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1 Introduction

Let C be a nonempty subset of a real Hilbert space H and let T : C → C be a
mapping. Then

T is said to be pseudocontractive [1, 2] if

∥ Tx− Ty ∥26∥ x− y ∥2 + ∥ (I − T )x− (I − T )y ∥2 for all x, y ∈ C.

T is said to be hemicontractive if F (T ) := {x ∈ C : Tx = x} ̸= ∅

and ∥ Tx− p ∥26∥ x− p ∥2 + ∥ x− Tx ∥2 for all p ∈ F (T ) and x ∈ C . It is easy to see
that, if F (T ) ̸= ∅, then the concept of hemicontractive mapping is more general than
that of pseudocontractive mapping.

Let C be nonempty closed convex subset of a real Hilbert space H . For a
mapping T : C → C , the following Mann-type implicit process was introduced by
Soltuz [3]:

x0 ∈ C,

xn = αnxn−1 + (1− αn)Txn (1.1)

for all n > 1, where {αn} is a real sequence in [0,1].

Definition 1.1. [4] A mapping T : C → C with F (T ) ̸= ∅ is said to satisfy condition A if
there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0

for all r ∈ (0,∞) such that

∥ x− Tx ∥> f(d(x, F (T )))
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for all x ∈ C , where d(x, F (T )) = infz∈F (T ) ∥ x− z ∥.

Approximating fixed points of Ishikawa [5] (Mann [6]) iterations under a pseudo-
contractive (or hemicontractive) mapping T has been investigated by several author;
see, for example, [7, 13] and others.

In 2014, Kim [8] gave the strong convergence theorems of (1.2) in a real Hilbert
space under T is continuous with F (T ) ̸= ∅ and T satisfy condition A and T is contin-
uous hemicontractive which T (C) is contains in a compact subset of C .

The purpose of this paper is to introduce and investigatets the following modi-
fied Mann implicit iteration process. Let C a nonempty closed convex subset of a real
Hilbert space H and T : C → C defined {xn} in C in the following way:

x0 ∈ C,

xn = αnxn−1 + (1− αn − βn)Txn + βnUn (1.2)

where {αn}, {βn} are real sequences in [0, 1] and {Un} is a bounded sequence in C .

We first prove the strong convergence of (1.1) and (1.2) for a continuous hemi-
contractive mapping in a real Hilbert space. Next, we give some examples of a hemi-
contractive mapping which is not a pseudocontractive mapping.

2 Preliminaries

We give some definition, notations and some useful results that will be used
in the later section. Throughout this research, we let R stand for the set of all real
numbers and N for the set of all natural numbers.
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Lemma 2.1. [8] Let H be a real Hilbert space. Then the following well know results
hold;

1. (1) ∥ λx+ (1− λ)y ∥2= λ ∥ x ∥2 +(1− λ) ∥ y ∥2 −λ(1− λ) ∥ x− y ∥2

for all x, y ∈ H and λ ∈ [0, 1].

2. (2) ∥ x+ y ∥26∥ x ∥2 +2⟨y, x+ y⟩ for all x, y ∈ H .

3. (3) ∥ x− y ∥2=∥ x ∥2 + ∥ y ∥2 −2⟨x, y⟩ for all x, y ∈ H .

Lemma 2.2. [8] Let C be a nonempty subset of a real Hilbert space H and T : C → C

be a mapping with F (T ) ̸= ∅. Then T is hemicontractive if and only if ⟨Tx−p, x−p⟩ 6∥

x− p ∥2 for all p ∈ F (T ) and x ∈ C .

Lemma 2.3. [8] Let C be a nonempty closed convex subset of a real Hilbert space H ,
and T : C → C be a continuous hemicontractive mapping with F (T ) ̸= ∅. Then F (T )

is closed.

Lemma 2.4. [8] Let {an} and {bn} be two sequences of nonnegative real numbers
such that Σ∞

n=1bn < ∞ and an+1 6 an + bn ; for all n > 1. Then limn→∞an exists.

3 Main Results

In this section, we prove that if the mapping T is a hemicontractive mapping on
C which satisfies some condition, then the sequence {xn} is defined by (1.1) and (1.2)
converge strongly to a fixed point of T , respectively.
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Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H ,
and T : C → C be a continuous hemicontractive mapping with F (T ) ̸= ∅, and T

satisfies condition A. Let {αn} be a real sequence in [0, 1] satisfies {αn} ⊂ [δ, 1− δ] for
some δ ∈ (0, 12). For any x0 ∈ C , the sequence {xn} is defined by xn = αnxn−1 + (1−

αn)Txn, for all n > 1. Then {xn} converges strongly to fixed point of T .

Proof. Let p ∈ F (T ). By using Lemma 2.2, we obtain

∥ xn − p ∥2 = ⟨xn − p, xn − p⟩ = αn⟨xn−1 − p, xn − p⟩+ (1− αn)⟨Txn − p, xn − p⟩

6 αn ∥ xn−1 − p ∥∥ xn − p ∥ +(1− αn) ∥ xn − p ∥2 .

Thus
∥ xn − p ∥6∥ xn−1 − p ∥ . (3.1)

By Lemma 2.4, we have limn→∞ ∥xn − p∥ exists. Since T is hemiconractive, we have

∥Txn − p∥2 6 ∥xn − p∥2 + ∥xn − Txn∥2. (3.2)

By using sequence xn = αnxn−1 + (1− αn)Txn, for all n > 1, we obtain

∥xn − Txn∥2 = α2
n∥xn−1 − Txn∥2. (3.3)

By using Lemma 2.1, (3.2), we have

∥xn − p∥2 = ∥αnxn−1 + (1− αn)Txn − p∥2

= ∥αn(xn−1 − p) + (1− αn)(Txn − p)∥2

6 αn∥xn−1 − p∥2 + (1− αn)∥xn − p∥2

+(1− αn)∥xn − Txn∥2 − αn(1− αn)∥xn−1 − Txn∥2
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= αn∥xn−1 − p∥2 + (1− αn)∥xn − p∥2

+(1− αn)α
2
n∥xn−1 − Txn∥2 − αn(1− αn)∥xn−1 − Txn∥2

= αn∥xn−1 − p∥2 + (1− αn)∥xn − p∥2 − αn(1− αn)
2∥xn−1 − Txn∥2.

It follows that

(1− αn)
2∥xn−1 − Txn∥2 6 ∥xn−1 − p∥2 − ∥xn − p∥2.

And from the condition {αn} ⊂ [δ, 1− δ], we conclude that the inequality

δ2∥xn−1 − Txn∥2 6 ∥xn−1 − p∥2 − ∥xn − p∥2.

Since, limn→∞ ∥xn − p∥ exists, we have

lim
n→∞

(∥xn−1 − p|2 − ∥xn − p∥2).

This implies that
lim
n→∞

∥xn−1 − Txn∥ = 0. (3.4)
From (3.3) and (3.4), we have

lim
n→∞

∥xn − Txn∥ = 0. (3.5)

By using Condition A, there exists a nondecreasing mapping f : [0,∞) → [0,∞) with
f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that

f(d(xn, F (T ))) 6 ∥Txn − xn∥. (3.6)

for all n ≥ 1.

We claim that limn→∞ d(xn, F (T )) = 0. In fact, assume limn→∞ d(xn, F (T )) =

k > 0. Then we can choose n0 ∈ N such that 0 < k
2 < d(xn, F (T )) for all n ≥ n0. By

using a mapping f and (3.4), we obtain
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0 < f(
k

2
) 6 f(d(xn, F (T ))) 6 ∥Txn − xn∥ → 0

as n → ∞. This a contradiction. So, we obtain k = 0. For any ϵ > 0 be given, there
exists n0 ∈ N such that

d(xn, F (T )) <
ϵ

2
, (3.7)

for all n > n0. Then for all n,m > n0 and v ∈ F (T ), we obtain

∥xn − xm∥ 6 ∥xn − v∥+ ∥xm − v∥ 6 2∥xn0 − v∥. (3.8)

Taking the infimum over all v ∈ F (T ) on both sides and by (3.8), we obtain

∥xn − xm∥ 6 2[d(xn0 , F (T ))] < ϵ, (3.9)

for all n,m > n0. This implies that {xn} is a Cauchy sequence. Then {xn} is a con-
vergent sequence, we may assume that limn→∞ xn = w. Then d(w,F (T )) = 0. By
Lemma (2.3), F (T ) is closed and thus we obtain w ∈ F (T ). Hence {xn} converges
strongly to a fixed point of T .

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H ,
and T : C → C be a continuous hemicontractive mapping with F (T ) ̸= ∅, and T

satisfies condition A. Let {αn}, {βn} be real sequences with α < αn, βn ≤ 1 for some
α ∈ (0, 1] satisfying ∑∞

n=1 αn < ∞ and βn ≤ α2
n. Then a sequence {xn} is defined by

(1.2) converges strongly to fixed point of T .

Proof. Let p ∈ F (T ). By using Lemma 2.2, we obtain

∥xn − p∥2 = ⟨xn − p, xn − p⟩

= ⟨(αnxn−1 + (1− αn − βn)Txn + βnUn)− p, xn − p⟩
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= αn⟨xn−1 − p, xn − p⟩+ (1− αn − βn)⟨Txn − p, xn − p⟩

+ βn⟨Un − p, xn − p⟩

= αn∥xn−1 − p∥∥xn − p∥+ (1− αn − βn)∥Txn − p∥∥xn − p∥

+ βn∥Un − p∥∥xn − p∥

= αn∥xn−1 − p∥∥xn − p∥+ (1− αn − βn)∥xn − p∥2

+ βn∥Un − p∥∥xn − p∥.

It follows that

∥xn − p∥ 6 αn∥xn−1 − p∥+ (1− αn − βn)∥xn − p∥+ βn∥Un − p∥

6 αn∥xn−1 − p∥+ (1− αn)∥xn − p∥+ βn∥Un − p∥.

Since, α < αn, βn ≤ 1 for some α ∈ (0, 1] and βn ≤ α2
n, we obtain that

αn∥xn − p∥ 6 αn∥xn−1 − p∥+ βn∥Un − p∥

6 αn∥xn−1 − p∥+ α2
n∥Un − p∥.

Hence

∥xn − p∥ 6 ∥xn−1 − p∥+ αn∥Un − p∥.

Since, ∑∞
n=1 αn < ∞ and {∥Un − p∥} is bounded, then ∑∞

n=1 αn∥Un − p∥ < ∞. By
Lemma 2.4, we have limn→∞ ∥xn − p∥ exists. Since T is hemicontractive, we have
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∥xn − Txn∥ = ∥αnxn−1 + (1− αn − βn)Txn + βnUn − Txn∥

= ∥αnxn−1 + Txn − αnTxn − βnTxn + βnUn − Txn∥

= ∥αnxn−1 − αnTxn + βnUn − βnTxn∥

= ∥αn(xn−1 − Txn) + βn(Un − Txn)∥

6 αn∥xn−1 − Txn∥+ βn∥Un − Txn∥.

Since, α < αn, βn ≤ 1 we get α2
n ≤ αn then βn 6 α2

n ≤ αn we have

∥xn − Txn∥ 6 αn∥xn−1 − Txn∥+ αn∥Un − Txn∥. (3.10)

Since {xn} is a bounded, T is continuous and Σ∞
n=1αn < ∞ then

lim
n→∞

αn∥xn−1 − Txn∥ = 0 = lim
n→∞

αn∥Un − Txn∥. (3.11)

From (3.10) and (3.11), it implies that

lim
n→∞

∥xn − Txn∥ = 0. (3.12)

By using Condition A, there exists a nondecreasing mapping f : [0,∞) → [0,∞) with
f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that

f(d(xn, F (T ))) 6 ∥Txn − xn∥. (3.13)

for all n ≥ 1.

We claim that limn→∞ d(xn, F (T )) = 0. In fact, assume limn→∞ d(xn, F (T )) =

k > 0. Then we can choose n0 ∈ N such that 0 < k
2 < d(xn, F (T )) for all n ≥ n0. By

using a mapping f and (3.4), we obtain

0 < f(
k

2
) 6 f(d(xn, F (T ))) 6 ∥Txn − xn∥ → 0 as n → ∞.
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This a contradiction. So, we obtain k = 0. For any ϵ > 0 be given, there exists
n0 ∈ N such that

d(xn, F (T )) <
ϵ

2
, (3.14)

for all n > n0. Then for all n,m > n0 and v ∈ F (T ), we obtain

∥xn − xm∥ 6 ∥xn − v∥+ ∥xm − v∥ 6 2∥xn0 − v∥. (3.15)

Taking the infimum over all v ∈ F (T ) on both sides and by (3.15), we obtain

∥xn − xm∥ 6 2[d(xn0 , F (T ))] < ϵ, (3.16)

for all n,m > n0. This implies that {xn} is a Cauchy sequence. Then {xn} is a con-
vergent sequence, we may assume that limn→∞ xn = w. Then d(w,F (T )) = 0. By
Lemma (2.3), F (T ) is closed and thus we obtain w ∈ F (T ). Hence {xn} converges
strongly to a fixed point of T .

Theorem 3.3. Let C be nonempty closed convex subset of a real Hilbert space, and
T : C → C be a continuous hemicontractive mapping, and let T (C) be contained in a
compact subset ofC . Let {αn}, {βn} be real sequences in (0,1] satisfying∑∞

n=1 αn < ∞

and βn 6 α2
n. For any x0 ∈ C , the sequence {xn} is defined by (1.2). Then {xn}

converges strongly to a fixed point of T .

Proof. By Mazur's theorem [14], W := co({x0}
∪
T (C)) is a compact subset of C con-

taining {xn} which is invariant under T . So, without loss of generality, we may assume
that C is compact and {xn} is well-defined. The existence of a fixed point of T follows
from Schauder's fixed theorem [15]. Since C is compact and by (3.12) in the proof of
Theorem 3.2, there exists a subsequence {xnj} of the sequence {xn} and a point z ∈ C .
By using (3.12) in the proof Theorem 3.2 and the continuity of T , we obtain z ∈ F (T ).
Hence, by (??) in the proof of Theorem 3.2, we obtain limn→∞ ∥ xn − z ∥= 0.
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If βn ≡ 0, then we have the following result :

Corollary 3.4. Let C be nonempty closed convex subset of a real Hilbert space, and
T : C → C be a continuous hemicontractive mapping, and let T (C) be contained in
a compact subset of C . Let {αn} be a real sequence in (0,1] satisfying ∑∞

n=1 αn < ∞.
For any x0 ∈ C , the sequence {xn} is defined by (1.1). Then {xn} converges strongly
to a fixed point of T .

We give an example of a hemicontractive mapping which is not a pseudocon-
tractive mapping.

Example 3.5. Let H = R and C = [−2π, 2π] and let T : C → C be defined by

Tx =
x

2
sinx for each x ∈ C.

Obviously, F (T ) = {0} and T is hemicontractive mapping, that is, if x ∈ C and p = 0,
then

| Tx− p |2=| Tx− 0 |2=| x
2
sinx |26| x |2=| x− p |2 .

Thus | Tx− p |26| x− p |2 + | x− Tx |2.
But it is not a pseudocontractive mapping. In fact, if we take x = 2π and y = 3π

2 ,

then

| Tx− Ty |2=| π sin 2π − 3π

4
sin

3π

2
|2=| 3π

4
|2= 9π2

16
,

where, | x− y |2= π2

4 and | (x− Tx)− (y − Ty) |2=| π
2 − 3π

4 =| π
4 |= π

16 . �
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