Y. Takeuchi & M. Toyoda, J. Nonlinear Anal. Optim. Vol. 15(1) (2024), 33-42

Journal of Nonlinear Analysis and Optimization

Volume 15(1) (2024)
http://ph03.tci-thaijo.org
ISSN : 1906-9685

J. Nonlinear Anal. Optim.

SOLVABILITY OF EQUATIONS INVOLVING PERTURBATIONS
OF m-ACCRETIVE OPERATORS IN BANACH SPACES

YUKIO TAKEUCHI! AND MASASHI TOYODA*?

L Address Takahashi Institute for Nonlinear Analysis, 1-11-11 Nakazato, Minami, Yokohama
232-0063, Japan

2 Address Department of Information Science, Toho University, Miyama, Funabashi, Chiba
274-8510, Japan

ABSTRACT. It is purpose of this paper to give several results for the solvability of the
equation p € Ax + Sz, where A is an m-accretive operator on a Banach space E and S
is a mapping on a subset of F, with elementary proofs. We give proofs of them without
using degree theory.
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1. INTRODUCTION

Let E be a real Banach space, A an m-accretive operator on E, S a mapping of

a subset of E into E, and p an element of E. In [5], [6] and [8], the solvability of
the equation

p € Au+ Su (1.1)

for the case that (I+A)~! is compact and S is continuous has been studied. Results
in these papers are proved using degree theory. For example, Theorem 1 in [5] is
proved using Theorem 6.3.2 in [7] and Theorem 5 in [0] is proved using Theorem
4.4.11 in [7).

It is purpose of this paper to give several results for the solvability of the equation
(1.1), with elementary proofs. We give proofs of them without using degree theory.

In Section 3, we introduce a fixed point theorem for a continuous mapping of a
closed ball into E; see Proposition 3.1. To use Proposition 3.1 in proofs of main
results, we need Propositions 2.2 and 2.3. In Section 4, using Propositions 2.2 and
3.1, we consider the solvability of the equation (1.1) in the case that (I + A)~! is
compact and S is continuous. Moreover, in Section 5, using Propositions 2.3 and
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3.1, we consider the equation related with (1.1) for the case that S is compact and
the compactness of (I + A)~! is not required.

2. PRELIMINARIES

Throughout this paper, E denotes a real Banach space with norm || - ||, E* the
topological dual of E and (z,z*) the value of z* € E* at € E. The normalized
duality mapping of E is denoted by J, that is, it is a set-valued mapping of F into
E* defined by Jz = {2* € E* | (z,2*) = ||z|?> = ||2*||*} for z € E.

For each subset C' of E, we denote by C and 0C, the closure of C' and the
boundary of C, respectively. Moreover we denote by co C' the convex hull of C' and
by €6 C the closed convex hull of C. Mazur’s theorem asserts that if a subset C' of
E is compact, then €6 C' is compact; see Theorem 5.2.6 in [2].

Let z be an element of E and 7 a positive real number. We denote by B,(z) the
open ball with center at = and radius r and by B, [z] the closed ball with center
at z and radius r. To prove our main results, we need the following lemma related
with the Minkowski functional associated to B,.[0].

Lemma 2.1. Let v be a positive real number. Define mappings f and M on E by

f@) = —F—
max{r, ||z}
for x € E. Then the following hold:

(1) For z € B.[0], f(z) =1 and Mz € B,[0];
(2) forz ¢ B.[0], f(z) € (0,1) and Mz € B,[0];
(3) f and M are continuous.

! and Mz = f(z)z

Therefore, f is a continuous mapping of E into (0,1] and M is a continuous mapping
of E into B.[0].

Proof. We only show that the range of M is a subset of B,.[0]. If x € B,[0], then
Mz =z € B,[0]. If © ¢ B,[0], then |[Mz| = ||H;—Hx|| = r. Therefore, for all x € E,
we have Mz € B,[0]. O

Let T be a mapping of a subset C of F into E. We often use D(T) instead of C.
T is said to be nonexpansive if | Tz —Ty|| < ||z —y|| for all z,y € C'. Nonexpansive
mappings are continuous. 7' is said to be bounded if T" maps bounded subsets of
C onto bounded sets. Especially, nonexpansive mappings are bounded. T is said
to be compact if T is continuous and it maps bounded subsets of C' onto relatively
compact sets. For continuous mappings, we know Brouwer’s fixed point theorem; if
T is a continuous mapping of a compact convex subset of an Euclidean space into
itself, then T has a fixed point; see Theorem 2.1.11 in [11]. For an elementary proof
of the theorem, see [13]. Schauder’s fixed point theorem is the following; if T is a
continuous mapping of a compact convex subset of a normed space into itself, then
T has a fixed point; see Theorem 2.3.7 in [11].

Let A be a set-valued operator on E. The symbols D(A) and R(A) denote the
domain and the range of A, respectively, that is, D(A) = {z € E | Az # 0} and
R(A) = J{Az | x € D(A)}. A is said to be accretive if for z,y € D(A), u € Az
and v € Ay, there exists j € J(x — y) such that (u —v,j) > 0. A is said to be
m-accretive if A is accretive and R(I + AA) = E for all A > 0.

Let A be an accretive operator on E and A a positive real number. Since A is
accretive, (I + AA)~! is a single-valued mapping of R(I + AA) onto D(A). The
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mapping (I + AA)~! is called a resolvent of A and it is denoted by Jy, that is,
Jaw = (I + XNA)~tx for € R(I + AA). Then, since x € Jyx + AAJyz, we have

r— JJx

A
The mapping % is called a Yosida approximation of A and it is denoted by Ay,

that is, Axz = (z — Jyz) for © € R(I + AA). Therefore, for x € R(I + AA), we
have Az € AJyx. Since A is accretive, the resolvent Jy is nonexpansive. Then,
the resolvent is continuous and bounded. For these results, we refer the reader to

[12].

In Sections 4 and 5, we use the following.

e Adyz.

Proposition 2.2. Let A be an m-accretive operator on E and S a continuous
mapping of D(S) into E such that Jy is compact and D(A) C D(S). Let p be an
element of E. Define a mapping T on E by

Tr=p+ Jix— Sz

for x € E. Then T is compact. Moreover if x is a fized point of T, then Jix is a
solution of the equation (1.1).

Proof. Since Jp is continuous, T is continuous. Since J; is compact, Jy(B,[0]) is
compact for » > 0. Note that J;(B,.[0]) C J1(B;[0]) € D(A) C D(S). Since S
is continuous, S(J1(B,[0])) is compact, that is, SJ1(B,[0]) is relatively compact.
Therefore T'(B,[0]) is also relatively compact. Hence T is compact.

If = is a fixed point of T', then, since p + Jiz — SJix = x, we have

p = z—Jix+ SJix = A1z + SJix € AJixz + SJix.
Hence Jiz is a solution of the equation (1.1). O

Proposition 2.3. Let A be an m-accretive operator on E and S a compact mapping
of D(S) into E such that D(A) C D(S). Let p be an element of E and n a positive
integer. Define a mapping T,, on E by

Thx =p— SJy(nx)

forxz € E. Then T, is compact. Moreover if x,, is a fized point of T,,, then J, (nx,)
s a solution of the equation

1
p € Au+ Su+ U (2.1)

Proof. Since the resolvent J, is continuous, 73, is continuous. Since J,, is bounded,
Jn(nB,[0]) is bounded for > 0. Then, since S is compact, SJ,, (nB,[0]) is relatively
compact. Therefore T,,(B,[0]) is also relatively compact. Hence T, is compact.

If 2, is a fixed point of T},, then, since A, (nz,) =z, — +J,(nz,), we have

n
p = xn,+ ST (nz,)
1 1
= Ap(nx,) + STy (nzy,) + EJn(nxn) € AJp(nxy,) + ST, (nx,) + ﬁJn(nxn)
Hence J,(nz,) is a solution of the equation (2.1). O

In Section 3, we introduce a fixed point theorem for a continuous mapping of
a closed ball into E; see Proposition 3.1. To prove Proposition 3.1, we need the
following; see Lemma 1 in [10] and a result of Singbal in [I]. For the sake of
completeness, we give a proof.
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Lemma 2.4. Let T be a continuous mapping of a closed ball B,.[0] in E into itself.
If T(B,[0]) is relatively compact, then there exists a fized point of T.

Proof. Since T'(B,[0]) is relatively compact, D = T'(B,[0]) is compact. For s > 0,
there exist z1,22...,2, € D such that {Bs(x;) | ¢ = 1,2,...,n} is a cover of D.
For each ¢ = 1,2,...,n, we define a continuous mapping d; on E by

d;(z) = max{0,s — ||l — z;||}

for x € E. For any ¢ and x € E, d;(z)||lx — z;|| < sd;(x) holds because d;(z) # 0
implies ||z — ;|| < s. Moreover, for any = € D, there exists i satisfying ||z —x;, || <
s, that is, d;,(z) > 0. Therefore, for any z € D, we have >, d;(z) > 0. If we
define a function h; for each i =1,2,...,n by

di()
hi(r) = =7
> ie di(2)
for x € D, then the following hold; for any x € Dand i =1,2,...,n, 0 < hy(z) < 1;
for any z € D, >_"" | h;(z) = 1. We consider a continuous mapping T on D defined
by

for x € D. Then we have

1 n n
for x € D. Since T is continuous, 75T is a continuous mapping of co({z;};) into
itself. By Brouwer’s fixed point theorem, there exists y € co({z;}7,) satisfying
T,Ty =y. Since T'y € D, we have | Ty—TsTy|| < s, that is, ||[Ty—y|| < s. Therefore,
for any s > 0, there exists y € co({z;}?_,) C B,[0] such that ||y — Ty|| < s.

By the argument so far, there exists a sequence {y,,} C B,[0] satisfying ||y, —
Tym| < # for all m = 1,2,.... That is, limy,— e ||Ym — Tym| = 0. Since D is
compact, there exists a subsequence {¥y,, } of {ym} such that {Ty,,,} converges to
some z € D. Since limy;, 00 [|4m —TYmll = 0, {ym, } also converges to z. Moreover,
since T is continuous and

2 =Tzl < Iz = Tym; | + [ TYm; — T|,
we have z = T'z. O

Remark 2.5. Using Schauder’s fixed point theorem, we can prove Lemma 2.4. In
fact, since T'(B,[0]) is compact, the closed convex hull of T'(B,[0]) is also compact
by Mazur’s theorem. Then, by Schauder’s fixed point theorem, we obtain the
conclusion; see Theorem 4.4.10 in [7].

On the other hand, in the proof of Lemma 2.4, we use Brouwer’s fixed point
theorem. Consider the finite dimensional linear space L spanned by {z;}? ;, where
Z1,Ta,..., T, are the elements in the proof of Lemma 2.4. Since any two Hausdorff
linear topologies on L coincide, the relative topology of L induced by FE is the
Euclidian topology of L. Then we can consider that co({z;}! ;) is a compact
convex subset of the Euclidean space L. By Brouwer’s fixed point theorem, the
continuous mapping 757 in the proof of Lemma 2.4 has a fixed point. Therefore
the above proof of Lemma 2.4 is a direct proof from Brouwer’s fixed point theorem.
For the mapping T, see Theorem 2 in [9].
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3. FIXED POINT THEOREMS
To prove results in Sections 4 and 5, we need the following fixed point theorem.

Proposition 3.1. Let T be a continuous mapping of a closed ball B,.[0] into E such
that T'(B,[0]) is relatively compact. Then, there exists x € B,.[0] such that
f(Tx)Tx =,

where [ is defined as in Lemma 2.1. Moreover the following hold:

(i) If Tz € B,[0], then Tx = x;

(ii) if © € B.(0), then Tx = x.
Proof. Define a mapping V on B, [0] by Va = f(Tx)Tx for x € B,[0]. We know
that the mapping M in Lemma 1 is continuous and the range of M is a subset of
B, [0]. Then we see that M (T(B.[0])) is compact and

V(B [0]) = MT(B,[0]) ¢ M(T(B,[0])) C B,[0].
By Lemma 2.1, V is a continuous mapping of B,[0] into itself. Since V(B,[0]) is
relatively compact, by Lemma 2.4, there exists ¢ € B,.[0] such that
Ve =z

We show (i). If Tz € B,[0], then we have f(Tx) = 1 by Lemma 2.1. Hence we
have Tz = z. To prove (ii), suppose that Tz ¢ B,[0]. Then, since z € B,(0) and
f(Tx)Tx =z, we have

r r
r >zl = [If(Tz)Tx| = 'Tfﬂ = o Tz| =
[ T]| IT]]
This is a contradiction. Therefore Tz € B,.[0]. Hence, by (i), Tx = . O

The condition Tz € B,[0] in (i) of Proposition 3.1 is related to the condition
that T(0B,[0]) C B,[0], which is a condition of Rothe’s fixed point theorem; see
Theorem 4.2.3 in [11].

Corollary 3.2. Let T be a compact mapping of a closed ball B,.[0] into E such that
T(0B,[0]) C B[0]. Then there exists a fized point of T
Proof. By Proposition 3.1, there exists x € B,[0] such that
f(Tx)Te =,
where f is defined as in Lemma 2.1. If z € B,.(0), then T@ = « by (ii) of Proposition
3.1. If x € 0B,[0], then, since T(0B,[0]) C B,[0], we have Tz € B,[0]. Hence
Tz = x by (i) of Theorem 3.1. O
The condition Tz € B, [0] in (i) of Proposition 3.1 is related to the following:

If £ € 9B,[0] and ¢ > 1, then Tz # cx. (3.1)
For (3.1), see Theorem 0.2.3 in [3] and Theorems 4.4.3 and 6.3.2 in [7].
Corollary 3.3. Let T be a continuous mapping of a closed ball B.[0] into E such

that T(B,[0]) is relatively compact and the condition (3.1) holds. Then there exists
a fixed point of T.

Proof. By Proposition 3.1, there exists € B,[0] such that f(Tx)Tz = x, where
f is defined as in Lemma 2.1. Since f(Tx) is in (0,1] by Lemma 2.1, we have
c= ﬁ € [1,00) and

Ty = cx.
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If x € 0B,[0], then we have ¢ = 1 by the condition (3.1). Hence Tx = z. If
x € B,(0), by (ii) of Proposition 3.1, we have Tx = z. O

4. MAIN RESULTS

In this section, we consider the solvability of the equation (1.1) for the case that
(I + A)~!is compact and S is continuous. Proposition 3.1 is crucial in the proofs
of results in this section.

By Propositions 2.2 and 3.1, we obtain the following. The condition (4.1) is
related to the condition T'(0B,[0]) C B,[0] in Corollary 3.2.

Theorem 4.1. Let A be an m-accretive operator on E such that Jy is compact and
S is a continuous mapping of D(S) into E with D(A) C D(S). Let p be an element
of E. Suppose there exists a positive constant v satisfying the following:

If x € OB,[0], then ||p + Jiz — SJyz|| < r. (4.1)
Then the equation (1.1) has a solution.

Proof. Let T be a mapping defined by Tx = p + Jiz — SJix for x € E. By
Proposition 2.2, T is compact. By Proposition 3.1, there exists « € B,.[0] such that

f(T2)Tx = x,

where f is defined as in Lemma 2.1.

For the case that z € B,(0), by (ii) of Proposition 3.1, we have Tz = z. For
the case that = € 9B, [0], since ||p + Jix — SJiz| < r, we have ||[Tz| < r, that is,
Tz € B,[0]. By (i) of Proposition 3.1, we see Tz = z. Therefore, in both cases,
Tz = x holds. Hence, by Proposition 2.2, (1.1) has a solution. O

Theorem 4.2. Let A be an m-accretive operator on E such that Ji is compact and
S is a continuous mapping of D(S) into E with D(A) C D(S). Let p be an element
of E. Suppose there exists a positive constant r such that if x € OB.[0], then there
exists j € E* satisfying (x,j) > 0 and

(Arz —p+ STz, j) > 0.
Then the equation (1.1) has a solution.

Proof. Let T be a mapping defined by Tx = p + Jiz — SJiz for x € E. By
Proposition 2.2, T' is compact. By Proposition 3.1, there exists 2 € B,.[0] such that
f(Tx)Tx = x, where f is defined as in Lemma 2.1. Since f(Tz) € (0, 1], by Lemma
2.1, we have 1 < ¢ = ﬁ and

Tx = cx.

For the case that z € B,(0), by (ii) of Proposition 3.1, we have Tz = z. For
the case that « € 0B, [0], there exists j € E* such that (x,j) > 0 and (412 —p +
SJizx,j)y > 0. Since Ayz —p+ SJix =x — Tx = x — cx, we have

0 < (z, j){(Arx — p+ STz, j) = (z, ) (x — ca,j) = (1 — c){z, j)*.

Then, since (x, j) # 0, we have ¢ < 1. Thus ¢ = 1. Therefore, in both cases, Tz = z
holds. Hence, by Proposition 2.2, (1.1) has a solution. O

Moreover, we obtain the following.
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Theorem 4.3. Let A be an m-accretive operator on E such that Jy is compact and
S is a continuous mapping of D(S) into E with D(A) C D(S). Let p be an element
of E. Suppose there exist positive constant b and r which satisfy By(0) N D(A) # 0,
p € By(0),

r > 2b+sup{||Sz|| | z € B,(0) N D(A)},

and the following: If x € 0B,[0] satisfies Jix ¢ By(0), then there exists j € E*
satisfying (x,7) > 0 and
(Ayz —p+ SJyz,j) > 0.

Then the equation (1.1) has a solution.

Proof. Let T be a mapping defined by Tz = p + Jixz — SJix for x € E. By
Proposition 2.2, T is compact. By Proposition 3.1, there exists « € B,.[0] such that
f(Tz)Tx = z, where f is defined as in Lemma 2.1. Since f(Tx) € (0, 1], by Lemma
2.1, wesee 1 <c= ﬁ and Tx = cx.

For the case that « € B,(0), by (ii) of Proposition 3.1, we have Ta = x. Next we
consider the case that x € 0B,[0]. Assume that Jiz € By(0). Then, by ¢ € [1, 00),

we have

cr = cflzf| = llexl| = llp + 1z — Sz

Ipll + | 12]] + |STiz|| < 2b+sup{[|Sz| | z € D(A) N By(0)} <.
This is a contradiction. So, Jiz ¢ By(0) holds. From this, there exists j € E*
satisfying (x,j) > 0 and (Ayz — p + SJyz,j) > 0. Then, in the same way as in

the proof of Theorem 4.2, we have ¢ = 1. Therefore, in both cases, Tx = = holds.
Hence, by Proposition 2.2, (1.1) has a solution. O

r <
<

By Theorem 4.3, we obtain the following. Theorem 2 in [5] is related to the
condition (4.2).

Corollary 4.1. Let A be an m-accretive operator on E such that Jy is compact
and S is a bounded continuous mapping of D(A) into E. Let p be an element of E.
Suppose there exists a positive constant b which satisfy J,0 € By,(0), p € By(0) and
the following:

If ze D(A),||z|| > b, y € Az and j € J(z — J;0), then (y —p+ Sz,j) > 0. (4.2)

Then the equation (1.1) has a solution.

Proof. Note that, since J10 € D(A)N By(0), D(A)N By(0) # (). Since S is bounded,
there exists r > 0 satisfying the condition r > 2b 4 sup{||Sz| | z € By(0) N D(A)}
in Theorem 4.3. Let x be an element of B,[0] with Jiz ¢ B,(0). Set z = Jyz.
Obviously, we see z € D(A), ||z|| > band A1z € AJyz = Az. Then, since A;x € Az,
A0 € AJ,0 and A is accretive, there exists j € J(z — J10) = J(J1z — J10) such
that
<A12’,‘ - A103]> 2 0.

By (4.2), for such z, Az and j, (A1z —p+ Sz,j) = (A1x —p+ SJyz,j) > 0 holds.
Furthermore, since J10 € By(0) and Jy2z ¢ By (0), we have

<l‘,]> = <A1$+J1$,]>
<A1.’I} - A107]> + <A10 + J1$7j>
> (A0 + Jiz,j)

= (Jix— J,0,5) = ||Jix — J10[* > 0.
So, all conditions of Theorem 4.3 are fulfilled. That is, (1.1) has a solution. g
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5. RESULTS FOR THE CASE THAT S IS COMPACT

In this section, we consider
p€ (A4 S)(B.(0)NnD(A)), (5.1)

where A is an m-accretive operator on E, S is a compact mapping on a subset of
E, pis an element of E and ¢ is a positive constant. Theorem 1 in [4] and Theorem
3 in [0] are related to (5.1).

By Propositions 2.3 and 3.1, we obtain the following results.

Theorem 5.1. Let A be an m-accretive operator on E and S a compact mapping
of D(S) into E with D(A) C D(S). Let p be an element of E. Suppose there exist
positive constants b, r and a positive integer ng which satisfy p € By(0), J,0 € By(0)
for all positive integers n,
r > b+ sup{]|Sal| |« € By (0) N D(A)},
and the following: If n > ng, x € B,[0] and J,(nx) ¢ Bay(0), then for all j, €
J(Jn(nz) — J,0),
(An(na) —p+ SJTn(nx), jn) > 0.
Then the equation (5.1) has a solution as ¢ = 2b.
Proof. Let n be a positive integer with n > ny and 7, a mapping defined by
T,z =p— SJ,(nzx) for x € E. By Proposition 2.3, T, is compact. By Proposition
3.1, there exists x,, € B,[0] such that
where f is defined as in Lemma 2.1. Since f(T,,) € (0,1] by Lemma 2.1, we have
1<e¢, = 7]@@7{%) and
ThXn = CnTy.
We show that J,(nxz,) € Bg(0). Assume that J,(nxz,) ¢ Bay(0). Since J,0 €
By(0), we have
[Jn(nen) = Jn0ll = [[Jn(n@n) = JnOl| = [|Jn0[| = [[Jn(nan)|| — 2[|J20[ > 0.

So, we see ||, (nzy,) — J,0|| > 0 and s = ||, (nzy,)|| — 2||J,0] > 0.
Since A, (nx,) € AJy(nx,), A0 € AJ,0 and A is accretive, there exists j, €
J(Jn(nxy,) — J,0) satisfying (A, (nx,) — A,0, j,) > 0. Then, since

1
<Jn(nxn) + An07]n> =
n

and A, (nx,) = %(nmn — Jn(nx,

@) = (Anlnzn) + 2 a(020). o )

1
(Jn(n@n) = Jn0, jn) = ﬁ”‘]n(nmn) - Jno”2

S|

~—

), we see

1
= (L) 4 440,40 ) + ()~ 4,0.50)

1
> —||Jn(nz,) — Jn0||2.
n

So we have (z,, jn) > 1||J.(nz,) — J,0[|?> > 0. Also, we see

- n

1 1 . 1 .

1 1
< *ﬁHJn(nxn) - JnOH2 + EHJHOHHJn(mﬂn) — Ju0]|
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1
< = ln(man) = Jn0ll (| Jn(n@n) = Ju0]l = {|7:0])
s
< ——|[Jn(nzy) — Jp0].
< 2 una) — 0]
By the argument so far, considering n > ng, x € B,[0], J,(nx) ¢ Bg(0), and
Jn € J(Jn(nzy,) — J,0), the following holds:

0 < <An(n$n) —p+ SJn(nxn)7]n>
_ 1 1 _ 1 )
- <xn —-p+ SJn(nxn)7]n> - <an(n$n) - an07]n> - E<Jn0a.7n>

. s
< (I —=ca){@n, jn) — g‘l']n(”xn) — Jn0l|.

Furthermore, since ||.J,,(nz,) — J,0|| > 0, s > 0, (z,,j,) > 0 and 1 < ¢,,, we have
0 < |l a(nn) = Jn0] < (1= ea) (. jn) < 0.
n

This is a contradiction. Hence Jy,(nz,) € Bay(0) holds.

We show that z, € B,.(0). Assume that z, € dB.[0]. Then, since J,(nz,) €
Bsy(0) and 1 < ¢, we have a contradiction:
cnllznll = lenznll = [lp = STn(nan)|| < [lpll + 15T (nan)||
b+ ||STn(nay)|| < 7.
Thus, since z,, € B,.(0), by (ii) of Proposition 3.1, T,,z,, = x,, holds.

Since n > ng is arbitrary, by Proposition 2.3, there is a sequence {2, }n>n, such
that J,(nz,) is a solution of (2.1) for each n > ny, that is,

r <
<

1
p— EJn(nxn) = Ap(nx,) + ST, (nzy,)
€ AJ,(nz,)+ STy (nz,) € (A4 S)(Bap(0) N D(A))
for all n > ng. Since J,(nx,) € Bop(0), we know lim,, H%Jn(nxn)H = 0.
Therefore, we have the desired result p € (A + S)(B2,(0) N D(A)). O

Theorem 5.2. Let A be an m-accretive operator on E and S a compact mapping
of D(S) into E with D(A) C D(S). Let p be an element of E. Suppose there exist
a positive constant r and a positive integer ng which satisfy the following:

If n > ng and x € 9B, [0], then ||p — SJ,(nz)|| < r.

Then there exists a sequence {xn }n>n, such that Jp(nxy,) is a solution of the equation
(2.1) for each n > ng. Suppose further lim, H%Jn(nxn)n = 0. Then, p €

(A+ S)(D(A)) holds.

Proof. Let n be a positive integer with n > ng and T, a mapping defined by
T,z =p— SJ,(nx) for x € E. By Proposition 2.3, T;, is compact. By Proposition
3.1, there exists z,, € B,.[0] such that f(T,z,)Tnxn = @, where f is defined as in
Lemma 2.1.

For the case that x,, € B,.(0), by (ii) of Proposition 3.1, we have T,,x,, = x,,. For
the case that x,, € 0B,[0], we know ||T,x,| < r, that is, T,,z,, € B.[0]. By (i) of
Proposition 3.1, we have T, x, = x,. In both cases, T,,x,, = x, holds.

Since n > ng is arbitrary, by Proposition 2.3, there is a sequence {zy, }n>n, such
that J,(nxzy,) is a solution of (2.1) for each n > ng. Since for all n > ng,

p— %Jn(nxn) = A, (nx,) + SJp(nz,) € (A+ S)(D(A)),

in the case that lim, . ||2J,(n@y)|| =0, p € (A + S)(D(A)) holds. O
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Theorem 5.3. Let A be an m-accretive operator on E and S a compact mapping
of D(S) into E with D(A) C D(S). Let p be an element of E. Suppose there exist
a positive constant r and a positive integer ng which satisfy the following: If n > ng
and x € 0B, [0], then there exists j, € E* such that (z,j,) > 0 and

<33 —-p+ SJn(nx)7.7n> > 0.

Then there exists a sequence {Tp }n>n, such that J,(nxy,) is a solution of the equation
(2.1) for each n > ng. Suppose further lim, H%Jn(nxn)u = 0. Then, p €

(A+ S)(D(A)) holds.

Proof. Let n be a positive integer with n > ng and 7T, a mapping defined by T,,z =
p—SJy(nx) for x € E. By Proposition 2.3, T,, is compact. By Proposition 3.1, there
exists x,, € B,[0] such that f(T,z,)T,x, = z,, where f is defined as in Lemma
2.1. Also, by Lemma 2.1, we know f(T,,z,) € (0,1] and ¢, = m € [1,00). So,
T,x, = chZn.

For the case that z,, € B,(0), by (ii) of Proposition 3.1, we have T,,z, = x,.
For the case that x,, € dB,[0], there exists j, € E* such that (z,,j,) > 0 and
(xn — p+ STp(nxy), jn) > 0. From this, we have

0< <xn7.jn><mn —p+ SJn(nxn)ajn> = (1 - Cn) <$n7jn>2'
Then we see ¢, = 1 and T, z,, = z,,. In both cases, T),x,, = x, holds. The rest of
the proof is the same as in the proof of Theorem 5.2. O
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