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ABSTRACT. In this work, we introduce some property of the generalized complex valued
metric space and we extend some fixed point results thai is Ćirić’s fixed point theorem.
Some are recover various complex valued metric space and complex valued b-metric space.
Our results extended and improve some results of Mohamed Jleli and Bessem Samet [17].
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1. Introduction

The fixed points theorems has been studied by many mathematicians and fixed
Points theorems in metric spaces was introduceed in 1906 [?] by Fréchet. In 1922,
Banach [6], introduced a fixed point theorem in metric space for contraction map-
ping.

In recent years, many researcher proved the fixed points theorem in generaliza-
tions of metric spaces, see example [9, 3, 20] and references therein. The notion
of dislocated metric spaces was introduced in 2000 by Hitzler and Seda [21], see
[4]-[18] and references therein.

Very recently, A. Azam, B. Fisher and M. Khan [2] defined the definition of
notion of complex valued metric spaces and prove the common fixed point theorems
in complex valued metric spaces of a pair of mappings satisfying a contractive
condition.

Recently, Jleli and Samet [13], introduce a new concept of generalized metric
spaces for which we extend some well-known fixed point results including Banach
contraction principle. In 2017, Elkouch and Marhrani [15], proved the existence
results for the Kannan contraction in generalized metric space.
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In this paper, motivate by Elkouch and Marhraniwe [15], present a generalized
complex valued metric space and prove the relationship between this space with
complex valued b-metric space, complex valued dislocated metric space and complex
valued metric space. In the final section, we prove the fixed point theorem for a
mapping T with satisfying the Ćirić’s k-quasicontraction.

2. Preliminaries

In this section, we give some definitions and lemmas for this work.

Definition 2.1. Let X be a nonempty set. A function d : X×X → [0,∞) is called
a metric if for x, y, z ∈ X the following conditions are satisfied.

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, z) ≤ d(x, y) + d(y, z).

The pair (X, d) is called a metric space, and d is called a metric on X.

In 2000, Hitzler and Seda [21], introduce the notion of dislocated metric space
as follows.

Definition 2.2. [21] Let X be a nonempty set. A function d : X × X → [0,∞)
is called a dislocated metric on X if for x, y, z ∈ X the following conditions are
satisfied.

(i) d(x, y) = 0 ⇒ x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, z) ≤ d(x, y) + d(y, z).

The pair (X, d) is called a dislocated metric space.

It is easy to show that, the metric space X is dislocated metric space.
Next, we suppose the definition of b-metric space, this space is generalized than

metric spaces.

Definition 2.3. [1] Let X be a nonempty set and s ≥ 1 be a given real number. A
function d : X ×X → [0,∞) is called a b-metric if for all x, y, z ∈ X the following
conditions are satisfied.

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space. The number s ≥ 1 is called the
coefficient of (X, d).

The following is some example for b-metric spaces.

Example 2.4. [1] Let (X, d) be a metric space. The funcion ρ(x, y) is defined by
ρ(x, y) = (d(x, y))2. Then (X, ρ) is a b-metric space with coefficient s = 2. This
can be seen from the nonnegativity property and triangle inequality of metric to
prove the property (iii).

In 2017, Elkouch and Marhrani [15] defined a new class of metric space, let X be
a nonempty set, and D : X ×X → [0,+∞] be a given mapping. For every x ∈ X,
define the set

C(D,X, x) =
{
{xn} ⊆ X : lim

n→∞
D(xn, x) = 0

}
.
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Definition 2.5. ([15]) A mapping D is called a generalized metric if it satisfies the
following conditions
1. For every (x, y) ∈ X ×X, we have

D(x, y) = 0 ⇒ x = y.

2. For every (x, y) ∈ X ×X, we have
D(x, y) = D(y, x).

3. There exists a real constant C > 0 such that for all (x, y) ∈ X × X and
{xn} ∈ C(D,X, x), we have

D(x, y) ≤ C lim sup
n→∞

D(xn, y).

The pair (X,D) is called a generalized metric space.

It is not difficult to observe that metric d in Definition 2.1 satisfies all the con-
ditions (i)− (iii) with C = 1. In 2015 Mohamed Jleli and Bessem Samet [17] prove
that any dislocated metric space is is a generalized metric and any b-metric on X
is a generalized metric on X.

In this work we will study the generalized metric space in a complex form. Let
C be the set of complex numbers and z1, z2 ∈ C. Define a partial order relation
⪯ on C as follows:

z1 ⪯ z2 if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2).

Thus z1 ⪯ z2 if one of the followings holds:
(1) Re(z1) = Re(z2) and Im(z1) = Im(z2).
(2) Re(z1) < Re(z2) and Im(z1) = Im(z2).
(3) Re(z1) = Re(z2) and Im(z1) < Im(z2).
(4) Re(z1) < Re(z2) and Im(z1) < Im(z2).

We write z1 ⪯ z2 if z1 ⪯ z2 and z1 ̸= z2 i.e. one of (2),(3) and (4) is satisfied
and we will write z1 ≺ z2 only (4) is satisfied.

Remark 2.6. We can easily to check the following:
(i) If a, b ∈ R, 0 ≤ a ≤ b and z1 ⪯ z2 then az1 ⪯ bz2, ∀z1, z2 ∈ C.
(ii) 0 ⪯ z1 ⪯ z2 ⇒ |z1| < |z2|.
(iii) z1 ⪯ z2 and z2 ≺ z3 ⇒ z1 ≺ z3.

Azam et al. [2] defined the complex valued metric space in the following way:

Lemma 2.7. For any z ∈ C with 0 ≺ z then there exists r ∈ C with 0 ≺ r such
that z = r|z|.

Proof Let z ∈ C with 0 ≺ z. Put r = Re(z)
|z| + Im(z)

|z| i ≻ 0. It implied that

z = Re(z) + Im(z)i

=
Re(z)

|z|
· |z|+ Im(z)

|z|
i · |z|

=

[
Re(z)

|z|
+

Im(z)

|z|
i

]
|z|

= r · |z|
This complete the proof.

[2] Let X be a nonempty set. Suppose that the mapping d : X×X → C satisfies
the following conditions:

(C1) 0 ⪯ d(x, y), for all x, y ∈ X, and d(x, y) = 0 if and only if x = y;
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(C2) d(x, y) = d(y, x) for all x, y ∈ X;
(C3) d(x, y) ⪯ d(x, z) + d(z, y), for all x, y ∈ X.

Then d is called a complex valued metric on X and (X, d) is called a complex
valued metric space.

Definition 2.8. Let X be a nonempty set. A function d : X ×X → C is called a
complex valued dislocated metric on X if for x, y, z ∈ X the following conditions
are satisfied.

(i) d(x, y) = 0 ⇒ x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, z) ⪯ d(x, y) + d(y, z).

The pair (X, d) is called a complex valued dislocated metric space.

Definition 2.9. [23] Let X be a nonempty set and let s ≥ 1 be a given real
number. A function d : X × X → C is called a complex valued b-metric on X if,
for all x, y, z ∈ C, the following conditions are satisfied:

(i) 0 ⪯ d(x, y)
(ii) d(x, y) = 0 if and only if x = y,
(iii) d(x, y) = d(y, x),
(iv) d(x, z) ⪯ s[d(x, y) + d(y, z)].

The pair (X, d) is called a complex valued b-metric space. We see that if s = 1
then (X, d) is complex valued metric space which is defined in Definition ??. The
following example is some example of complex valued b-metric space.

Example 2.10. [23] Let X = C. Define the mapping d : C×C → C by d(x, y) =
|x− y|2 + i|x− y|2 for all x, y ∈ X. Then (C, d) is complex valued b-metriic space
with s = 2.

In this work, we consider a nonempty set X, and D : X × X → C be a given
mapping. For every x ∈ X, we define the set

C(D,X, x) =
{
{xn} ⊆ X : lim

n→∞
|D(xn, x)| = 0

}
.

Definition 2.11. Let X be a nonempty set, a mapping D : X ×X → C is called
a generalized complex value metric if it satisfies the following condition
1. For every x, y ∈ X, we have

0 ⪯ D(x, y).

2. For every x, y ∈ X, we have

D(x, y) = 0 ⇒ x = y.

3. For all x, y ∈ X, we have
D(x, y) = D(y, x).

4. There exists a complex constant 0 ≺ r such that for all x, y ∈ X and {xn} ∈
C(D,X, x), we have

D(x, y) ⪯ r lim sup
n→∞

|D(xn, y)|.

Then a pair (X,D) is called a generalized complex valued metric space.

Definition 2.12. [15] Let (X,D) be a generalized complex valued metric space,
let {xn} be a sequence in X, and let x ∈ X. We say that {xn} is converge to x in
X, if {xn} ∈ C(D,X, x). We denote by limn→∞ xn = x.
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Example 2.13. [12] Let X = [0, 1] and let D : X ×X → C be the mapping define
by for any x, y ∈ X {

D(x, y) = (x+ y)i;x ̸= 0 and y ̸= 0

D(x, 0) = D(0, x) = x
2 i

Proof Let x, y ∈ X, we have x ≥ 0 and y ≥ 0, thus x+ y ≥ 0.
If D(x, y) = (x+ y)i = 0 + (x+ y)i ⪰ 0 + 0i = 0.
If D(x, 0) = x

2 i = 0 + x
2 i ⪰ 0 + 0i = 0.

Hence D(x, y) ⪰ 0.

If D(x, y) = 0, then (x+ y)i = 0. Hence, x = 0 = y.
If x ̸= 0 and y ̸= 0, D(x, y) = (x+y)i = (y+x)i = D(y, x) and D(x, 0) = D(0, x).

Let {xn} = { (n−1)x
n } ⊆ X, we see that lim supn→∞ |D(xn, x)| = 0 and put r = i,

then we have

D(0, y) =
y

2
i and lim sup

n→∞
|D(xn, y)| = lim sup

n→∞

√
(
(n− 1)x

n
+ y)2 = x+ y.

Hence, D(0, y) = y
2 i ⪯ (x+ y)i, and we see that

D(x, y) = (x+ y)i and lim sup
n→∞

|D(xn, y)| = lim sup
n→∞

√
(
(n− 1)x

n
+ y)2 = x+ y.

Hence, D(x, y) = (x+ y)i ⪯ r lim supn→∞ |D(xn, y)|.

Definition 2.14. [15] Let (X,D) be a generalized complex valued metric space.
Then a sequence {xn} in X is said to Cauchy sequence in X, if limn→∞ |D(xn, xn+m)| =
0.

Definition 2.15. [15] Let (X,D) be a generalized complex valued metric space. If
every Cauchy sequence is convergent in X then (X,D) is called a complete complex
valued metric space.

Definition 2.16. [19] The max function for complex numbers with partial order
relation ⪯ is defined as

(i) max{z1, z2} = z2 ⇒ z1 ⪯ z2;
(ii) z1 ⪯ max{z1, z2} ⇒ z1 ⪯ z2 or z1 ⪯ z3.

On the similar lines Singh et al. [22] defined min function as
(i) min{z1, z2} = z1 ⇒ z1 ⪯ z2;
(ii) min{z1, z2} ⪯ z3 ⇒ z1 ⪯ z3 or z2 ⪯ z3. Now we introduce the best proximity

point and some related concept in complex valued rectangular metric space.

3. Some Property on Generalized Complex Valued Metric Space

In this section we prove some propositions for use in the main theorem and
prove some fixed point theorem in generalized complex valued metric space.

Proposition 3.1. Let (X,D) be a generalized complex valued metric space. Let
{xn} be a sequence in X and (x, y) ∈ X × X. If {xn} converges to x and {xn}
converges to y, then x = y.

Proof Suppose that {xn} converges to x and {xn} converges to y, by Definition
2.12 we have

|D(xn, x)| → 0, |D(xn, y)| → 0, as n → ∞.
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Using the property (4) in Definition 2.11, we have there exists a complex constant
0 ≺ r such that for all x, y ∈ X and since {xn} ∈ C(D,X, x) such that

D(x, y) ⪯ r lim sup
n→∞

|D(xn, y)|.

Hence, D(x, y) = 0. Using property (2) in Definition 2.11, we have x = y.

Proposition 3.2. Any complex valued b-metric space is a generalized complex
valued metric space on X.

Proof Let {xn} ∈ C(d,X, x). From the Definition 2.9(iv), we have

d(x, y) ⪯ s[d(x, xn) + d(xn, y)].

It follows that, from Lemma 2.7, we have there exists r1, r2 ∈ C with 0 ≺ r1, r2
such that

d(x, xn) = r1|d(x, xn)|
d(xn, y) = r2|d(xn, y)|.

Then
d(x, y) ⪯ s[r1|d(x, xn)|+ r2|d(xn, y)|].

From {xn} ∈ C(d,X, x), we have

d(x, y) ⪯ sr2 lim sup
n→∞

|d(xn, y)|].

Since, 0 ≺ r2 and 0 ≺ s then r = sr2 ≻ 0 such that

d(x, y) ⪯ r lim sup
n→∞

|d(xn, y)|].

Hence (X, d) is a generalized complex valued metric space.
It is not difficult to observe that the complex valued metric d satisfies (1-4)

of Definition 2.11 and any complex valued dislocated metric space is generalized
complex valued metric space.

4. Ćirić’s quasicontraction in Generalized Complex Valued Metric
Space

In 1974, Ćirić’s [11] introduced a class of self-maps on a metric space (X, d)
which satisfy the following condition:

d(Sx, Sy) ⪯ qmax {d(x, y), d(x, Sx), d(y, Sy), d(x, Sy), d(y, Sx)} , (4.1)

for every x, y ∈ X and 0 ≤ q < 1. The maps satisfying Condition 4.1 are said to be
quasicontractions.

In this section we extend Ćirić’s fixed point theorem for quasicontraction is
a self-maps on generalized complex valued metric space (X,D) defined by:

D(Tx, Ty) ⪯ kmax {D(x, y), D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)} ,

for every x, y ∈ X and k ∈ (0, 1). We say that T is a k-quasicontraction

Proposition 4.1. Suppose that T : X → X is a k-quasicontraction for some
k ∈ (0, 1). Then any fixed point p ∈ X of T satisfies

|D(p, p)| < ∞ ⇒ D(p, p) = 0.
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Proof Let p ∈ X be a fixed point of T such that |D(p, p)| < ∞. Since T is a
k-quasicontraction for some k ∈ (0, 1), we have
D(p, p) = D(Tp, Tp) ⪯ kmax {D(p, p), D(p, Tp), D(p, Tp), D(p, Tp), D(p, Tp)}

= kD(p, p).

From Remark 2.6(ii), we have
|D(p, p)| ≤ k|D(p, p)|.

Since k ∈ (0, 1), we get D(p, p) = 0. This proof is complete.
Next, we suppose that, for every x ∈ X

δ(D,T, x) = sup
{
|D(T ix, T jx)| : i, j ∈ N

}
.

From Proposition 4.1 we have the following result.

Theorem 4.2. Let (X,D) be a complete generalized complex valued metric space,
and let T : X → X is a k-quasicontraction for some k ∈

(
0, inf{1, 1

|r|}
)

and
there exists element x0 ∈ X such that δ(D,T, x0) < ∞. Then the sequence {Tnx0}
converges to some p ∈ X.

If D(x0, Tp) ≺ ∞ and D(p, Tp) ≺ ∞, then p is a fixed point of T . Moreover,
If p′ is a fixed point of T in X such that |D(p, p

′
)| < ∞ and |D(p

′
, p

′
)| < ∞ then

p = p
′
.

Proof Let n ∈ N, for all i, j ∈ N, we have
D(Tn+ix0, T

n+jx0) = D(T (Tn+i−1x0), T (T
n+j−1x0)).

By Definition of quasicontraction, we have

D(Tn+ix0, T
n+jx0) ⪯ kmax

D(Tn+i−1x0, T
n+j−1x0), D(Tn+i−1x0, T

n+ix0),
D(Tn+j−1x0, T

n+jx0), D(Tn+j−1x0, T
n+ix0),

D(Tn+i−1x0, T
n+jx0)


Then we have

δ(D,T, Tnx0) ≤ kδ(D,T, Tn−1x0).

Hence, for any n ≥ 1, we have
δ(D,T, Tnx0) ≤ knδ(D,T, x0). (4.2)

By (4.2) we see that for any m,n ∈ N

|D(Tnx0, T
n+mx0)| ≤ δ(D,T, Tnx0) ≤ knδ(D,T, x0). (4.3)

Since δ(D,T, x0) < ∞ and k ∈ (0, 1), it follows that
lim
n→∞

|D(Tnx0, T
n+mx0)| = 0.

Hence {Tnx0} is a Cauchy sequence. Since (X,D) is complete, there exists a element
p ∈ X such that {Tnx0} convergent to p.

Suppose that D(x0, Tp) ≺ ∞ and D(p, Tp) ≺ ∞. Then for any m,n ∈ N

|D(Tnx0, T
n+mx0)| ≤ knδ(D,T, x0). (4.4)

From (4.3) and the property (4) in Definition 2.11, there exists 0 ≺ γ such that
D(p, Tnx0) ≤ r lim sup

m→∞
|D(Tnx0, T

n+mx0)| ≤ γknδ(D,T, x0), (4.5)

for all n ∈ N. Consider,
D(Tx0, Tp) ⪯ kmax {D(x0, p), D(x0, Tx0), D(p, Tp), D(Tx0, p), D(x0, Tp)} . (4.6)
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From (4.4), (4.5) and (4.6), we get
D(Tx0, Tp) ⪯ kmax {D(x0, p), D(x0, Tx0), D(p, Tp), rkδ(D,T, x0), D(x0, Tp)}

= kM1, (4.7)
where M1 = max {D(x0, p), D(x0, Tx0), D(p, Tp), rkδ(D,T, x0), D(x0, Tp)} ≺ ∞.
Using the above inequality (4.3), (4.5), (4.7) and Lemma 2.7, we have complex
number 0 ≺ c1 such that
D(T 2x0, Tp) ⪯ kmax

{
D(Tx0, p), D(Tx0, T

2x0), D(p, Tp), D(T 2x0, p), D(Tx0, Tp)
}

⪯ max
{
γk2δ(D,T, x0), c1k

2|D(Tx0, T
2x0)|, kD(p, Tp), γk2δ(D,T, x0), k

2M1

}
⪯ max

{
γk2δ(D,T, x0), c1k

2δ(D,T, x0), kD(p, Tp), γk2δ(D,T, x0), k
2M1

}
= max{k2M2, kD(p, Tp)},

where M2 = max{γδ(D,T, x0), c1δ(D,T, x0),M1} ≺ ∞. Since, k < 1 it follows that
kD(T 2x0, Tp) ≺ D(T 2x0, Tp) ⪯ max{k2M2, kD(p, Tp)}. (4.8)

Again, using the above inequality (4.3), (4.5), (4.7), (4.8) and Lemma 2.7, we have
complex number 0 ≺ c2 such that

D(T 3x0, Tp) ⪯ kmax
{
D(T 2x0, p), D(T 2x0, T

3x0), D(p, Tp), D(T 2x0, Tp),

D(p, T 3x0)
}

⪯ max
{
γk3δ(D,T, x0), c2k

3|D(T 2x0, T
3x0)|, kD(p, Tp),

kD(T 2x0, Tp), γk
3δ(D,T, x0)

}
⪯ max{k3M3, kD(p, Tp)},

where M3 = max{γδ(D,T, x0), c2δ(D,T, x0),M2} ≺ ∞. Continuing this process,
by induction above inequality and Lemma 2.7, we have

D(Tnx0, Tp) ⪯ {knM,kD(p, Tp)} , (4.9)
for every n ≥ 1 and M = max{M1,M2, ...,Mn} ≺ ∞. Since D(x0, Tp) ≺ ∞ and
D(p, Tp) ≺ ∞, we have

lim sup
n→∞

|D(Tnx0, Tp)| ≤ k|D(p, Tp)|. (4.10)

By Definition 2.11 (4), there exists 0 ≺ r such that
D(Tp, p) ⪯ r lim sup

n→∞
|D(Tp, Tnx0)|. (4.11)

By remark 2.6 (ii) and (4.10), we have
|D(Tp, p)| ≤ |r| lim sup

n→∞
|D(Tp, Tnx0)| ≤ |r|k|D(p, Tp)|. (4.12)

Since |r|k < 1, we have |D(Tp, p)| = 0 thus D(Tp, p) = 0 it follows that p is a fixed
point of T , and then

D(p, p) = D(Tp, p) = 0. (4.13)
If p

′ is any fixed point of T such that |D(p, p
′
)| < ∞ and |D(p

′
, p

′
)| < ∞. From

Proposition 4.1 we have D(p
′
, p

′
) = 0 and then

D(p, p
′
) = D(Tp, Tp

′
)

⪯ kmax
{
D(p, p

′
), D(p, Tp), D(p

′
, Tp

′
), D(Tp, p

′
), D(p, Tp

′
)
}
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⪯ kmax
{
D(p, p

′
), D(p, p), D(p

′
, p

′
), D(p, p

′
), D(p, p

′
)
}

⪯ kD(p, p
′
).

By remark 2.6 (ii), we have

|D(p, p
′
)| ≤ k|D(p, p

′
)|.

Since k < 1, we have |D(p, p
′
)| = 0 thus D(p, p

′
) = 0. Hence p = p

′
. This proof is

complete.
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