpansiveness. In 2017, Pant and
Shukla [26] introduced a new type of nonexpansive mappings called generalized
a-nonexpansive mappings and obtain a number of existence and convergence theo-
rems. This new class of nonlinear mappings properly contains nonexpansive, Suzuki-
type GNMs and partially extends firmly nonexpansive and a-nonexpansive map-
pings.

Definition 2.2. A mapping G : M — M is called a generalized a-nonexpansive
mapping if there exists an a € [0,1) and for each u,v € M,

%d(u, Gu) < d(u,v) implies d(Gu, Gv) < ad(Gu,v) + ad(Gv,u) + (1 — 2a)d(u,v).

Recently, Garcia-Falset et al. [14] studied GNMs satisfying condition (E) that
have a weaker property than Suzuki GNMs.

Definition 2.3. A mapping G : M — X satisfies condition (E,) on M, if there
exists p > 1 such that

d(u, Gv) < pd(u, Gu) + d(u,v)
for all u,v € M.

Moreover, it is said that G satisfies condition (E) on M, whenever G satisfies
condition (E,), for some p > 1. It is clearly seen that if G : M — X is nonexpansive,
then it satisfies condition (E7) and from Lemma 7 in [33] we know that if G :
M — M satisfies condition (C) on M, then G satisfies condition (FE3) (see [11]).
By Lemma 5.2 in [20], if G : M — X is a generalized a-nonexpansive mapping,
then it satisfies condition (E) on M; see [20] for a proof. Therefore, the class
of generalized a-nonexpansive mappings is subordinated to the class of mappings
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satisfying condition (E). Proposition 1 in [14], we know also that if G : M — X
a mapping which satisfies condition (E) on M has some fixed point, then G is
quasi-nonexpansive. Example 2 that is in [14] shows the converse is not true.

It is well-known that any complete, simply connected Riemannian manifold hav-
ing non-positive sectional curvature is a C AT (0) space. Other examples include Pre-
Hilbert spaces, any convex subset of a Euclidian space R™ with the induced metric,
the complex Hilbert ball with a hyperbolic metric and many others. For discussion
of these spaces and of the fundamental role they play in geometry see Bridson and
Haefliger [6]. Burago et al. [8] contains a somewhat more elementary treatment,
and Gromov [15] a deeper study. Fixed point theory in CAT'(0) space has been first
studied by Kirk (see [19],[20]). He showed that every nonexpansive (single-valued)
mapping defined on a bounded closed convex subset of a complete C AT (0) space
always has a fixed point. On the other hand, we know that not every Banach space
is a CAT(0) space. Since then the fixed point theory in CAT(0) has been rapidly
developed and much papers a appeared. (see [0],[10],[11],[12],[13], (19,201, [21], [22]).

Recently, Kirk and Panyanak [22] used the concept of A—convergence introduced
by Lim [23] to prove on the CAT(0) space analogs of some Banach space results
which involve weak convergence. Further, Dhompongsa and Panyanak [9] obtained
A—convergence theorems for the Picard, Mann and Ishikawa iteration processes for
nonexpansive mappings in the C AT(0) space. In addition, the convergence results
for generalized nonexpansive mappings are obtained by using different iteration
processes in CAT(0) spaces ( see [2], [3], [30], [31]).

If u, v, vy are points of a CAT(0) spaces, and and if vy is the midpoint of the
segment [y1,y2] then the CAT(0) inequality implies

1 1 1
dz(u,vo) < de(u,vl) + §d2(u,v2) - ZdQ(vl,vg).

This is the (CN) inequality of Bruhat and Tits [7]. In fact, a geodesic space is a
CAT(0) space if and only if it satisfies the (CN) inequality ([[0], p. 163]).

In the sequel, we need the following definitions and useful lemmas to prove our
main results of this paper.

Lemma 2.4. ([9]) Let X be a CAT(0) space.

(i) For u,v € X and t € [0,1], there exists a unique point z € [u,v] such that
d(u, z) = td(u,v) and d(v, z) = (1 — t)d(u,v).

(i1) For u,v € X andt € [0,1], we have d((1—t)udtv, z) < (1—t)d(u, z)+td(v, z).

Let {u,} be a bounded sequence in a closed convex subset M of a C AT (0) space

X. For x € X, set r(u,{un}) = limsup d(u, u,). The asymptotic radius r({u,}) of
n—oo

{u,} is given by r(M, {u,}) = inf {r(u, {u,}) : w € M} and the asymptotic center
of u, relative to K is the set A(M, {u,}) = {u € M : r(z,{un}) = r(M, {u,})}.
It is known that, in a CAT(0) space, A(M, {uy}) consists of exactly one point; see
[12], Proposition 7.

We now recall the definition of A-convergence and weak convergence in C AT (0)
space.

Definition 2.5. ([22],[23]) A sequence {u,} in a CAT(0) space X is said to A-
converge to u € X if u is the unique asymptotic center of every subsequence {uy,}.

In this case we write A — lim w, = u and call u is the A—limit of {u,}.
n—0o0

Lemma 2.6. ([22]) Given {u,} € X such that {u,}, A-converges to u and given
v € X with v # u, then limsup d(uy,,w) < limsup d(uy,,v).

n—oo n— oo
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Lemma 2.7. ([22]) Every bounded sequence in a complete CAT(0) space always
has a A-convergent subsequence.

Lemma 2.8. ([11]) Let M be closed convez subset of a complete CAT(0) space and
{un} be a bounded sequence in M. Then asymptotic center of {u,} is in M.

Next, Harder and Hicks [16] introduced the following definition of G-stability :

Definition 2.9. ([16]) Let {t,}52, be an arbitrary sequence in M. Then , an
iteration process

tne1 = f(G,ty), forn=1,2 ..
is said to be G-stable or stable with respect to G for some function f, converging
to fixed point p, if €, = d(tn+1, f(G,t,)) for n = 1,2, ..., we have lime, =0 &

n—oo
lim ¢, =p.

n—>oo

In what follows, we shall make use of the following well-known lemma.

Lemma 2.10. ([5]) Let {e,} and {u,} be sequences of positive real numbers satis-
fying

Un+41 S 6un + €n,
n €N andd €10,1). If ILm €, = 0 then le u, = 0.

3. STABILITY OF SP*-ITERATION PROCESS

In this section, we prove that the SP*-iteration process defined by (1.4) is stable.
First, we prove the following strong convergence theorem.

Theorem 3.1. Let M be a nonempty closed convex subset of a complete CAT(0)
space X , G be a contraction mapping with Fiz(G) # (0. For arbitrary chosen
u; € M, {u,} be a sequence generated by (1.4) with real sequences {1,},{on} and
{kn} € [0,1] with 377 | 7, = 00. Then {u,}52, converges strongly to an unique
fized point of G.

Proof. We will prove that w,, — p as n — oo from (1.4), we have,

d(znvp) = d(g((l - "in)un @ ﬁngun)yp)
S 0[(1 - Hn)d(unap) + Hnad(urup)]
O[1 = kn(1 = O)]d(un, p)- (3.1)

Similarly, from (1.4) and (3.1), we get

d(vp,p) = d(G((1 —0on)zn & 0,G2n),p)
< 0[(1 = 0n)d(2n,p) + 00d(G2n, p)]
< 0[(1 = 04)d(zn, p) + 0n0d(2n, )]
= 0[(1—on(1—0))d(zn,p)]
< (1= on(1 = 0)(1 — kn(1 — 0))]d(tn, p). (3.2)
From (1.4) and (3.2) , we get
d(tps1,p) = d(G((1—7p)vn B ThGVn), D)

< O[(1 = 70)d(vn, p) + Tnd(GVn, p)]

< 0[(1 — 7)d(vn, p) + T0d(vn, p)]

= 0[1 —7,(1 —0)d(vn,p)]

< 01 =70 (1=0))(1 = 0n(1 = 6)(1 = rn(1 = 6))]d(un, p)
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Considering that {7, }, {0} and {k,} € [0,1], 6 € [0, 1), and rearranging the above
inequality, we get

d(un-‘rlap) S 03[1 - Tn(l - 9)]d(un7p)
By induction, we get

d(tn,p) < 031 —71_1(1 —0)]d(un_1,p)

d(ug,p) < 031 —711(1—0)]d(us,p).

Therefore, we obtain
d(un+l7p) S 93” H [1 - Tk(l - 6>]d(ulap)a
k=1

f <land 7 €[0,1] for k=1,2,.... Then we have [1—7,(1—0)] < 1fork=1,2,....
So, we know that 1 —u < e™™ for all u € [0, 1]. Hence we have

d(un+lap) S 93"6_(1_0) ZZ:I de(ulap)' (33)

Taking the limit of both sides of the above inequality , u, — p as n — oco. O
Now we prove that the iteration defined by (1.4) is stable with respect to G.

Theorem 3.2. Suppose that all conditions of Theorem 3.1 hold. Then the iteration
process (1.4) is G-stable.

Proof. Let {t,} be any arbitrary sequence in M. t,+1 = f(G,t,) is the sequence
generated by (1.4) and €, = d(tn+1, f(G,t,)) for n =1,2, ..., in which

Tn = g((l - ’in)tn 5> ﬁngtn);

$n=G((1 —op)rn ® on,Gry),

tny1 = G((1 — 7,) 80 ® 7,Gsp), Vn € N.
We have to prove that lim ¢, =0« lim ¢, =p.

n—> oo n—>oo

Suppose lim €, = 0. We prove that lim ¢, = p:
n—»oo

n—»oo

d(tnt1,p) < d(tns1, f(G,tn)) +d(f(G,t0),p) (3.4)
< en +0[1 — 71 (1 — 0)d(sp,p)]
and

d(
011
ol(1 -
ol

d(sn,p)

G((1 = on)rn ® 0nGrn), )
(Tnun) +0on (grnap)] (35)
(rn,p) + onbd(r,,p)]

1—0,(1—0)]d(rn,p)

Un)
on)d

INIA

and

d(rn,p)

d(g((l - ’in) n @ 5ngt7z)ap)
O[(1 = kn)d(tn, p) + £nbd(ty, p)]
9[1 - Hn(l - 9)]d(tnvp) (36)

IN
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Substituting (3.6) in (3.5), we obtain
d(sn,p) < 0[(1 = on(1 = 0))(1 = Kn(1 = 0))]d(tn, p). (3.7)
Substituting (3.7) in (3.4), we get
A(tni1,0) < €0+ (1= 7(1 = 0))(1 = 00 (1 = 0))(1 = kn(1 = 0))]d(tn, p).-

Since {7, }, {on} and {r,} € [0,1], 0 € [0,1) and 3[(1 —7,,(1—0))(1 -0, (1—0))(1—
kn(1 —0))] < 1, we can easily seen that all conditions of Lemma 2.10 are fulfilled
by above inequality. Hence by Lemma 2.10 we get lim t,, = p.

n——0o0

Conversely, let lim tn = p, we have

d(t n+1,f(g tn))
d(tns1,p) +d(f(G,tn), p)
A(tny1,p) + (1 = 70 (1 = 0))(1 — 0 (1 = 0))(1 — kn(1 = 0))]d(tn, p).

€n

<
<

By taking the limit as n — oo in the above inequality we have lim €, = 0. Hence
n——oo

(1.4) is stable with respect to G. O

4. CONVERGENCE OF SP*-ITERATION PROCESS FOR OPERATORS WITH
PROPERTY (F)

Lemma 4.1. Let M be a nonempty closed convex subset of a complete C AT(0)
space X , G be a mapping satisfying condition (E) with Fix(G) # (0. For arbitrary
chosen x1 € M, let {u,} be a sequence generated by (1.4) with {r,}, {on} and {k,}
real sequences in [0,1]. Assume that lirr_1>inf(1 — Kp)Kn > O,lirginf(l —op)on >0
and hm 1nf( — Tp)Tn > 0. Then Fiz(G) # 0 if and only if {u,} is bounded and
hm d(un,gun) =0.

Proof. Assume that Fiz(G) # (). G is a quasi-nonexpansive because G : M — M
is a Garcia-Falset GNM. Using (1.4), for any p € Fiz(G), because of G quasi-
nonexpansive mapping, then we have

d2(zn7p) = dQ(g((l — Kn)Un D KnGn), p) (4.1)
< d*((1 = Kp)tn ® KnGtin, p)
< (1= Kp)d* (Un, ) + Knd®(Guin, p) — (1 — k) kind? (G, uyp)
< d2(un,p) - (1- ’{n)ﬂndQ(gunaun) < d? (Un, D).

Using (1.4) and (4.1), we get

d?(vy,p) d*(G((1 = 0)2n © 0,G20), ) (4.2)
d*((1 = 0p)2n @ 62G2n, D)
(1 = 0,)d*(2p,p) + 0nd*(Gzp,p) — (1 — 0,)00d*(G2n, 2n)
d*(zn,p) — (1 = 0)00d*(G2n, 21
d2(zn,p) < d2(ump)'
By using (1.4) and (4.2), we get
d*(G((1 = 70)vn & TnGUn), p) (4.3)
d*((1 = 7)vp ® 7,GVp, p)
(1 = 7)d* (W, ) + Tnd?(Gvp, p) — (1 — 7)) T d?(Gop, vy)

IAIA A IA

d? (Un+1 , p)

<
<
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< @(vn,p) = (L= ) 7ad’ (Gon, vn)
< & (vp,p) < d*(un,p).
This implies that {d(u,,p)} is bounded and non-increasing for all p € Fiz(G).
Put li_>m d(up,p) = c. From (4.1) and (4.2), we have
n o0

lim sup d(zp, p) < limsup d(u,,p) = ¢
n— 00 n—oo

and
lim sup d(vy,, p) < limsup d(zy,,p) < limsup d(u,,p) = c.

n—oo n—oo n—oo

From (4.3), we can get d(un41,p) < d(vpn,p). Therefore ¢ < lirginf d(vn,p). Thus

we have ¢ = lim d(v,,p). Next
n—oo
o _ o _
©= g, dltnrp) < iy, dlen,p) < Jirg, Ao, ) =

Now, using (4.1), we know that
d2(zn7p) S d2(unap) - (1 - KrL)HndQ(gu7za U").

Thus
(1 - Hn)ﬁndQ(guna un) S dQ(unvp) - dQ(Z’rup)
so that )
2 < 2 _op
d (gunaun) = (1 — K‘,n)/fn [d (unap) d (znvp)]'
We have

lim dz(gun,un) <0.
n— oo
Hence lim d(Guy,u,) = 0.
n— o0
Conversely, suppose that {u,} is bounded and li_>m d(tn,Gu,) = 0. Let p €
n (oo}

A(M, {u,}). Then we have,

r(Gp, {un}) = limsup d(u,,Gp) < limsupud(Gu,,u,) + limsupd(uy,, p)

n—oo n—oo n—oo
= limsupd(u,,p) = r(p, {un}).
n—oo
This implies that for Gp = p € A(M, {u,}). Since X is complete CAT(0) then
A(M,{uy}) is singleton, hence Gp = p. This completes the proof. O

Now , we prove the A-convergence theorem of a iterative process generated by
(1.4) in CAT(0) spaces.

Theorem 4.2. Let X, M, G and {u,} be as in Lemma 4.1 with Fiz(G) # 0. Then
Uy, A-converges to a fized point of G.

Proof. Lemma 4.1 guarantees that the sequence {u, } is bounded and lim d(Guy,, u,) =
n—oo

0. Let Wa(un) = U A({wn}); where the union is taken over all subsequences {w., }
of {u,} : We claim that Wa(u,) C Fiz(G). Let w € Wa(uyp). Then, there exists
a subsequence {w,} of {u,} such that A({w,}) = w. Since G is a mapping with
condition (E), we obtain d(wy,,Gw) < pd(wn, Gwy) + d(wn,w). Using this last in-
equality and fact that nl;rréo d(wn,Gw,) = 0, taking limsup on both sides implies
that lim supd(wy,, Gw) < limsupd(w,,w). Hence r(Gw,{w,}) < r(w,{w,}). How-

n—oo n—oo
ever, w is the unique asymptotic center of {w,, }, which implies that w = Gw, that

is, w € Fiz(G).
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By Lemma 2.7 and Lemma 2.8, there exists a subsequence {¢,} of {w,} such that
A — lim ¢, = ¢ € G. Since lim d((,,G¢,) = 0 and G is a Garcia-Falset mapping,
n— oo n—00

then, we have

By taking limsup and using Opial property, we obtain ( € Fiz(G). Now, we claim
that w = (. Assume on contrary, that w # (. By Lemma 4.1, le d(un, () exists
n oo

and by the uniqueness of asymptotic centers, then we have

lim d((,,¢) < lim d((p,w) < lim d(wp,w)
n—o00 n—o00 n—oo
< lim d(wn,¢) = lim d(wy,()
n—oo n—oo

lim (G, €),

which is contradiction. Thus w = ¢ € Fiz(G) and Wa(w,) C Fiz(G). To show that
{wn}, A-converges to a fixed point of G, we show that WA (u,) consists of exactly
one point. By Lemma 2.7 and Lemma 2.8, there exists a subsequence {(,} of w,
such that A — li_)m Cn=C e M. Let A({wyp}) = {w} and A({w,}) = {p}. We have

n oo
already seen that w = ¢ and ¢ € Fiz(G). Finally, we claim that p = {. If not, then
existence lim d(u,,() and uniqueness of asymptotic centers imply that
n— oo

lim d(Go, Q) < lim d(Casp) < lim d(wn, p)
n— oo n— oo n— oo
< lim d(wn,¢) = lim d(¢y, Q).
n—oo n—roo
This is a contradiction and hence p = ¢ € Fiz(G). Therefore, Wa(w,) = p. In

conclusion Wa (wy,) is a singleton and unique element is a fixed point of G. This
proves A-convergence of u,,. O

In the next result, we prove the strong convergence theorem as follows.

Theorem 4.3. Let X, M,G and {u,} be as in Lemma 4.1 with Fiz(G) # 0 such
that M is compact subset of X. Then {u,} converges strongly to a fized point of
g.

Proof. By Lemma 4.1, we have lim d(u,,Gu,) = 0. Since M is compact, by
n— oo

Lemma 2.7, there exists a subsequence {u,, } of {u,} and p € M such that {uy, }
converges p. Then we have d(u,, ,Gp) < pd(Gun,, , tn,, ) + d(tn, ,p) for all k > 1. So
{un, } converges Gp. This implies Gp = p. Since G is quasi-nonexpansive , we have
d(upt1,p) < d(up,p) for all n € N. Therefore {u,} converges strongly to p. O

Finally, we briefly discuss the strong convergence theorem using condition (I)
introduced by Senter and Dotson[32] in C AT (0) space X as follows.

Theorem 4.4. Let G be a Garcia-Falset mapping on a nonempty closed conver
subset M of a complete CAT(0) space X. {uyn} be as in Lemma 4.1 with Fix(G) #
(0. Also if, for G satisfies condition (I), then {u,} defined by (1.4) converges strongly
to a fized point of (G).

Proof. By Lemma 4.1, we have li_>m d(un,p) exists and so lim d(u,, Fiz(G)) . Also

n—roo
by Lemma 4.1, le d(un,Guy,) = 0.
It follows from condition (I) that lim f(d(u,, Fiz(G)) < lim d(u,,Gu,). That
n—oo n—oo

is, li_>m f(d(up, Fiz(G)) = 0. Since f : [0,00) — [0,00) is a nondecreasing function
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satisfying f(0) = 0 and f(r) > 0 for all r € (0,00), we have 1i_>m d(un, Fiz(G)) =
n—oo

0. Thus , we have a subsequence {uy,} of {u,} and {yx} C Fiz(G) such that
(X, yi) < 2% for all k € N. We can easily show that {y;} is a Cauchy sequence in
Fiz(G) and so it converges to a point p. Since Fiz(G) is closed, therefore p € Fiz(G)
and {uy,, } converges strongly to p. Since nh_)rr;o d(un, p) exists, we have that u,, — p.

Thus the proof is completed. O

Next, we give the following example satisfying condition (E), but it is neither a
generalized a-nonexpansive mapping nor does it satisfy condition (C).

Example 4.5. Let X = R be a CAT(0) space and M = [0, 1] be a closed convex
subset of R endowed with the usual norm. Define a mapping G : M — M by

< 1
Gu = { & i_g ;<10f In order to see that G satisfies condition (F3) on [0, 1],
3> Tog ~ U=

we consider the following cases:
(i) uwe 0, 155) and v € [0, 155). Then we have
d(u,Gv) = |u — 0] = |u| = d(u, Gu) < pd(u, Gu) + d(u, v).

So, G satisfies condition (E7).

(ii) u € [145,1] and v € [155,1]. Then we have

100°
2v 3u —2v
d(u,Gv) = u=— 5| = 3
u o 2u v
T 3733
u 2
= §—|—§|u—v|.

Turning to the right side of the inequality in Definition 2.3,

/Ld(ua gu) + d(u7 ’U) =p

2u b |
U — — u— .
3

If we choose the admissible parameter p = 1, the mapping will satisfy
condition (E).

(ili) u € [145,1] and v € [0, 1f5), which leads to d(u, Gu) = |u — 2%|. Evaluating
condition (E) for this case, we have

3
du,Gv) = |u—0|< §u+|u7v|
u
2)

= 3( 3 + d(u,v) = 3d(u, Gu) + d(u,v).

So, if we choose the admissible parameter p = 3, then the mapping will
prove to have condition (£). Taking the maximum value of i, we conclude
that G satisfies (E3) with G(0) = 0 fixed point.
Now, let us prove that G is not a generalized a-nonexpansive mapping. We shall
_ 1 _ 1 .
take u = 155 and v = 155 It follows that
1 1

1 111 1
24 Gv) =5 |35 ‘ 300 ’150 00|~ [~
If we consider the left side of the inequality in Definition 2.2,

0 2 1| 1
3100| 150°

d(gua gv) =
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Turning to the right side of the inequality in Definition 2.2, for a € [0, 1),
ad(Gu,v) + ad(Gv,u) + (1 — 2a)d(u,

v)
1 21 1 11
= al—-—|4al0- —|+(1-2)|— — —
“1150 ~ 3100 +a‘ 50|t O‘)‘wo 100
@ 1 @
= 0+ —4+ — — —

100 300 300
3a 1 2

300 T 300 300

_ i—l—i—(a—i—l)i
300 300 300°

So, for a € [0, 1), the implications fails to be satisfied, which leads to the conclusion
that G is not a generalized a-nonexpansive mapping.
In order to we show that G does not satisfy condition (C), we take also u = ﬁ

and v = ﬁ. Then we have

1

1 111 1 1 1
7d = - |— — O = —=— = — | = — = d .
5 Gu) =5 135 ' 300 ~ |50 00| ~ vVl =dw)
If we apply the inequality in Definition 2.1, we get
21 1 1
(G, G0) = 0= 3900) = 150 ~ 300 ~ 1Y)

Thus G does not satisfy condition (C).

5. CONCLUSIONS

We get some results on the strong and A-convergence of SP*-iteration process
(1.4) in given [35] for the mapping with Property (E) in nonlinear C AT'(0) spaces.

The result herein complements the some results of [14, 36, 37] from linear setting
to CAT(0) spaces. We also prove the stability of SP*-iteration process generated
by (1.4) in given [35] in this paper. In addition, we give an illustrative numerical

example that satisfies condition (F). As seen in Example 4.5, the mapping is neither
a generalized a-nonexpansive mapping nor does it satisfy condition (C). Further,
in future studies, iteration process can be developed and iteration that converges
faster than prominent iterations can be presented.
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