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1 Introduction

Let C' be a nonempty subset of a real Hilbert space H and let T': C' — C be a
mapping. Then

T is said to be pseudocontractive [1, 2] if

| Te—Ty P<le—y >+ | [~ Tz~ I -T)y|> foral z,yeC.

T is said to be hemicontractive if F(T) :={x € C:Tx =z} # 0

and | Tz —p |?’<||z—p||? + || — Tz ||? forall p € F(T) and x € C. It is easy to see
that, if F(T') # 0, then the concept of hemicontractive mapping is more general than
that of pseudocontractive mappins.

Let C' be nonempty closed convex subset of a real Hilbert space H. For a
mapping T' : C — C, the following Mann-type implicit process was introduced by
Soltuz [3]:

xg € C,

Tn = QuTp_1+ (1—an)Ta, (1.1)

forall n > 1, where {a,} is a real sequence in [0,1].

Definition 1.1. [4] A mapping T : C — C with F(T) # 0 is said to satisfy condition A if
there exists a nondecreasing function f : [0,00) — [0,00) with f(0) =0 and f(r) > 0

for all r € (0,00) such that

|z =Tz ||> f(d(z, F(T)))
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for all z € C, where d(xz, F(T)) = infepr | 2 — = |.

Approximating fixed points of Ishikawa [5] (Mann [6]) iterations under a pseudo-
contractive (or hemicontractive) mapping T has been investigated by several author;

see, for example, [7, 13] and others.

In 2014, Kim [8] gave the strong convergence theorems of (1.2) in a real Hilbert
space under T'is continuous with F(T') # () and T satisfy condition A and T is contin-
uous hemicontractive which T'(C') is contains in a compact subset of C.

The purpose of this paper is to introduce and investigatets the following modi-
fied Mann implicit iteration process. Let C' a nonempty closed convex subset of a real

Hilbert space H and T': C' — C defined {x,} in C in the following way:

rg € O,

Tp = QpTp—1+ (1 e Qe Bn)Txn + BnUn (1.2)
where {ay,}, {8, } are real sequences in [0, 1] and {U,} is a bounded sequence in C.

We first prove the strong convergence of (1.1) and (1.2) for a continuous hemi-
contractive mapping in a real Hilbert space. Next, we give some examples of a hemi-

contractive mapping which is not a pseudocontractive mapping.

2 Preliminaries

We give some definition, notations and some useful results that will be used
in the later section. Throughout this research, we let R stand for the set of all real

numbers and N for the set of all natural numbers.
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Lemma 2.1. [8] Let H be a real Hilbert space. Then the following well know results

hold;

L@+ =Ny[P=Allz P +@A =Ny l? -AQ =) [z -y |?
forall x,y € H and X € [0, 1].

2.2 | z+y |*<|lz |I? +2(y,x + y) for all x,y € H.

30 le—yIP=l= |+ yl® —2{x,y) for all =,y € H.

Lemma 2.2. [8] Let C' be a nonempty subset of a real Hilbert space H and T': C — C
be a mapping with F(T') # (. Then T' is hemicontractive if and only if (T'z —p, z —p) <||
z—pl|*forallpe F(T)and z € C.

Lemma 2.3. [8] Let C be a nonempty closed convex subset of a real Hilbert space H,
and T': C' — C be a continuous hemicontractive mapping with F(T') # 0. Then F(T)

is closed.

Lemma 2.4. [8] Let {a,} and {b,} be two sequences of nonnegative real numbers

such that X2° ,b, < co and ap41 < ap, + by, ; for all n > 1. Then limg,—ocay, exists.

3  Main Results
In this section, we prove that if the mapping 7" is a hemicontractive mapping on

C' which satisfies some condition, then the sequence {z,} is defined by (1.1) and (1.2)

converge strongly to a fixed point of T', respectively.

Academic Journal of Science and Applied Science 2018(1) January - June pp. 101 - 113

104



1331FIVINTIMIMAn Uy Inenmansuszend 2561(1) unsiau - dguigu v 101 - 113

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H,
and T : C — C be a continuous hemicontractive mapping with F(T) # (, and T
satisfies condition A. Let {ay,} be a real sequence in [0, 1] satisfies {a,,} C [0,1— 0] for
some ¢ € (0, %). For any xy € C, the sequence {z,} is defined by x,, = apxp_1+ (1 —

an)Txy, forall n > 1. Then {x,} converges strongly to fixed point of T.

Proof. Let p € F(T). By using Lemma 2.2, we obtain
| &n—p |I> = (&0 —p, 20 — P) = an(@n—1 — P, @0 — p) + (1 — an)(TTn — p, T — D)
<an | 2ot =p Il @0 —p | +1 —an) [[za —p [I*-
Thus
| 20 = 1< 2 2 - (3.1)
By Lemma 2.4, we have lim,,_,« ||z, — p|| eXists. Since T is hemiconractive, we have
1Tz = pl1? < l|lzn = pl* + |20 — Ta|®. (3.2)
By using sequence z,, = apxp—1 + (1 — ay)Txy,, for all n > 1, we obtain
lzn — Txp||? = 2|21 — Txn|>. (3.3)
By using Lemma 2.1, (3.2), we have
lzn =plI* = llanzn-1+ (1 = an)Ta, —p||?
= len(@n-1 =) + (1 = an)(Ta, — p)|
< anllzn-1 = p? + (1 = an) |z, — p|?

+(1 = an)l|zn — Tanz —ap(l = ap)|lzn-1— TanQ
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= aonn—l _p||2 3, (1 1 O‘n)Hxn _p”2
+(1 = an)apfl@n—1 = Tag|? — an(l — an)l|zn-1 — T,

= aplTn-1 _P||2 + (1 — an)l|zn — p”2 —ap(l— O‘n)2H$n—1 - Tan2-

It follows that
(1= an)?llen-1 = Tzn)? < ll2n-1 = plI* = llzn — pl*.
And from the condition {a,,} C [d,1 — 4], we conclude that the inequality
%l en-1 = Tan|? < |@n-1 = p|* = Iz — p|*.
Since, lim,, 0 ||z, — p|| exists, we have
lim ([[2n-1 — p|* = [lzn — pI1?).

n—o0

This implies that

lim |xp—1 — Tz,| = 0. (3.4)
n—oo
From (3.3) and (3.4), we have
lim ||z, — Tzy,|| = 0. (3.5)
n—0o0

By using Condition A, there exists a nondecreasing mapping f : [0,00) — [0, 00) with

f(0)=0and f(r) > 0 for all r € (0,00) such that
J(d(@n, F(T))) < [Ty — - (3.6)

forall n > 1.

We claim that lim, o0 d(zy, F(T)) = 0. In fact, assume lim, o d(zp, F(T)) =
k > 0. Then we can choose ny € N such that 0 < % < d(xn, F(T)) for all n > ng. By

using a mapping f and (3.4), we obtain
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0< f(3) < F(d(an, F(T)) < [Ton — 2l 0

as n — oo. This a contradiction. So, we obtain k& = 0. For any € > 0 be given, there

exists ng € N such that
€

d(zn, F(T)) < 3, (3.7)
for all n > ng. Then for all n,m > ng and v € F(T'), we obtain
[ = 2mll < 12 — vl + [2m = vl| < 2|, — o]l (3.8)
Taking the infimum over all v € F(T') on both sides and by (3.8), we obtain
[ || S2ldiadr (L (3.9)

for all n,m > ng. This implies that {z,} is a Cauchy sequence. Then {x,} is a con-
vergent sequence, we may assume that lim,, o , = w. Then d(w, F(T)) = 0. By
Lemma (2.3), F(T) is closed and thus we obtain w € F(T). Hence {z,} converges

strongly to a fixed point of T'. []

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H,
and T : C — C be a continuous hemicontractive mapping with F(T') # 0, and T
satisfies condition A. Let {aw},{58n} be real sequences with a < au,, By, < 1 for some
a € (0,1] satisfying >°°° oy, < 00 and B, < a2. Then a sequence {xz,} is defined by

(1.2) converges strongly to fixed point of T.

Proof. Let p € F(T). By using Lemma 2.2, we obtain

@, — p||* = (20 — P, 0 — )

= <(an$n71 + (1 — OQp — ,Bn)Tmn + BnUn) — D, Tn — p>
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= ap(Tp-1—p,xn —p) + (1 — ap — Bn){Txy — p, T — D)

+ Bn(Un = p,Zn — D)

= an||Tn—1 = pllllzn — pll + (1 = an = Bp)[|Txn — pl|||zn — pl|
+ BallUn — pllllzn — p

= anl|zn-1 = plllzn =2l + A = an — Bp)lzn — p|I?

+ 5nHUn _pHHwn _pH‘
It follows that
[z = pll < anllen—1 = p|| + (1 = an — Bu)ll@n — pll + Bnl|Un — p|
< anllzn-1 = pll + (1 — an)l|n — p| + BullUn — pl-
Since, a < ap, B, < 1 for some a € (0,1] and 8, < a2, we obtain that

anl|zn — pll < anllzn—1 — pl| + BullUn — pl|

< anlan—1 — pll + a3 [|Un — pll-
Hence
[zn —pll < |01 — Pl + an||Un — pl|-

Since, 02, oy, < o0 and {||U, — pl|} is bounded, then > >, a,||U, — p|| < oo. By

Lemma 2.4, we have lim,,_,« ||z, — p|| exists. Since T' is hemicontractive, we have
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|zn — Tzp|| = |on®n—1 + (1 — an — Bp) Ty, + BrUn — T'xy||
= ||an®n-1 + Txp — anTxn — BnTzy + BrUn — Tz ||
= |lantn-1 — anTpn + BpUn — BTyl
= ||lan(@n—1 — Txpn) + Bn(Un — Tzy)||
< anllzn—1 = Tan|| 4 Bul|Un — Tn.
Since, a < ay, Bn < 1 we get a2 < o, then B, < a? < a,, we have
|Xn — Txp|| < anl|tn-1 — Txyn|| + anl|Un — Txy||. (3.10)
Since {z,} is a bounded, T is continuous and £2° ; o, < oo then
nh_)ngo ap||Tp—1 — Txy]| =0 = nh_)rgo an||Up — Ty |- (3.11)
From (3.10) and (3.11), it implies that
i |lz, = T = 0. (3.12)

By using Condition A, there exists a nondecreasing mapping f : [0,00) — [0, 00) with

f(0)=0and f(r) > 0 for all r € (0, 00) such that
fld(zyn, F(T))) < || Txn — 20| (3.13)

forall n > 1.

We claim that lim,, o d(z,, F(T)) = 0. In fact, assume lim, oo d(x,, F(T)) =
k > 0. Then we can choose ng € N such that 0 < & < d(z,,, F(T)) for all n > ng. By

using a mapping f and (3.4), we obtain

0 < £(5) < Fld(@n PTY) < [T = 20| 0 251 o
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This a contradiction. So, we obtain & = 0. For any € > 0 be given, there exists
ng € N such that
€

d(wn, F(T)) < 2 (3.14)

for all n > ng. Then for all n,m > ng and v € F(T'), we obtain
120 = @ml| < llzn — ol + [[2m = v]| < 2[|2n, — 2. (3.15)
Taking the infimum over all v € F(T') on both sides and by (3.15), we obtain
|Zrn — Tm|| < 2[d(zng, F(T))] <, (3.16)

for all m,m > ng. This implies that {z,} is a Cauchy sequence. Then {x,} is a con-
vergent sequence, we may assume that lim, o n, = w. Then d(w, F(T)) = 0. By
Lemma (2.3), F(T) is closed and thus we obtain w € F(T). Hence {x,} converges

strongly to a fixed point of T'. []

Theorem 3.3. Let C be nonempty closed convex subset of a real Hilbert space, and
T : C — C be a continuous hemicontractive mapping, and let T'(C') be contained in a
compact subset of C. Let {a, }, {8} be real sequences in (0,1] satisfying >~ | oy, < 00

and B, < o2

ne

For any zo € C, the sequence {x,} is defined by (1.2). Then {xz,}

converges strongly to a fixed point of T.

Proof. By Mazur's theorem [14], W :=¢o({zo} T (C)) is a compact subset of C' con-
taining {x,,} which is invariant under T'. So, without loss of generality, we may assume
that C'is compact and {z, } is well-defined. The existence of a fixed point of T" follows
from Schauder's fixed theorem [15]. Since C'is compact and by (3.12) in the proof of
Theorem 3.2, there exists a subsequence {z,, } of the sequence {xz, } and a point z € C.
By using (3.12) in the proof Theorem 3.2 and the continuity of T', we obtain z € F(T).

Hence, by (2?) in the proof of Theorem 3.2, we obtain lim,, || z, — 2z ||= 0. L]
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If 8, =0, then we have the following result :

Corollary 3.4. Let C be nonempty closed convex subset of a real Hilbert space, and
T : C — C be a continuous hemicontractive mapping, and let T(C') be contained in
a compact subset of C. Let {ay,} be a real sequence in (0,1] satisfying >~ >7 | o, < 0.
For any ¢ € C, the sequence {x,} is defined by (1.1). Then {x,} converges strongly
to a fixed point of T.

We give an example of a hemicontractive mapping which is not a pseudocon-
tractive mapping.
Example 3.5. Let H =R and C = [-2x,2xn] and let T : C — C be defined by
Tty= gsinx foreach z € C.

Ovbviously, F(T) = {0} and T is hemicontractive mapping, that is, if x € C and p = 0,
then

T .
[Tz —p[*=| Tz =0 =] Ssinz [’<| o <]z —p ",

Thus | Tx —p *’}<|la—p >+ |2 —Tx |

But it is not a pseudocontractive mapping. In fact, if we take x = 2w and y = 37”,

then
3r . 3 3 972
| T — Ty [*=| 7 sin 2 — Zﬂsing =] Tﬂ 2= %’
where, |z —y [>= % and | (z — Tx) — (y — Ty) P=| & — 30 =| T |= &, .
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