

A characterization of the identity function with some property on GP

Kamonrat Nammanee*

Department of Mathematics, School of Science, University of Phayao

Abstract

We prove that if a multiplicative function f satisfies

$$f(a + b + c) = f(a) + f(b) + f(c), \text{ for all } a, b, c \in GP.$$

Then f is the identity function.

*Corresponding Author: tanammanee@hotmail.com

Keyword: generalized pentagonal numbers

1 Introduction

In 1992, Spiro [10] proved that if a multiplicative function f satisfies $f(p_0) = 0$ for some prime p_0 and $f(p + q) = f(p) + f(q)$ for all primes p and q , then f is the identity function. More generally, Spiro asked which subset E of \mathbb{Z}^+ could determine an arithmetic function f uniquely in S under conditions $f(a + b) = f(a) + f(b)$ for all $a, b \in E$, where S is a set of arithmetic functions. Such a set E is called an additive uniqueness set for S following Spiro's theme. After Spiro's work, this interesting subject has been studied and extended in many directions (see [2] - [9]). In particular, Chung and Phong [4] showed that the set of all triangular numbers is an additive uniqueness set for multiplicative functions, while Chung [3] showed that the set of square numbers is not an additive uniqueness set for multiplicative functions.

The nonzero generalized pentagonal numbers (in brief, GP) are the integers obtained by the formula

$$P_n = \frac{n(3n - 1)}{2}, n \in \mathbb{Z} \setminus \{0\}.$$

That is,

$$GP = \{P_1, P_{-1}, P_2, P_{-2}, P_3, P_{-3}, P_4, P_{-4}, P_5, \dots\} = \{1, 2, 5, 7, 12, 15, 22, 26, 35, \dots\}.$$

In 2011, Fang [6] proved that if f is a multiplicative function such that there exists a prime p_0 at which f does not vanish and f satisfies the equation $f(p + q + r) = f(p) + f(q) + f(r)$ for all primes p, q and r , then f is an identity function for all integers $n \geq 1$.

In this article, we prove that if a multiplicative function f satisfies $f(a + b + c) = f(a) + f(b) + f(c)$, for all $a, b, c \in GP$, then f is the identity function.

2 Preliminaries

In this section, we collect a definition and a lemma which will be used in the following section.

Definition 2.1. An arithmetic function $f : \mathbb{Z}^+ \rightarrow \mathbb{C}$ is called multiplicative if $f(1) = 1$ and $f(mn) = f(m)f(n)$ whenever m and n are coprime.

Lemma 2.2. [1] Let $p \neq 5$ be a prime and let $r \in \mathbb{Z}^+$. Then there are $a, b \in GP$ and $\lambda \in \mathbb{Z}^+$ such that $\lambda p^r = a + b$, where $\gcd(\lambda, p) = 1$ with $\lambda < p^r$. Moreover, a and b are products of coprime numbers which are smaller than p^r . Furthermore, the same statement is true for $p = 5$ with $r > 1$.

3 Main Results

We obtain the following two lemmas to help the proof of a main theorem.

Lemma 3.1. Let $x = a + b$ for some $a, b \in GP$ such that $a > 1$ or $b > 1$, then $x = a' + b' + c'$ for some $a', b', c' \in GP$.

Proof. Let $x = a + b$ for some $a, b \in GP$. Then there exist $n, n' \in \mathbb{Z} \setminus \{0\}$ such that

$$a = \frac{n(3n-1)}{2} \text{ and } b = \frac{n'(3n'-1)}{2}, \text{ and so } x = \frac{n(3n-1)}{2} + \frac{n'(3n'-1)}{2}.$$

Now, consider $a > 1$, we have

$$a = \frac{n_1(3n_1-1)}{2} + \frac{n_2(3n_2-1)}{2} \text{ for some } n_1, n_2 \in \mathbb{Z} \setminus \{0\}.$$

or

$$a \neq \frac{n_1(3n_1-1)}{2} + \frac{n_2(3n_2-1)}{2} \text{ for all } n_1, n_2 \in \mathbb{Z} \setminus \{0\}.$$

Case 1 : If

$$a = \frac{n_1(3n_1-1)}{2} + \frac{n_2(3n_2-1)}{2} \text{ for some } n_1, n_2 \in \mathbb{Z} \setminus \{0\}.$$

Then

$$x = \frac{n_1(3n_1-1)}{2} + \frac{n_2(3n_2-1)}{2} + \frac{n'(3n'-1)}{2} \text{ for some } n_1, n_2, n' \in \mathbb{Z} \setminus \{0\}.$$

That is $x = a' + b' + c'$, where $a' = \frac{n_1(3n_1-1)}{2}$, $b' = \frac{n_2(3n_2-1)}{2}$ and $c' = \frac{n'(3n'-1)}{2}$.

Case 2 : If

$$a \neq \frac{n_1(3n_1-1)}{2} + \frac{n_2(3n_2-1)}{2} \text{ for all } n_1, n_2 \in \mathbb{Z} \setminus \{0\}.$$

Since $a > 1$ and $x = a + b$, so $x > 5$. It follows that $x \geq 6$ and

$$x = \frac{n'_1(3n'_1-1)}{2} + \frac{n'_2(3n'_2-1)}{2} + \frac{n'_3(3n'_3-1)}{2} \text{ for some } n'_1, n'_2, n'_3 \in \mathbb{Z} \setminus \{0\}.$$

That is $x = a' + b' + c'$, where $a' = \frac{n'_1(3n'_1-1)}{2}$, $b' = \frac{n'_2(3n'_2-1)}{2}$ and $c' = \frac{n'_3(3n'_3-1)}{2}$.

For $b > 1$, we can prove similar to $a > 1$. \square

Lemma 3.2. Let p be a prime and let $r \in \mathbb{Z}^+$. Then there are $a, b, c \in GP$ and $\lambda \in \mathbb{Z}^+$ such that $\lambda p^r = a + b + c$, where $\gcd(\lambda, p) = 1$ with $\lambda < p^r$. Moreover, a, b and c are products of coprime numbers which are smaller than p^r .

Proof. By Lemma 2.2 and Lemma 3.1, it follows that the proof is completed. \square

Theorem 3.3. If a multiplicative function f satisfies

$$f(a + b + c) = f(a) + f(b) + f(c),$$

for all $a, b, c \in GP$, then f is the identity function.

Proof. We will show that $f(n) = n$ for any positive integer n and using the induction on n .

(1) By the multiplicative property of f , we get $f(1) = 1$.

(2) By the property of f on GP , we get

$$\begin{aligned} f(3) &= f(1) + f(1) + f(1) = 3, \\ f(4) &= f(2) + f(1) + f(1) = f(2) + 2, \\ f(5) &= f(2) + f(2) + f(1) = 2f(2) + 1, \\ f(6) &= f(2)f(3) = 3f(2), \\ f(7) &= f(5) + f(1) + f(1) = 7, \\ f(8) &= f(5) + f(2) + f(1) = 6 + f(2), \\ f(9) &= f(7) + f(1) + f(1) = 9, \\ f(10) &= f(7) + f(2) + f(1) = 8 + f(2), \\ f(11) &= f(7) + f(2) + f(2) = 7 + 2f(2), \\ f(12) &= f(9) + f(2) + f(1) = 10 + f(2). \end{aligned}$$

Consider,

$$\begin{aligned} 10 + f(2) = f(12) &= f(3)f(4) = 3(2 + f(2)) = 6 + 3f(2), \\ f(2) &= 2 \end{aligned}$$

Hence, $f(4) = 4, f(5) = 5, f(6) = 6, f(8) = 8, f(10) = 10, f(11) = 11, f(12) = 12$.

(3) Let m be an integer larger than 12. Suppose that $f(k) = k$ for all $k < m$.

The multiplicativity of f and the factorization of $m = \prod_{i=1}^l p_i^{e_i}$. Then $f(m) = \prod_{i=1}^l f(p_i^{e_i})$. If $\ell \geq 2$, then $p_i^{e_i} < m$ for all i and hence the induction hypothesis guarantees that $f(p_i^{e_i}) = p_i^{e_i}$.

$$\text{So } f(m) = m.$$

If $\ell = 1$, then $m = p^e$ for some prime p and a positive integer e . By Lemma 3.2, we have

$$\lambda p^e = a + b + c,$$

for some $a, b, c \in GP$ and $a < p^e, b < p^e, c < p^e, \gcd(\lambda, p) = 1$. Then

$$f(\lambda p^e) = f(a + b + c)$$

$$f(\lambda)f(p^e) = f(a) + f(b) + f(c).$$

Since $f(\lambda) = \lambda$, $f(a) = a$, $f(b) = b$, $f(c) = c$, we have

$$\lambda f(m) = a + b + c$$

$$\lambda f(m) = \lambda p^e$$

$$f(m) = m.$$

By the mathematical induction, we have $f(n) = n$. Hence f is the identity function. \square

4 Acknowledgments

The author is grateful to the reviewers for useful suggestions which improved the contents of this paper. This work was supported by the University of Phayao, Thailand.

References

- [1] Byungchan Kim, Ji Young Kim, Chong Gyu Lee, Poo-Sung Park. Multiplicative functions additive on generalized pentagonal numbers, 356 (2018), 125-128.
- [2] B. Bašić', Characterization of arithmetic functions that preserve the sum-of-squares operation, *Acta Math. Sin.* 30 (2014) 689–695.
- [3] P.V. Chung, Multiplicative functions satisfying the equation $f(m^2 + n^2) = f(m^2) + f(n^2)$, *Math. Slovaca* 46 (1996) 165–171.
- [4] P.V. Chung, B.M. Phong, Additive uniqueness sets for multiplicative functions, *Publ. Math. (Debr.)* 55 (1999) 237–243.
- [5] A. Dubickas, P. Šarka, On multiplicative functions which are additive on sums of primes, *Aequ. Math.* 86 (2013) 81–89.
- [6] J.-H. Fang, A characterization of the identity function with equation $f(p + q + r) = f(p) + f(q) + f(r)$, *Combinatorica* 31 (2011) 697–701.
- [7] P.-S. Park, Multiplicative functions commutable with sums of squares, *Int. J. Number Theory* 14 (2018) 469–478.
- [8] P.-S. Park, On k-additive uniqueness of the set of squares for multiplicative functions, *Aequ. Math.* 92 (2018) 487–495.
- [9] P.-S. Park, On multiplicative functions which are additive on almost primes, *Publ. Math. (Debr.)* (2018).
- [10] C.A. Spiro, Additive uniqueness sets for arithmetic functions, *J. Number Theory* 42 (1992) 232–246.