
Y. Takeuchi & M. Toyoda, J. Nonlinear Anal. Optim. Vol. 15(1) (2024), 33-42

Journal of Nonlinear Analysis and Optimization
Volume 15(1) (2024)
http://ph03.tci-thaijo.org
ISSN : 1906-9685

J. Nonlinear Anal. Optim.

SOLVABILITY OF EQUATIONS INVOLVING PERTURBATIONS
OF m-ACCRETIVE OPERATORS IN BANACH SPACES

YUKIO TAKEUCHI1 AND MASASHI TOYODA∗2

1 Address Takahashi Institute for Nonlinear Analysis, 1-11-11 Nakazato, Minami, Yokohama
232-0063, Japan

2 Address Department of Information Science, Toho University, Miyama, Funabashi, Chiba
274-8510, Japan

ABSTRACT. It is purpose of this paper to give several results for the solvability of the
equation p ∈ Ax + Sx, where A is an m-accretive operator on a Banach space E and S
is a mapping on a subset of E, with elementary proofs. We give proofs of them without
using degree theory.
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1. Introduction

Let E be a real Banach space, A an m-accretive operator on E, S a mapping of
a subset of E into E, and p an element of E. In [5], [6] and [8], the solvability of
the equation

p ∈ Au+ Su (1.1)
for the case that (I+A)−1 is compact and S is continuous has been studied. Results
in these papers are proved using degree theory. For example, Theorem 1 in [5] is
proved using Theorem 6.3.2 in [7] and Theorem 5 in [6] is proved using Theorem
4.4.11 in [7].

It is purpose of this paper to give several results for the solvability of the equation
(1.1), with elementary proofs. We give proofs of them without using degree theory.

In Section 3, we introduce a fixed point theorem for a continuous mapping of a
closed ball into E; see Proposition 3.1. To use Proposition 3.1 in proofs of main
results, we need Propositions 2.2 and 2.3. In Section 4, using Propositions 2.2 and
3.1, we consider the solvability of the equation (1.1) in the case that (I + A)−1 is
compact and S is continuous. Moreover, in Section 5, using Propositions 2.3 and
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3.1, we consider the equation related with (1.1) for the case that S is compact and
the compactness of (I +A)−1 is not required.

2. Preliminaries

Throughout this paper, E denotes a real Banach space with norm ∥ · ∥, E∗ the
topological dual of E and ⟨x, x∗⟩ the value of x∗ ∈ E∗ at x ∈ E. The normalized
duality mapping of E is denoted by J , that is, it is a set-valued mapping of E into
E∗ defined by Jx = {x∗ ∈ E∗ | ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2} for x ∈ E.

For each subset C of E, we denote by C and ∂C, the closure of C and the
boundary of C, respectively. Moreover we denote by coC the convex hull of C and
by coC the closed convex hull of C. Mazur’s theorem asserts that if a subset C of
E is compact, then coC is compact; see Theorem 5.2.6 in [2].

Let x be an element of E and r a positive real number. We denote by Br(x) the
open ball with center at x and radius r and by Br[x] the closed ball with center
at x and radius r. To prove our main results, we need the following lemma related
with the Minkowski functional associated to Br[0].

Lemma 2.1. Let r be a positive real number. Define mappings f and M on E by

f(x) =
r

max{r, ∥x∥}
and Mx = f(x)x

for x ∈ E. Then the following hold:
(1) For x ∈ Br[0], f(x) = 1 and Mx ∈ Br[0];
(2) for x /∈ Br[0], f(x) ∈ (0, 1) and Mx ∈ Br[0];
(3) f and M are continuous.
Therefore, f is a continuous mapping of E into (0, 1] and M is a continuous mapping
of E into Br[0].

Proof. We only show that the range of M is a subset of Br[0]. If x ∈ Br[0], then
Mx = x ∈ Br[0]. If x /∈ Br[0], then ∥Mx∥ = ∥ r

∥x∥x∥ = r. Therefore, for all x ∈ E,
we have Mx ∈ Br[0]. □

Let T be a mapping of a subset C of E into E. We often use D(T ) instead of C.
T is said to be nonexpansive if ∥Tx−Ty∥ ≤ ∥x− y∥ for all x, y ∈ C. Nonexpansive
mappings are continuous. T is said to be bounded if T maps bounded subsets of
C onto bounded sets. Especially, nonexpansive mappings are bounded. T is said
to be compact if T is continuous and it maps bounded subsets of C onto relatively
compact sets. For continuous mappings, we know Brouwer’s fixed point theorem; if
T is a continuous mapping of a compact convex subset of an Euclidean space into
itself, then T has a fixed point; see Theorem 2.1.11 in [11]. For an elementary proof
of the theorem, see [13]. Schauder’s fixed point theorem is the following; if T is a
continuous mapping of a compact convex subset of a normed space into itself, then
T has a fixed point; see Theorem 2.3.7 in [11].

Let A be a set-valued operator on E. The symbols D(A) and R(A) denote the
domain and the range of A, respectively, that is, D(A) = {x ∈ E | Ax ̸= ∅} and
R(A) =

⋃
{Ax | x ∈ D(A)}. A is said to be accretive if for x, y ∈ D(A), u ∈ Ax

and v ∈ Ay, there exists j ∈ J(x − y) such that ⟨u − v, j⟩ ≥ 0. A is said to be
m-accretive if A is accretive and R(I + λA) = E for all λ > 0.

Let A be an accretive operator on E and λ a positive real number. Since A is
accretive, (I + λA)−1 is a single-valued mapping of R(I + λA) onto D(A). The
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mapping (I + λA)−1 is called a resolvent of A and it is denoted by Jλ, that is,
Jλx = (I + λA)−1x for x ∈ R(I + λA). Then, since x ∈ Jλx+ λAJλx, we have

x− Jλx

λ
∈ AJλx.

The mapping I−Jλ

λ is called a Yosida approximation of A and it is denoted by Aλ,
that is, Aλx = 1

λ (x − Jλx) for x ∈ R(I + λA). Therefore, for x ∈ R(I + λA), we
have Aλx ∈ AJλx. Since A is accretive, the resolvent Jλ is nonexpansive. Then,
the resolvent is continuous and bounded. For these results, we refer the reader to
[12].

In Sections 4 and 5, we use the following.

Proposition 2.2. Let A be an m-accretive operator on E and S a continuous
mapping of D(S) into E such that J1 is compact and D(A) ⊂ D(S). Let p be an
element of E. Define a mapping T on E by

Tx = p+ J1x− SJ1x

for x ∈ E. Then T is compact. Moreover if x is a fixed point of T , then J1x is a
solution of the equation (1.1).

Proof. Since J1 is continuous, T is continuous. Since J1 is compact, J1(Br[0]) is
compact for r > 0. Note that J1(Br[0]) ⊂ J1(Br[0]) ⊂ D(A) ⊂ D(S). Since S

is continuous, S(J1(Br[0])) is compact, that is, SJ1(Br[0]) is relatively compact.
Therefore T (Br[0]) is also relatively compact. Hence T is compact.

If x is a fixed point of T , then, since p+ J1x− SJ1x = x, we have
p = x− J1x+ SJ1x = A1x+ SJ1x ∈ AJ1x+ SJ1x.

Hence J1x is a solution of the equation (1.1). □

Proposition 2.3. Let A be an m-accretive operator on E and S a compact mapping
of D(S) into E such that D(A) ⊂ D(S). Let p be an element of E and n a positive
integer. Define a mapping Tn on E by

Tnx = p− SJn(nx)

for x ∈ E. Then Tn is compact. Moreover if xn is a fixed point of Tn, then Jn(nxn)
is a solution of the equation

p ∈ Au+ Su+
1

n
u. (2.1)

Proof. Since the resolvent Jn is continuous, Tn is continuous. Since Jn is bounded,
Jn(nBr[0]) is bounded for r > 0. Then, since S is compact, SJn(nBr[0]) is relatively
compact. Therefore Tn(Br[0]) is also relatively compact. Hence Tn is compact.

If xn is a fixed point of Tn, then, since An(nxn) = xn − 1
nJn(nxn), we have

p = xn + SJn(nxn)

= An(nxn) + SJn(nxn) +
1

n
Jn(nxn) ∈ AJn(nxn) + SJn(nxn) +

1

n
Jn(nxn).

Hence Jn(nxn) is a solution of the equation (2.1). □

In Section 3, we introduce a fixed point theorem for a continuous mapping of
a closed ball into E; see Proposition 3.1. To prove Proposition 3.1, we need the
following; see Lemma 1 in [10] and a result of Singbal in [1]. For the sake of
completeness, we give a proof.
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Lemma 2.4. Let T be a continuous mapping of a closed ball Br[0] in E into itself.
If T (Br[0]) is relatively compact, then there exists a fixed point of T .

Proof. Since T (Br[0]) is relatively compact, D = T (Br[0]) is compact. For s > 0,
there exist x1, x2 . . . , xn ∈ D such that {Bs(xi) | i = 1, 2, . . . , n} is a cover of D.
For each i = 1, 2, . . . , n, we define a continuous mapping di on E by

di(x) = max{0, s− ∥x− xi∥}

for x ∈ E. For any i and x ∈ E, di(x)∥x − xi∥ ≤ sdi(x) holds because di(x) ̸= 0
implies ∥x−xi∥ < s. Moreover, for any x ∈ D, there exists i0 satisfying ∥x−xi0∥ <
s, that is, di0(x) > 0. Therefore, for any x ∈ D, we have

∑n
i=1 di(x) > 0. If we

define a function hi for each i = 1, 2, . . . , n by

hi(x) =
di(x)∑n
i=1 di(x)

for x ∈ D, then the following hold; for any x ∈ D and i = 1, 2, . . . , n, 0 ≤ hi(x) ≤ 1;
for any x ∈ D,

∑n
i=1 hi(x) = 1. We consider a continuous mapping Ts on D defined

by

Tsx =

n∑
i=1

hi(x)xi

for x ∈ D. Then we have

∥x− Tsx∥ ≤ 1∑n
i=1 di(x)

n∑
i=1

di(x)∥x− xi∥ ≤ s∑n
i=1 di(x)

n∑
i=1

di(x) = s

for x ∈ D. Since T is continuous, TsT is a continuous mapping of co({xi}ni=1) into
itself. By Brouwer’s fixed point theorem, there exists y ∈ co({xi}ni=1) satisfying
TsTy = y. Since Ty ∈ D, we have ∥Ty−TsTy∥ ≤ s, that is, ∥Ty−y∥ ≤ s. Therefore,
for any s > 0, there exists y ∈ co({xi}ni=1) ⊂ Br[0] such that ∥y − Ty∥ ≤ s.

By the argument so far, there exists a sequence {ym} ⊂ Br[0] satisfying ∥ym −
Tym∥ ≤ 1

m for all m = 1, 2, . . .. That is, limm−→∞ ∥ym − Tym∥ = 0. Since D is
compact, there exists a subsequence {ymj} of {ym} such that {Tymj} converges to
some z ∈ D. Since limm−→∞ ∥ym−Tym∥ = 0, {ymj} also converges to z. Moreover,
since T is continuous and

∥z − Tz∥ ≤ ∥z − Tymj∥+ ∥Tymj − Tz∥,

we have z = Tz. □

Remark 2.5. Using Schauder’s fixed point theorem, we can prove Lemma 2.4. In
fact, since T (Br[0]) is compact, the closed convex hull of T (Br[0]) is also compact
by Mazur’s theorem. Then, by Schauder’s fixed point theorem, we obtain the
conclusion; see Theorem 4.4.10 in [7].

On the other hand, in the proof of Lemma 2.4, we use Brouwer’s fixed point
theorem. Consider the finite dimensional linear space L spanned by {xi}ni=1, where
x1, x2, . . . , xn are the elements in the proof of Lemma 2.4. Since any two Hausdorff
linear topologies on L coincide, the relative topology of L induced by E is the
Euclidian topology of L. Then we can consider that co({xi}ni=1) is a compact
convex subset of the Euclidean space L. By Brouwer’s fixed point theorem, the
continuous mapping TsT in the proof of Lemma 2.4 has a fixed point. Therefore
the above proof of Lemma 2.4 is a direct proof from Brouwer’s fixed point theorem.
For the mapping Ts, see Theorem 2 in [9].
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3. Fixed point theorems

To prove results in Sections 4 and 5, we need the following fixed point theorem.

Proposition 3.1. Let T be a continuous mapping of a closed ball Br[0] into E such
that T (Br[0]) is relatively compact. Then, there exists x ∈ Br[0] such that

f(Tx)Tx = x,

where f is defined as in Lemma 2.1. Moreover the following hold:
(i) If Tx ∈ Br[0], then Tx = x;
(ii) if x ∈ Br(0), then Tx = x.

Proof. Define a mapping V on Br[0] by V x = f(Tx)Tx for x ∈ Br[0]. We know
that the mapping M in Lemma 1 is continuous and the range of M is a subset of
Br[0]. Then we see that M(T (Br[0])) is compact and

V (Br[0]) = MT (Br[0]) ⊂ M(T (Br[0])) ⊂ Br[0].

By Lemma 2.1, V is a continuous mapping of Br[0] into itself. Since V (Br[0]) is
relatively compact, by Lemma 2.4, there exists x ∈ Br[0] such that

V x = x.

We show (i). If Tx ∈ Br[0], then we have f(Tx) = 1 by Lemma 2.1. Hence we
have Tx = x. To prove (ii), suppose that Tx /∈ Br[0]. Then, since x ∈ Br(0) and
f(Tx)Tx = x, we have

r > ∥x∥ = ∥f(Tx)Tx∥ =

∥∥∥∥ r

∥Tx∥
Tx

∥∥∥∥ =
r

∥Tx∥
∥Tx∥ = r.

This is a contradiction. Therefore Tx ∈ Br[0]. Hence, by (i), Tx = x. □

The condition Tx ∈ Br[0] in (i) of Proposition 3.1 is related to the condition
that T (∂Br[0]) ⊂ Br[0], which is a condition of Rothe’s fixed point theorem; see
Theorem 4.2.3 in [11].

Corollary 3.2. Let T be a compact mapping of a closed ball Br[0] into E such that
T (∂Br[0]) ⊂ Br[0]. Then there exists a fixed point of T .

Proof. By Proposition 3.1, there exists x ∈ Br[0] such that
f(Tx)Tx = x,

where f is defined as in Lemma 2.1. If x ∈ Br(0), then Tx = x by (ii) of Proposition
3.1. If x ∈ ∂Br[0], then, since T (∂Br[0]) ⊂ Br[0], we have Tx ∈ Br[0]. Hence
Tx = x by (i) of Theorem 3.1. □

The condition Tx ∈ Br[0] in (i) of Proposition 3.1 is related to the following:
If x ∈ ∂Br[0] and c > 1, then Tx ̸= cx. (3.1)

For (3.1), see Theorem 0.2.3 in [3] and Theorems 4.4.3 and 6.3.2 in [7].

Corollary 3.3. Let T be a continuous mapping of a closed ball Br[0] into E such
that T (Br[0]) is relatively compact and the condition (3.1) holds. Then there exists
a fixed point of T .

Proof. By Proposition 3.1, there exists x ∈ Br[0] such that f(Tx)Tx = x, where
f is defined as in Lemma 2.1. Since f(Tx) is in (0, 1] by Lemma 2.1, we have
c = 1

f(Tx) ∈ [1,∞) and
Tx = cx.
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If x ∈ ∂Br[0], then we have c = 1 by the condition (3.1). Hence Tx = x. If
x ∈ Br(0), by (ii) of Proposition 3.1, we have Tx = x. □

4. Main results

In this section, we consider the solvability of the equation (1.1) for the case that
(I + A)−1 is compact and S is continuous. Proposition 3.1 is crucial in the proofs
of results in this section.

By Propositions 2.2 and 3.1, we obtain the following. The condition (4.1) is
related to the condition T (∂Br[0]) ⊂ Br[0] in Corollary 3.2.

Theorem 4.1. Let A be an m-accretive operator on E such that J1 is compact and
S is a continuous mapping of D(S) into E with D(A) ⊂ D(S). Let p be an element
of E. Suppose there exists a positive constant r satisfying the following:

If x ∈ ∂Br[0], then ∥p+ J1x− SJ1x∥ ≤ r. (4.1)

Then the equation (1.1) has a solution.

Proof. Let T be a mapping defined by Tx = p + J1x − SJ1x for x ∈ E. By
Proposition 2.2, T is compact. By Proposition 3.1, there exists x ∈ Br[0] such that

f(Tx)Tx = x,

where f is defined as in Lemma 2.1.
For the case that x ∈ Br(0), by (ii) of Proposition 3.1, we have Tx = x. For

the case that x ∈ ∂Br[0], since ∥p + J1x − SJ1x∥ ≤ r, we have ∥Tx∥ ≤ r, that is,
Tx ∈ Br[0]. By (i) of Proposition 3.1, we see Tx = x. Therefore, in both cases,
Tx = x holds. Hence, by Proposition 2.2, (1.1) has a solution. □

Theorem 4.2. Let A be an m-accretive operator on E such that J1 is compact and
S is a continuous mapping of D(S) into E with D(A) ⊂ D(S). Let p be an element
of E. Suppose there exists a positive constant r such that if x ∈ ∂Br[0], then there
exists j ∈ E∗ satisfying ⟨x, j⟩ > 0 and

⟨A1x− p+ SJ1x, j⟩ ≥ 0.

Then the equation (1.1) has a solution.

Proof. Let T be a mapping defined by Tx = p + J1x − SJ1x for x ∈ E. By
Proposition 2.2, T is compact. By Proposition 3.1, there exists x ∈ Br[0] such that
f(Tx)Tx = x, where f is defined as in Lemma 2.1. Since f(Tx) ∈ (0, 1], by Lemma
2.1, we have 1 ≤ c = 1

f(Tx) and
Tx = cx.

For the case that x ∈ Br(0), by (ii) of Proposition 3.1, we have Tx = x. For
the case that x ∈ ∂Br[0], there exists j ∈ E∗ such that ⟨x, j⟩ > 0 and ⟨A1x − p +
SJ1x, j⟩ ≥ 0. Since A1x− p+ SJ1x = x− Tx = x− cx, we have

0 ≤ ⟨x, j⟩⟨A1x− p+ SJ1x, j⟩ = ⟨x, j⟩⟨x− cx, j⟩ = (1− c)⟨x, j⟩2.

Then, since ⟨x, j⟩ ̸= 0, we have c ≤ 1. Thus c = 1. Therefore, in both cases, Tx = x
holds. Hence, by Proposition 2.2, (1.1) has a solution. □

Moreover, we obtain the following.
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Theorem 4.3. Let A be an m-accretive operator on E such that J1 is compact and
S is a continuous mapping of D(S) into E with D(A) ⊂ D(S). Let p be an element
of E. Suppose there exist positive constant b and r which satisfy Bb(0)∩D(A) ̸= ∅,
p ∈ Bb(0),

r > 2b+ sup{∥Sx∥ | x ∈ Bb(0) ∩D(A)},
and the following: If x ∈ ∂Br[0] satisfies J1x /∈ Bb(0), then there exists j ∈ E∗

satisfying ⟨x, j⟩ > 0 and
⟨A1x− p+ SJ1x, j⟩ ≥ 0.

Then the equation (1.1) has a solution.

Proof. Let T be a mapping defined by Tx = p + J1x − SJ1x for x ∈ E. By
Proposition 2.2, T is compact. By Proposition 3.1, there exists x ∈ Br[0] such that
f(Tx)Tx = x, where f is defined as in Lemma 2.1. Since f(Tx) ∈ (0, 1], by Lemma
2.1, we see 1 ≤ c = 1

f(Tx) and Tx = cx.
For the case that x ∈ Br(0), by (ii) of Proposition 3.1, we have Tx = x. Next we

consider the case that x ∈ ∂Br[0]. Assume that J1x ∈ Bb(0). Then, by c ∈ [1,∞),
we have

r ≤ cr = c∥x∥ = ∥cx∥ = ∥p+ J1x− SJ1x∥
≤ ∥p∥+ ∥J1x∥+ ∥SJ1x∥ < 2b+ sup{∥Sx∥ | x ∈ D(A) ∩Bb(0)} < r.

This is a contradiction. So, J1x /∈ Bb(0) holds. From this, there exists j ∈ E∗

satisfying ⟨x, j⟩ > 0 and ⟨A1x − p + SJ1x, j⟩ ≥ 0. Then, in the same way as in
the proof of Theorem 4.2, we have c = 1. Therefore, in both cases, Tx = x holds.
Hence, by Proposition 2.2, (1.1) has a solution. □

By Theorem 4.3, we obtain the following. Theorem 2 in [5] is related to the
condition (4.2).

Corollary 4.1. Let A be an m-accretive operator on E such that J1 is compact
and S is a bounded continuous mapping of D(A) into E. Let p be an element of E.
Suppose there exists a positive constant b which satisfy J10 ∈ Bb(0), p ∈ Bb(0) and
the following:

If z ∈ D(A), ∥z∥ ≥ b, y ∈ Az and j ∈ J(z − J10), then ⟨y − p+ Sz, j⟩ ≥ 0. (4.2)
Then the equation (1.1) has a solution.

Proof. Note that, since J10 ∈ D(A)∩Bb(0), D(A)∩Bb(0) ̸= ∅. Since S is bounded,
there exists r > 0 satisfying the condition r > 2b+ sup{∥Sx∥ | x ∈ Bb(0) ∩D(A)}
in Theorem 4.3. Let x be an element of ∂Br[0] with J1x /∈ Bb(0). Set z = J1x.
Obviously, we see z ∈ D(A), ∥z∥ ≥ b and A1x ∈ AJ1x = Az. Then, since A1x ∈ Az,
A10 ∈ AJ10 and A is accretive, there exists j ∈ J(z − J10) = J(J1x − J10) such
that

⟨A1x−A10, j⟩ ≥ 0.

By (4.2), for such z, A1x and j, ⟨A1x− p+ Sz, j⟩ = ⟨A1x− p+ SJ1x, j⟩ ≥ 0 holds.
Furthermore, since J10 ∈ Bb(0) and J1x /∈ Bb(0), we have

⟨x, j⟩ = ⟨A1x+ J1x, j⟩
= ⟨A1x−A10, j⟩+ ⟨A10 + J1x, j⟩
≥ ⟨A10 + J1x, j⟩
= ⟨J1x− J10, j⟩ = ∥J1x− J10∥2 > 0.

So, all conditions of Theorem 4.3 are fulfilled. That is, (1.1) has a solution. □
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5. Results for the case that S is compact

In this section, we consider
p ∈ (A+ S)(Bc(0) ∩D(A)), (5.1)

where A is an m-accretive operator on E, S is a compact mapping on a subset of
E, p is an element of E and c is a positive constant. Theorem 1 in [4] and Theorem
3 in [6] are related to (5.1).

By Propositions 2.3 and 3.1, we obtain the following results.

Theorem 5.1. Let A be an m-accretive operator on E and S a compact mapping
of D(S) into E with D(A) ⊂ D(S). Let p be an element of E. Suppose there exist
positive constants b, r and a positive integer n0 which satisfy p ∈ Bb(0), Jn0 ∈ Bb(0)
for all positive integers n,

r > b+ sup{∥Sx∥ | x ∈ B2b(0) ∩D(A)},
and the following: If n ≥ n0, x ∈ Br[0] and Jn(nx) /∈ B2b(0), then for all jn ∈
J(Jn(nx)− Jn0),

⟨An(nx)− p+ SJn(nx), jn⟩ ≥ 0.

Then the equation (5.1) has a solution as c = 2b.

Proof. Let n be a positive integer with n ≥ n0 and Tn a mapping defined by
Tnx = p− SJn(nx) for x ∈ E. By Proposition 2.3, Tn is compact. By Proposition
3.1, there exists xn ∈ Br[0] such that

f(Tnxn)Tnxn = xn,

where f is defined as in Lemma 2.1. Since f(Tnxn) ∈ (0, 1] by Lemma 2.1, we have
1 ≤ cn = 1

f(Tnxn)
and

Tnxn = cnxn.

We show that Jn(nxn) ∈ B2b(0). Assume that Jn(nxn) /∈ B2b(0). Since Jn0 ∈
Bb(0), we have

∥Jn(nxn)− Jn0∥ ≥ ∥Jn(nxn)− Jn0∥ − ∥Jn0∥ ≥ ∥Jn(nxn)∥ − 2∥Jn0∥ > 0.

So, we see ∥Jn(nxn)− Jn0∥ > 0 and s = ∥Jn(nxn)∥ − 2∥Jn0∥ > 0.
Since An(nxn) ∈ AJn(nxn), An0 ∈ AJn0 and A is accretive, there exists jn ∈

J(Jn(nxn)− Jn0) satisfying ⟨An(nxn)−An0, jn⟩ ≥ 0. Then, since〈
1

n
Jn(nxn) +An0, jn

〉
=

1

n
⟨Jn(nxn)− Jn0, jn⟩ =

1

n
∥Jn(nxn)− Jn0∥2

and An(nxn) =
1
n (nxn − Jn(nxn)), we see

⟨xn, jn⟩ =

〈
An(nxn) +

1

n
Jn(nxn), jn

〉
=

〈
1

n
Jn(nxn) +An0, jn

〉
+ ⟨An(nxn)−An0, jn⟩

≥ 1

n
∥Jn(nxn)− Jn0∥2.

So we have ⟨xn, jn⟩ ≥ 1
n∥Jn(nxn)− Jn0∥2 > 0. Also, we see

−
〈
1

n
Jn(nxn)−

1

n
Jn0, jn

〉
− 1

n
⟨Jn0, jn⟩

≤ − 1

n
∥Jn(nxn)− Jn0∥2 +

1

n
∥Jn0∥∥Jn(nxn)− Jn0∥
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≤ − 1

n
∥Jn(nxn)− Jn0∥ (∥Jn(nxn)− Jn0∥ − ∥Jn0∥)

≤ − s

n
∥Jn(nxn)− Jn0∥.

By the argument so far, considering n ≥ n0, x ∈ Br[0], Jn(nx) /∈ B2b(0), and
jn ∈ J(Jn(nxn)− Jn0), the following holds:

0 ≤ ⟨An(nxn)− p+ SJn(nxn), jn⟩

= ⟨xn − p+ SJn(nxn), jn⟩ −
〈
1

n
Jn(nxn)−

1

n
Jn0, jn

〉
− 1

n
⟨Jn0, jn⟩

≤ (1− cn)⟨xn, jn⟩ −
s

n
∥Jn(nxn)− Jn0∥.

Furthermore, since ∥Jn(nxn)− Jn0∥ > 0, s > 0, ⟨xn, jn⟩ > 0 and 1 ≤ cn, we have

0 <
s

n
∥Jn(nxn)− Jn0∥ ≤ (1− cn)⟨xn, jn⟩ ≤ 0.

This is a contradiction. Hence Jn(nxn) ∈ B2b(0) holds.
We show that xn ∈ Br(0). Assume that xn ∈ ∂Br[0]. Then, since Jn(nxn) ∈

B2b(0) and 1 ≤ cn, we have a contradiction:
r ≤ cn∥xn∥ = ∥cnxn∥ = ∥p− SJn(nxn)∥ ≤ ∥p∥+ ∥SJn(nxn)∥

≤ b+ ∥SJn(nxn)∥ < r.

Thus, since xn ∈ Br(0), by (ii) of Proposition 3.1, Tnxn = xn holds.
Since n ≥ n0 is arbitrary, by Proposition 2.3, there is a sequence {xn}n≥n0

such
that Jn(nxn) is a solution of (2.1) for each n ≥ n0, that is,

p− 1

n
Jn(nxn) = An(nxn) + SJn(nxn)

∈ AJn(nxn) + SJn(nxn) ∈ (A+ S)(B2b(0) ∩D(A))

for all n ≥ n0. Since Jn(nxn) ∈ B2b(0), we know limn−→∞
∥∥ 1
nJn(nxn)

∥∥ = 0.
Therefore, we have the desired result p ∈ (A+ S)(B2b(0) ∩D(A)). □
Theorem 5.2. Let A be an m-accretive operator on E and S a compact mapping
of D(S) into E with D(A) ⊂ D(S). Let p be an element of E. Suppose there exist
a positive constant r and a positive integer n0 which satisfy the following:

If n ≥ n0 and x ∈ ∂Br[0], then ∥p− SJn(nx)∥ ≤ r.

Then there exists a sequence {xn}n≥n0
such that Jn(nxn) is a solution of the equation

(2.1) for each n ≥ n0. Suppose further limn−→∞
∥∥ 1
nJn(nxn)

∥∥ = 0. Then, p ∈
(A+ S)(D(A)) holds.
Proof. Let n be a positive integer with n ≥ n0 and Tn a mapping defined by
Tnx = p− SJn(nx) for x ∈ E. By Proposition 2.3, Tn is compact. By Proposition
3.1, there exists xn ∈ Br[0] such that f(Tnxn)Tnxn = xn, where f is defined as in
Lemma 2.1.

For the case that xn ∈ Br(0), by (ii) of Proposition 3.1, we have Tnxn = xn. For
the case that xn ∈ ∂Br[0], we know ∥Tnxn∥ ≤ r, that is, Tnxn ∈ Br[0]. By (i) of
Proposition 3.1, we have Tnxn = xn. In both cases, Tnxn = xn holds.

Since n ≥ n0 is arbitrary, by Proposition 2.3, there is a sequence {xn}n≥n0
such

that Jn(nxn) is a solution of (2.1) for each n ≥ n0. Since for all n ≥ n0,

p− 1

n
Jn(nxn) = An(nxn) + SJn(nxn) ∈ (A+ S)(D(A)),

in the case that limn−→∞
∥∥ 1
nJn(nxn)

∥∥ = 0, p ∈ (A+ S)(D(A)) holds. □
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Theorem 5.3. Let A be an m-accretive operator on E and S a compact mapping
of D(S) into E with D(A) ⊂ D(S). Let p be an element of E. Suppose there exist
a positive constant r and a positive integer n0 which satisfy the following: If n ≥ n0

and x ∈ ∂Br[0], then there exists jn ∈ E∗ such that ⟨x, jn⟩ > 0 and
⟨x− p+ SJn(nx), jn⟩ ≥ 0.

Then there exists a sequence {xn}n≥n0 such that Jn(nxn) is a solution of the equation
(2.1) for each n ≥ n0. Suppose further limn−→∞

∥∥ 1
nJn(nxn)

∥∥ = 0. Then, p ∈
(A+ S)(D(A)) holds.

Proof. Let n be a positive integer with n ≥ n0 and Tn a mapping defined by Tnx =
p−SJn(nx) for x ∈ E. By Proposition 2.3, Tn is compact. By Proposition 3.1, there
exists xn ∈ Br[0] such that f(Tnxn)Tnxn = xn, where f is defined as in Lemma
2.1. Also, by Lemma 2.1, we know f(Tnxn) ∈ (0, 1] and cn = 1

f(Tnxn)
∈ [1,∞). So,

Tnxn = cnxn.
For the case that xn ∈ Br(0), by (ii) of Proposition 3.1, we have Tnxn = xn.

For the case that xn ∈ ∂Br[0], there exists jn ∈ E∗ such that ⟨xn, jn⟩ > 0 and
⟨xn − p+ SJn(nxn), jn⟩ ≥ 0. From this, we have

0 ≤ ⟨xn, jn⟩⟨xn − p+ SJn(nxn), jn⟩ = (1− cn) ⟨xn, jn⟩2.
Then we see cn = 1 and Tnxn = xn. In both cases, Tnxn = xn holds. The rest of
the proof is the same as in the proof of Theorem 5.2. □
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