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ABSTRACT. This study investigates the impact of both detected and undetected viral
cases, alongside environmental pathogens, on infection transmission dynamics. A VSEIQCR
model is formulated and refined to analyze the study and to assess the basic reproduction
number using the next-generation matrix method. The findings reveal a rapid escalation
in viral cases, correlating with the rise in undetected cases. The study suggests that
identifying and isolating individuals exposed to or infected by the virus, whether detected
or undetected, is deemed imperative for curtailing disease transmission. Additionally, The
study emphasizes the role of fomites in infection spread. It stands out for its innovative
approach, examining the interconnections among vaccination, quarantine, and contamination
strategies within a cohesive research framework, thereby setting a precedent in the field.
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1. Introduction

Some viral diseases can spread through the presence of saliva in the environment
[5]. On January 30, 2020, in response to the recommendations of the Emergency
Committee, the Director-General of theWorld Health Organization (WHO) declared
the outbreak of COVID-19 a Public Health Emergency of International Concern
(PHEIC) [20]. Due to its worldwide spread, the WHO [5] declared it a pandemic
on March 11, 2020. COVID-19, caused by Severe Acute Respiratory Syndrome
Coronavirus-2 (SARS-CoV-2), first emerged in China in December 2019 [1], [11],
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[20]. Contact tracing and quarantine are key strategies adopted by India to control
transmission and mortality [5]. However, when interviewing individuals infected
with COVID-19 for contact tracing, some contacts may be omitted due to recall
bias. These missed cases, which remain asymptomatic throughout the incubation
period (2-14 days), increase the risk of involuntary transmission to the community
[20]. As a result, it is essential to investigate their role in the spread of the disease.
Many research articles have attempted to understand the dynamics of transmitting
this disease with the help of mathematical modeling. Kermack and McKendrick
[6], [7], [8] framed the initial SIR (Susceptible, infected, recovered) compartmental
model to study the dynamics of a disease. Mandal et al. [9] have designed an
SEIR ( Susceptible, Exposed, Infected, Recovered ) model to prevent or delay
local outbreaks by imposing travel restrictions in India from countries affected
by COVID-19. Since these studies focused on the risk of disease through direct
transmission between humans, the impact of undetected cases on infection risk
within the community remains uncertain. Yang and Wang [20] modeled taking into
account the level of pathogens in the reservoir of the environment and their role in
the spread of the disease.
Choi and Ki [1] developed a SEIHR ( Susceptible, Exposed, Infected, Hospitalized,
Recovered ) model and estimated the basic reproduction number by the number of
confirmed cases reported in Korea.
Sujata and Sumanta [12] studied the impact of the undetected infected persons on
the transmission dynamics of COVID-19 for the period 22 March 2020 to 4 May
2020.
Recent studies have advanced the understanding of epidemic models by exploring
various incidence rates and treatment functions. Sharma and Sharma [14] investigate
the stability of an SIR model incorporating an alert class and modified saturated
incidence rate, revealing critical insights into disease dynamics and treatment efficacy.
Building on this, Umdekar, Sharma, and Sharma [15] extend the analysis to an
SEIR model with similar modifications, highlighting its implications for epidemic
control strategies. Additionally, Sharma and Sharma [16] provide a detailed study
of an SIQR model with Holling type–II incidence rate, contributing to the broader
understanding of model variations and their impacts on disease spread. In 2024,
Soni et. al [18] present a comprehensive analysis of prevention strategies for epidemic
control using a SEIQHRV (Susceptible, Exposed, Infected, Quarantined, Hospitalized,
Recovered, vaccinated ) model.

The paper’s organization is as follows: Section 2 elaborates on the Methodology,
describing the assumptions and notations employed in constructing the model.
It also presents the Formulation of the model through diagrams and differential
equations. In Section 3, the basic reproduction number of the model is estimated
using the next-generation method. Successive sections, namely 4, 5, and 6, delve
into the numerical results, main results, and conclusions, respectively.

2. METHODOLOGY

Drawing from prior work by Sujata and Sumanta [12], we expand our model by
introducing quarantine and contaminated compartments as innovative components.
Employing the next-generation matrix method, we calculate the basic reproduction
number. Subsequently, we conduct simulations using MATLAB software to analyze
the role of parameters and variables in controlling viral diseases.

2.1. ASSUMPTION AND NOTATION. We make the following assumptions
to make our model more realistic.
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1. The population distribution is homogeneous so that there are equal chances
to contract and propagate the disease.

2. The Entire population is divided into various compartments of the model.
3. Each compartment has some specific property.
4. Susceptible people may become ill after coming in contact with exposed, mild

infected, or severely infected people. Also, they may be ill due to contact with the
containment surface or area.

5. A part of the susceptible population gets vaccinated and another part does
not need to be vaccinated due to inbuilt natural immunity within them.

6. A part of the vaccinated population enters into the susceptible compartment
again due to the loss of temporary immunity and another part of the vaccinated
population enters into the recovered class due to permanent immunity.

7. Exposed populations is further divided into two infected compartments named
as a mildly infected compartment (I1) and severely infected compartment (I2).
Those in the exposed compartment are asymptomatic carriers and can spread the
disease.

8. Population of both infected compartments has equal chances of recovery at a
rate γ without the need for any kind of treatment due to the development of natural
immunity during the disease period.

9. Populations of both infected compartments get treatment at a rate of σ1 and
σ2 respectively.

10. Someone in the recovered compartment developed permanent immunity, and
was never to be infected again.

11. Quarantined individuals are eligible for treatment and permanent recovery
and enter into the recovered compartment at δ rate.

12. Depending upon the severity of infection, exposed or infected individuals
can contaminate a non-infected environment that may surge the number of virulent
pathogens in the atmosphere.

The following notations were used to build the model:

1. V: Vaccinated population
2. S: Susceptible population
3. E: Exposed population
4. I1: Infected population, detected through appropriate testing
5. I2: Undetected Infected population
6. Q: Quarantine population
7. C: Environmental reservoir of the pathogen (i.e. fomites contaminated

with coronavirus)
8. R: Recovered population
9. βe : Rate of transmission between exposed and susceptible persons
10. βi1 : Rate of transmission between susceptible and detected infected persons
11. βi2 : Rate of transmission between susceptible and undetected infected

persons
12. βc : Rate of transmission environment (fomites) to human
13. π : Influx rate in the population
14. µ : Natural death rate in the population
15. γ : Rate of the recovery from disease
16. ω : Rate of the death due to disease
17. α−1 : Period of incubation
18. β : Percentage of the undetected infected persons
19. σ1 : Rate of transmission from infected to quarantine compartment
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20. σ2 : Rate of transmission from undetected infected to quarantine compartment
21. η: Rate of removal of the coronavirus from the atmosphere
22. ξ1: Contribution of exposed persons to the container of the pathogens in

the environment
23. ξ2: Contribution of detected infected persons to the container of the pathogens

in the environment
24. ξ3: Contribution of undetected infected persons to the container of the

pathogens in the environment
25. δ: Rate of transmission from quarantine to recovered compartment
26. ψ : Percentage of the susceptible persons who are vaccinated
27. λ : Percentage of the vaccinated persons whose immunity is temporary
28. ρ : Rate at which a susceptible person becomes vaccinated
29. κ : Rate at which vaccinated person lose their immunity

2.2. FORMULATION OF THE MODEL. In our VSEIQCRmodel (See Figure
1), we distributed the total human populations into seven compartments- vaccinated
(V), susceptible (S),exposed (E), infected detected I1, infected undetected I2, quarantined
(Q) and recovered (R). Now, we have introduced an additional compartment (C)
for the environmental container of the coronavirus pathogen, which contributes to
the spread of the infection.

dS

dt
= π − βeSE − βi1SI1 − βi2SI2 − βcSC − (µ+ ρ)S + λκV

dE

dt
= βeSE + βi1SI1 + βi2SI2 + βcSC − (µ+ α)E

dI1
dt

= αβE − (µ+ ω + γ + σ1) I1

dI2
dt

= α (1− β)E − (µ+ ω + γ + σ2) I2

dC

dt
= ξ1E + ξ2I1 + ξ3I2 − ηC

dQ

dt
= σ1I1 + σ2I2 − (µ+ δ)Q

dR

dt
= (I1 + I2) γ + δQ+ ρ (1− ψ)S + κ (1− λ)V − µR

dV

dt
= ρψS − (µ+ κ)V

Obviously, the system of equations has a disease-free equilibrium,

XDFE =
(

π
µ+ρ , 0, 0, 0, 0, 0, 0, 0

)
.

3. THE BASIC REPRODUCTION NUMBER

The basic reproduction number is the measurement of a disease’s potential spread.
It represents the average number of secondary infections caused by a single infectious
person in a completely susceptible population. This number indicates whether a
disease will die out or persist in the population. Specifically, R0 < 1 implies that the
disease will eventually die out, while R0 ≥ 1 suggests that the disease will continue
to affect the population over time. Soni et al. [17] investigate the basic reproduction
number R0 and herd immunity for COVID-19 in India, emphasizing their critical
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Figure 1. VSEIQCR Model

relationship. The study highlights how R0 , a measure of disease transmission
potential, directly influences the threshold for achieving herd immunity.
We derive this number with the help of next-generation method given by Van den
Driessche [19]. This method separates the compartments into infected compartment
(E, I1, I2, C) and uninfected compartments (V, S,Q,R). x and y denote the vector of
variables in the infected and the non-infected compartments i.e. x = (x1, x2, x3, x4)
and y = (y1, y2, y3, y4) where (x1, x2, x3, x4, y1, y2, y3, y4) represent the E, I1, I2, C, S,Q,R, V
compartments respectively. The dynamical system of equations may be written as:

x
′

1 = F1 (x, y) = βeSE + βi1SI1 + βi2SI2 + βcSC − (µ+ α)E,

x
′

2 = F2 (x, y) = αβE − (µ+ ω + γ + σ1) I1,
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x
′

3 = F3 (x, y) = α (1− β)E − (µ+ ω + γ + σ2) I2,

x
′

4 = F4 (x, y) = ξ1E + ξ2I1 + ξ3I2 − ηC,

y
′

1 = G1 (x, y) = π − βeSE − βi1SI1 − βi2SI2 − βcSC − µS − (µ+ ρ)S + λκV,

y
′

2 = σ1I1 + σ2I2 − (µ+ δ)Q,

y
′

3 = (I1 + I2) γ + δQ+ ρ (1− ψ)S + κ (1− λ)V − µR,

y
′

4 = ρψS − (µ+ κ)V,

Now, we divide the infection compartments right hand side as shown below:
X

′

i = Mi (x, y) − Ni (x, y) ∀ i = 1, 2, 3, 4. where Mi (x, y) is the rate of new
infection in the compartment xi (∀ i = 1, 2, 3, 4) and Ni (x, y) represent the other
transitory terms of infected compartment.

M1 (x, y) = βeSE + βi1SI1 + βi2SI2 + βcSC − (µ+ α)E, N1 (x, y) = 0,

M2 (x, y) = 0, N2 (x, y) = −αβE + (µ+ ω + γ + σ1) I1,

M3 (x, y) = 0, N3 (x, y) = −α (1− β)E + (µ+ ω + γ + σ2) I2,

M4 (x, y) = 0, N4 (x, y) = −ξ1E − ξ2I1 − ξ3I2 + ηC.

The linearized system of infected compartments may be written as:

x
′

i = (F − T )x,

where, F and T are the infections and the transition matrices respectively.

F =

[
∂Mi

∂xj

]
,

T =

[
∂Ni

∂xj

]
.

which arise from linearizing the system around the disease-free equilibrium.

F =


βeS0 βi1S0 −βi2S0 βcS0

0 0 0 0
0 0 0 0
0 0 0 0

 ,

T =


α+ µ 0 0 0
−αβ µ+ ω + γ + σ1 0 0

−α(1− β) 0 µ+ ω + γ + σ2 0
−ξ1 −ξ2 −ξ3 η

 .
The next-generation matrix is defined as

D = FT−1.

The basic reproduction number R0 for the model (1) is determined by the spectral
radius of the next-generation matrix D and is given by: R0 = R1 + R2 + R3 + R4,
where
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R1 =
βeπ

(µ+ α) (µ+ ρ)
,

R2 =
βi1αβπ

(µ+ α) (µ+ ρ) (µ+ ω + γ + σ1)
,

R3 =
βi2α (1− β)π

(µ+ α) (µ+ ρ) (µ+ ω + γ + σ2)
,

R4 =
βcπ {αβ(µ+ ω + γ + σ2)ξ2 + αξ3 (1− β) (µ+ ω + γ + σ1) + ξ1 (µ+ ω + γ + σ1) (µ+ ω + γ + σ2)}

(µ+ α) (µ+ ω + γ + σ1) (µ+ ω + γ + σ2) (µ+ ρ) η

,
whereR1, R2, R3, and R4 provide the evaluation of the risk of disease by pathways

S to E, S to I1, S to I2 compartment and from environment to human respectively.

4. LOCAL STABILITY AT DISEASE FREE EQUILIBRIUM

The Jacobean matrix of the model is given by:

J =



−∆1 − ρ −βe −βi1 −βi2 −βc 0 0 λκ
−∆1 −(µ+ α) 0 0 0 0 0 0
0 αβ −(µ+ ω + γ + σ1) 0 0 0 0 0
0 α(1− β) 0 −(µ+ ω + γ + σ2) 0 0 0 0
0 ξ1 ξ2 ξ3 −η 0 0 0
0 0 σ1 σ2 0 −(µ+ δ) 0 0

ρ(1− ψ) 0 γ γ 0 δ −µ κ(1− λ)
ρψ 0 0 0 0 0 0 −(µ+ κ)


,

where ∆1 = βeE + βi1I1 + βi2I2 + βcC.
At the point XDFE the Jacobean matrix of the model is given by:

JXDFE
=



−ρ −βe −βi1 −βi2 −βc 0 0 λκ
0 −(µ+ α) 0 0 0 0 0 0
0 αβ −(µ+ ω + γ + σ1) 0 0 0 0 0
0 α(1− β) 0 −(µ+ ω + γ + σ2) 0 0 0 0
0 ξ1 ξ2 ξ3 −η 0 0 0
0 0 σ1 σ2 0 −(µ+ δ) 0 0

ρ(1− ψ) 0 γ γ 0 δ −µ κ(1− λ)
ρψ 0 0 0 0 0 0 −(µ+ κ)



Using MATLAB software and the parameter values outlined in the table 1, we
evaluated the eigenvalues at the disease-free equilibrium XDFE .

Our analysis revealed that all eigenvalues at this equilibrium have negative real
parts ( i.e. −0.73,−0.7997,−0.9,−0.8543,−0.2,−1.515,−1.015,−7.7). According
to the Routh-Hurwitz criterion, this result confirms local asymptotic stability when
the basic reproductive number R0 is less than 1, and indicates instability when it
exceeds 1.
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5. GLOBAL STABILITY AT DISEASE FREE EQUILIBRIUM

To investigate the global stability of the disease-free equilibrium (DFE) in our
model, we conducted a numerical simulation based on the set of differential equations
governing the system. The value of R0 depends on each of its component. Given
the provided parameter values in the table 1, we compute the basic reproduction
number R0 and its components R1,R2,R3, andR4. R1 = 1.2483 × 10−6,R2 =
5.7468×10−7,R3 = 1.1020×10−7,R4 = 2.9339×10−8. Thus, the basic reproduction
number is: R0 = 1.9625× 10−6. This value of R0 being much less than 1 confirms
that the disease-free equilibrium (DFE) is globally stable, the disease will not spread
in the population, and the system will return to the DFE over time. We use the
values in table 1 with S0 = 70, 000, E0 = 50, 000, I10 = 3, 0, 000, I20 = 4, 0, 000,
C0 = 5000, Q0 = 25, 000, V0 = 30, 000, and R0 = 50, 000 to perform a simulation
for the Disease-Free Equilibrium (DFE), as shown in figure 2.

Figure 2. DFE

The simulation results, depicted in figure 2, demonstrate the temporal evolution
of each compartment within the model. Over the course of the simulation:

1. Susceptible Population (S): The susceptible population stabilizes near the
value π

µ+ρ , consistent with the DFE. This behavior indicates that the

introduction of disease-related perturbations does not significantly deplete
the susceptible population, maintaining its stability.

2. Exposed (E), Infected I1 and I2: The exposed and infected populations,
both I1 and I2, consistently approach zero as time progresses. This outcome
suggests that the infection does not sustain itself within the population and
tends to die out, leading to a return to the disease-free state.

3. Contaminated Carrier (C) and Quarantined (Q): Similar to the exposed
and infected populations, the carrier and quarantined compartments also
trend towards zero. This further reinforces the notion that the disease
cannot persist within the population under the given parameters.
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4. Recovered (R) and Vaccinated (V): The recovered and vaccinated populations
stabilize at levels that do not interfere with the overall disease dynamics,
thus supporting the DFE stability.

These results collectively confirm the global stability of the disease-free equilibrium
within the context of our model. The simulations reveal that irrespective of initial
conditions, the system invariably returns to the DFE over time, thereby affirming
the robustness of this equilibrium. The observed stability is consistent across all
simulated scenarios, indicating that the model effectively captures the mechanisms
necessary for disease eradication under the given parameters.

Furthermore,to establish global stability at the DFE, we propose the following
Lyapunov function:

V (S,E, I1, I2, C,Q,R, V ) =
1

2

(
S − S∗

S∗

)2

+
E

µ+ α
+

I1
µ+ ω + γ + σ1

+
I2

µ+ ω + γ + σ2

where S∗ = π
µ+ρ .

Time Derivative of the Lyapunov Function. The time derivative of V (S,E, I1, I2, C,Q,R, V )
is computed as follows:

dV

dt
=
∂V

∂S

dS

dt
+
∂V

∂E

dE

dt
+
∂V

∂I1

dI1
dt

+
∂V

∂I2

dI2
dt

where the partial derivatives are:

∂V

∂S
=
S − S∗

S∗2

∂V

∂E
=

1

µ+ α
,

∂V

∂I1
=

1

µ+ ω + γ + σ1
,

∂V

∂I2
=

1

µ+ ω + γ + σ2
Substituting the derivatives from the system:

dV

dt
=
S − S∗

S∗2 (π − µS − ρS + λκV − βeSE − βi1SI1 − βi2SI2 − βcSC)

+
βeSE + βi1SI1 + βi2SI2 + βcSC − (µ+ α)E

µ+ α

+
αβE − (µ+ ω + γ + σ1)I1

µ+ ω + γ + σ1

+
α(1− β)E − (µ+ ω + γ + σ2)I2

µ+ ω + γ + σ2

Given the structure of dV
dt , the following conclusions can be drawn:

Near the DFE: Since S ≈ S∗ and all other compartments E, I1, I2 are small
or zero, V (S,E, I1, I2, C,Q,R, V ) is positive and dV

dt ≤ 0. This indicates that the
Lyapunov function does not increase over time, with equality only at the DFE.

Global Behavior: If dV
dt is negative semi-definite, and the only equilibrium

where V is minimized is the DFE, then the system will asymptotically approach the
DFE regardless of the initial conditions, provided they are in the feasible region. To
demonstrate that dV

dt is negative semi-definite and that the only equilibrium where
V is minimized is the Disease-Free Equilibrium (DFE), we analyze the sign of each
term in the expression for dV

dt .
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First Term:

S − S∗

S∗2 (π − µS − ρS + λκV − βeSE − βi1SI1 − βi2SI2 − βcSC)

S − S∗ changes sign depending on whether S > S∗ or S < S∗. The expression
inside the parentheses represents the change in S over time. In the DFE, S = S∗

and the terms involving infected compartments (E, I1, I2, C) are zero.

Second Term:

βeSE + βi1SI1 + βi2SI2 + βcSC − (µ+ α)E

µ+ α

This term represents the change in E. At DFE, E = 0 and the entire term becomes
zero. - Outside DFE, this term is positive when there is transmission but negative
when the removal rate (µ+ α) dominates.

Third Term:
αβE − (µ+ ω + γ + σ1)I1

µ+ ω + γ + σ1

At DFE, I1 = 0, E = 0, so this term is zero. Otherwise, this term can be positive
or negative depending on the balance between infection (first term) and removal
(second term).

Fourth Term:
α(1− β)E − (µ+ ω + γ + σ2)I2

µ+ ω + γ + σ2

Similar analysis to the third term. At DFE, I2 = 0, E = 0, and the term is zero.
At the DFE, where E = 0, I1 = 0, I2 = 0, C = 0, Q = 0, and S = S∗:

dV

dt
= 0

For non-DFE equilibria, dV
dt ≤ 0. The term S−S∗

S∗2 multiplied by the expression
involving infections is negative because infections reduce susceptible individuals.
Similarly, the terms involving E, I1, and I2 become negative when infected compartments
are non-zero, reflecting the progression of disease and recovery or removal of infected
individuals.

dV
dt is negative semi-definite, indicating that V does not increase over time and

decreases whenever there are infected individuals. The only point where dV
dt = 0

and V reaches its minimum is at the Disease-Free Equilibrium (DFE), where all
compartments except S are zero. This demonstrates that the system stabilizes at
the DFE, where no infection persists.

We find that the entire population will eventually consist only of susceptible,
vaccinated, or recovered individuals and the Lyapunov function ensures that even
if the disease initially spreads through the population, the natural dynamics of
the system will drive the population back to the disease-free equilibrium, where
the disease cannot persist. Thus, this analysis guarantees that, under the given
model and assumptions, the disease will not become endemic or persist in the long
run; instead, it will fade out, leaving the population disease-free. Therefore, the

disease-free equilibrium XDFE =
(

π
µ+ρ , 0, 0, 0, 0, 0, 0, 0

)
is globally asymptotically

stable.
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6. NUMERICAL RESULTS

We estimated the basic reproduction number for the period from 16 January
2021 to 28 February 2021. After starting of the vaccination program in India, we
eagerly want to know the impact of undetected infected persons on the transmission
dynamics of COVID-19. As of 16 January 2020, the cumulative confirmed cases,
death cases and recovered cases were 10558637, 151720 and 10196056 respectively,
whereas on 28 February 2020, these data became 11111978, 156603 and 10784401
respectively. Because, those who are exposed and Undetected tend to live in the
community, they can spread the disease at the same rate [13].

Also, the family members impacted by COVID-19 may survive in the environment
from a couple of hours to several days [20]. In this study, this value was taken as
5 hours and, consequently, the elimination rate of virus is 0.2 per day. We estimated
the recovery rate (γ) as follows- Difference of cumulative recovered

Difference of cumulative confirmed∗
1

Average recovery time in days =
10784401−10196056
11111978−10558637 ∗ 1

14 = 0.075 per day. As of 1 January 2021, the total estimated

population of India was 1,390,537,387 [3].

Table 1. Parameter Estimates

S.No. Parameter Estimated Value Sources
1 π 47964 per day [3]
2 βe 0.25× 0.1231× 10−7 [13]
3 βi1 0.25× 0.5944× 0.1231× 10−7 [13]
4 βi2 0.25× 0.1231× 10−7 [13]
5 βc 1.03× 10−8 [13]
6 µ 7.344 per day [4]
7 γ1, γ2 0.075 per day Estimated
8 ω 0.01 Estimated
9 α 7 days [20]
10 β 0.9 [13]
11 σ1, σ2 0.7, 0.2 Assumed
12 η 0.2 [12]
13 ξ1 0.001 [13]
14 ξ2 0.000398 [13]
15 ξ3 0.001 [13]
16 δ 0.1243 [10]
17 ψ 0.008 Assumed
18 λ 0.05 Assumed
19 ρ 0.9 Assumed
20 κ 0.07 Assumed

In the below table 2, we estimated the contribution of exposed individuals,
undetected infected individuals, detected infected individuals, and contaminated
pathogens in the final reproduction number. We vary the values of the transmission
rate (ρ) and percentage of undetected infected individuals (1−β) simultaneously, to
check the impact of undetected infected and vaccinated individuals on the transmission
of epidemic COVID-19.

As (1− β) increases from 0.1 to 0.4, the overall risk R0 (which is the sum of all
individual risks) slightly increases. This trend suggests that as a smaller proportion
of the population remains immune (i.e., (1− β) increases), the total risk of disease
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Table 2. Results for Different Values of ρ

S.No. (1− β) R1 R2 R3 R4 R0

When ρ = 0.9
1 0.1 1.2483e-06 5.7503e-07 1.1453e-07 2.9553e-08 1.9674e-06
2 0.2 1.2483e-06 5.1113e-07 2.2907e-07 3.0589e-08 2.0191e-06
3 0.3 1.2483e-06 4.4724e-07 3.4360e-07 3.1625e-08 2.0707e-06
4 0.4 1.2483e-06 3.8335e-07 4.5814e-07 3.2661e-08 2.1224e-06

When ρ = 0.8
1 0.1 1.2636e-06 5.8209e-07 1.1594e-07 2.9916e-08 1.9915e-06
2 0.2 1.2636e-06 5.1741e-07 2.3188e-07 3.0965e-08 2.0438e-06
3 0.3 1.2636e-06 4.5273e-07 3.4782e-07 3.2013e-08 2.0962e-06
4 0.4 1.2636e-06 3.8806e-07 4.6376e-07 3.3062e-08 2.1485e-06

transmission also increases. The risk via the pathway from susceptible to exposed
individuals (R1) is the largest contributor to the total risk R0, highlighting that the
initial exposure is the most critical phase in disease spread.

The risks associated with the pathways to detected infected individuals (R2),
undetected infected individuals (R3), and environmental transmission (R4) are
smaller, but they do increase as (1 − β) increases. Comparing ρ = 0.9 and ρ =
0.8, the risks R1, R2, R3, and R4 are slightly higher when ρ = 0.8 than when
ρ = 0.9. This indicates that a lower ρ leads to an increased overall risk of disease
transmission.

The data show that reducing the proportion of the immune population ((1 −
β)) results in a higher overall risk of disease transmission. The most significant
risk occurs at the initial stage (from susceptible to exposed individuals). Hence,
strategies to minimize disease transmission should focus on enhancing immunity
and maintaining or improving vaccination.

Additionally, the risk R2 associated with detected infected individuals (I1) is
consistently higher than R3 associated with undetected infected individuals (I2)
across all values of (1 − β) and both ρ values, suggesting that detected infected
individuals pose a greater risk to disease spread, possibly due to more interactions or
higher infectiousness. The smaller increase in R3 suggests that undetected infected
individuals contribute less to transmission risk relative to detected cases.

We can easily observe that in both the cases (when ρ = 0.9 or when ρ = 0.8)
whenever the number of undetected infected individuals is 0.1, 0.2, and 0.3 percent,
the dominant part of disease risk is detected infected compartment, whereas, whenever
its value is 0.4 percent the undetected infected individuals compartment contribution
dominantly in the risk of disease spread. In this context, the contribution of R4 in
the total basic reproduction number cannot be neglected.

As (1−β) increases, R4 shows a slight increase, suggesting that as more individuals
become susceptible, fomite transmission risk also rises, though less significantly than
other pathways. When ρ decreases, R4 values increase slightly, similar to other risks,
but still remain minor compared to direct transmission routes. This highlights that
while environmental hygiene and disinfection are important, the primary focus for
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controlling disease spread should be on direct transmission routes and improving
immunity in the population.

6.1. EFFECT OF PARAMETERS ON INFECTED COMPARTMENT.
We set βe = 0.3 × 10−5, βi1 = 0.3 × 10−2, βi2 = 0.3 × 10−2, and βc = 0.5 × 10−6,
while keeping the remaining parameters the same as listed in Table 1. This setup
is used to perform a simulation to assess the effect of a particular parameter on
various infected compartments. For the simulation, we initialize with S0 = 70, 000,
E0 = 50, 000, I10 = 3, 0, 000, I20 = 4, 0, 000, C0 = 5000, Q0 = 25, 000, V0 = 30, 000,
and R0 = 50, 000 to perform simulation.

Figure 3. Effect of ρ
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In Figure 3, as the vaccination rate ρ of susceptible individuals increases, all
the curves corresponding to the infected compartments show a decline in their
populations.

Figure 4. Effect of γ

In Figure 4, as the recovery rate of infected individuals γ increases, all the curves
corresponding to the infected compartments show a decline in their populations.

In Figure 5, as the percentage of undetected infected populations β decreases,
all the curves corresponding to the infected compartments show a decline in their
populations.

In Figure 6, as the quarantine rate σ1 of infected individuals increases, all
the curves corresponding to the infected compartments show a decline in their
populations.
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Figure 5. Effect of β

In Figure 7, as the quarantine rate σ2 of undetected infected individuals increases,
all the curves corresponding to the infected compartments show a decline in their
populations.

In Figure 8, as the transmission rate βi1 decreases, all the curves corresponding
to the infected compartments show a decline in their populations.

In Figure 9, as the transmission rate βi2 decreases, all the curves corresponding
to the infected compartments display a decline in their populations.

In Figure 10, as the transmission rate βe decreases, all the curves corresponding
to the infected compartments display a decline in the corresponding populations.
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Figure 6. Effect of σ1

7. MAIN RESULTS

According to the World Health Organization (WHO) [5], individuals susceptible
to infection may contract the virus through contact with contaminated objects or
surfaces, known as fomites. Before cleansing their hands, these individuals may
inadvertently touch their eyes, mouth, or nose, thereby facilitating transmission.
Therefore, the role of fomites in COVID-19 transmission is a crucial aspect addressed
in our study. Mitigation strategies include frequent hand washing and sanitization,
as well as the consistent use of masks as preventive measures.

Moreover, exposed and undetected infected individuals contribute to the spread
of COVID-19 unknowingly. Thus, it is important to detect, isolate, and treat them.
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Figure 7. Effect of σ2

This underscores the significance of tracing and testing to prevent the spread of
the disease. Even though vaccines are available to control and reduce the risk of
infection, undetected infected individuals still significantly contribute to the basic
reproduction number. Hence, detecting and isolating these individuals can help
prevent the spread of infection.

Furthermore, it is necessary to decrease the risk of spread by increasing the
percentage of vaccinated people. Some individuals may lose their immunity due to
a low immune response against the disease, so it is important for people to complete
both vaccine doses. They should follow the guidelines issued by the Government
of India and should not neglect preventive precautions. Our study may be the
first to simultaneously include fomites, quarantine, undetected infected individuals,



60 J. NONLINEAR ANAL. OPTIM. VOL. 15(2) (2024)

Figure 8. Effect of βi1

and vaccinated individuals in a mathematical model of COVID-19 transmission
within the population. The estimation of the basic reproduction number is based
on parameter values selected from other relevant studies; therefore, our findings
may differ from the original values.

8. CONCLUSIONS

The risk of COVID-19 spread increases with the rise in undetected infected cases.
Additionally, carelessness and lack of awareness regarding fomite transmission significantly
contribute to the persistence of the disease within the population. Since undetected
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Figure 9. Effect of βi2

infected and exposed individuals unknowingly spread the virus, it is crucial to
identify, isolate, and treat them to prevent further transmission.
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