

Convergence Theorems for Hemicontractive Mappings

Kamonrat Nammanee*, Kiattisak Rattanaseeha, Nattasak Punagmchun and Adesha Seali

Department of Mathematics, School of Science, University of Phayao

Abstract

In this paper, we establish strong convergence theorems for the modified Mann-type implicit process of a continuous hemicontractive mappings defined on a noncompact domain in real Hilbert spaces.

*Corresponding author : kamonrat.na@up.ac.th

Keywords : Strong convergence; Condition A; Fixed point; Hemicontractive mapping

1 Introduction

Let C be a nonempty subset of a real Hilbert space H and let $T : C \rightarrow C$ be a mapping. Then

T is said to be pseudocontractive [1, 2] if

$$\|Tx - Ty\|^2 \leq \|x - y\|^2 + \|(I - T)x - (I - T)y\|^2 \quad \text{for all } x, y \in C.$$

T is said to be hemicontractive if $F(T) := \{x \in C : Tx = x\} \neq \emptyset$

and $\|Tx - p\|^2 \leq \|x - p\|^2 + \|x - Tx\|^2$ for all $p \in F(T)$ and $x \in C$. It is easy to see that, if $F(T) \neq \emptyset$, then the concept of hemicontractive mapping is more general than that of pseudocontractive mapping.

Let C be nonempty closed convex subset of a real Hilbert space H . For a mapping $T : C \rightarrow C$, the following Mann-type implicit process was introduced by Soltuz [3]:

$$\begin{aligned} x_0 &\in C, \\ x_n &= \alpha_n x_{n-1} + (1 - \alpha_n) Tx_n \end{aligned} \tag{1.1}$$

for all $n \geq 1$, where $\{\alpha_n\}$ is a real sequence in $[0,1]$.

Definition 1.1. [4] A mapping $T : C \rightarrow C$ with $F(T) \neq \emptyset$ is said to satisfy condition **A** if there exists a nondecreasing function $f : [0, \infty) \rightarrow [0, \infty)$ with $f(0) = 0$ and $f(r) > 0$ for all $r \in (0, \infty)$ such that

$$\|x - Tx\| \geq f(d(x, F(T)))$$

for all $x \in C$, where $d(x, F(T)) = \inf_{z \in F(T)} \|x - z\|$.

Approximating fixed points of Ishikawa [5] (Mann [6]) iterations under a pseudo-contractive (or hemicontractive) mapping T has been investigated by several author; see, for example, [7, 13] and others.

In 2014, Kim [8] gave the strong convergence theorems of (1.2) in a real Hilbert space under T is continuous with $F(T) \neq \emptyset$ and T satisfy condition A and T is continuous hemicontractive which $T(C)$ is contains in a compact subset of C .

The purpose of this paper is to introduce and investigate the following modified Mann implicit iteration process. Let C a nonempty closed convex subset of a real Hilbert space H and $T : C \rightarrow C$ defined $\{x_n\}$ in C in the following way:

$$\begin{aligned} x_0 &\in C, \\ x_n &= \alpha_n x_{n-1} + (1 - \alpha_n - \beta_n) T x_n + \beta_n U_n \end{aligned} \tag{1.2}$$

where $\{\alpha_n\}, \{\beta_n\}$ are real sequences in $[0, 1]$ and $\{U_n\}$ is a bounded sequence in C .

We first prove the strong convergence of (1.1) and (1.2) for a continuous hemicontractive mapping in a real Hilbert space. Next, we give some examples of a hemicontractive mapping which is not a pseudocontractive mapping.

2 Preliminaries

We give some definition, notations and some useful results that will be used in the later section. Throughout this research, we let \mathbb{R} stand for the set of all real numbers and \mathbb{N} for the set of all natural numbers.

Lemma 2.1. [8] Let H be a real Hilbert space. Then the following well known results hold;

1. (1) $\|\lambda x + (1 - \lambda)y\|^2 = \lambda \|x\|^2 + (1 - \lambda) \|y\|^2 - \lambda(1 - \lambda) \|x - y\|^2$
for all $x, y \in H$ and $\lambda \in [0, 1]$.
2. (2) $\|x + y\|^2 \leq \|x\|^2 + 2\langle y, x + y \rangle$ for all $x, y \in H$.
3. (3) $\|x - y\|^2 = \|x\|^2 + \|y\|^2 - 2\langle x, y \rangle$ for all $x, y \in H$.

Lemma 2.2. [8] Let C be a nonempty subset of a real Hilbert space H and $T : C \rightarrow C$ be a mapping with $F(T) \neq \emptyset$. Then T is hemicontractive if and only if $\langle Tx - p, x - p \rangle \leq \|x - p\|^2$ for all $p \in F(T)$ and $x \in C$.

Lemma 2.3. [8] Let C be a nonempty closed convex subset of a real Hilbert space H , and $T : C \rightarrow C$ be a continuous hemicontractive mapping with $F(T) \neq \emptyset$. Then $F(T)$ is closed.

Lemma 2.4. [8] Let $\{a_n\}$ and $\{b_n\}$ be two sequences of nonnegative real numbers such that $\sum_{n=1}^{\infty} b_n < \infty$ and $a_{n+1} \leq a_n + b_n$; for all $n \geq 1$. Then $\lim_{n \rightarrow \infty} a_n$ exists.

3 Main Results

In this section, we prove that if the mapping T is a hemicontractive mapping on C which satisfies some condition, then the sequence $\{x_n\}$ is defined by (1.1) and (1.2) converge strongly to a fixed point of T , respectively.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H , and $T : C \rightarrow C$ be a continuous hemicontractive mapping with $F(T) \neq \emptyset$, and T satisfies condition A. Let $\{\alpha_n\}$ be a real sequence in $[0, 1]$ satisfies $\{\alpha_n\} \subset [\delta, 1 - \delta]$ for some $\delta \in (0, \frac{1}{2})$. For any $x_0 \in C$, the sequence $\{x_n\}$ is defined by $x_n = \alpha_n x_{n-1} + (1 - \alpha_n)Tx_n$, for all $n \geq 1$. Then $\{x_n\}$ converges strongly to fixed point of T .

Proof. Let $p \in F(T)$. By using Lemma 2.2, we obtain

$$\begin{aligned} \|x_n - p\|^2 &= \langle x_n - p, x_n - p \rangle = \alpha_n \langle x_{n-1} - p, x_n - p \rangle + (1 - \alpha_n) \langle Tx_n - p, x_n - p \rangle \\ &\leq \alpha_n \|x_{n-1} - p\| \|x_n - p\| + (1 - \alpha_n) \|x_n - p\|^2. \end{aligned}$$

Thus

$$\|x_n - p\| \leq \|x_{n-1} - p\|. \quad (3.1)$$

By Lemma 2.4, we have $\lim_{n \rightarrow \infty} \|x_n - p\|$ exists. Since T is hemicontractive, we have

$$\|Tx_n - p\|^2 \leq \|x_n - p\|^2 + \|x_n - Tx_n\|^2. \quad (3.2)$$

By using sequence $x_n = \alpha_n x_{n-1} + (1 - \alpha_n)Tx_n$, for all $n \geq 1$, we obtain

$$\|x_n - Tx_n\|^2 = \alpha_n^2 \|x_{n-1} - Tx_n\|^2. \quad (3.3)$$

By using Lemma 2.1, (3.2), we have

$$\begin{aligned} \|x_n - p\|^2 &= \|\alpha_n x_{n-1} + (1 - \alpha_n)Tx_n - p\|^2 \\ &= \|\alpha_n(x_{n-1} - p) + (1 - \alpha_n)(Tx_n - p)\|^2 \\ &\leq \alpha_n \|x_{n-1} - p\|^2 + (1 - \alpha_n) \|x_n - p\|^2 \\ &\quad + (1 - \alpha_n) \|x_n - Tx_n\|^2 - \alpha_n(1 - \alpha_n) \|x_{n-1} - Tx_n\|^2 \end{aligned}$$

$$\begin{aligned}
 &= \alpha_n \|x_{n-1} - p\|^2 + (1 - \alpha_n) \|x_n - p\|^2 \\
 &\quad + (1 - \alpha_n) \alpha_n^2 \|x_{n-1} - Tx_n\|^2 - \alpha_n (1 - \alpha_n) \|x_{n-1} - Tx_n\|^2 \\
 &= \alpha_n \|x_{n-1} - p\|^2 + (1 - \alpha_n) \|x_n - p\|^2 - \alpha_n (1 - \alpha_n)^2 \|x_{n-1} - Tx_n\|^2.
 \end{aligned}$$

It follows that

$$(1 - \alpha_n)^2 \|x_{n-1} - Tx_n\|^2 \leq \|x_{n-1} - p\|^2 - \|x_n - p\|^2.$$

And from the condition $\{\alpha_n\} \subset [\delta, 1 - \delta]$, we conclude that the inequality

$$\delta^2 \|x_{n-1} - Tx_n\|^2 \leq \|x_{n-1} - p\|^2 - \|x_n - p\|^2.$$

Since, $\lim_{n \rightarrow \infty} \|x_n - p\|$ exists, we have

$$\lim_{n \rightarrow \infty} (\|x_{n-1} - p\|^2 - \|x_n - p\|^2).$$

This implies that

$$\lim_{n \rightarrow \infty} \|x_{n-1} - Tx_n\| = 0. \quad (3.4)$$

From (3.3) and (3.4), we have

$$\lim_{n \rightarrow \infty} \|x_n - Tx_n\| = 0. \quad (3.5)$$

By using Condition A, there exists a nondecreasing mapping $f : [0, \infty) \rightarrow [0, \infty)$ with $f(0) = 0$ and $f(r) > 0$ for all $r \in (0, \infty)$ such that

$$f(d(x_n, F(T))) \leq \|Tx_n - x_n\|. \quad (3.6)$$

for all $n \geq 1$.

We claim that $\lim_{n \rightarrow \infty} d(x_n, F(T)) = 0$. In fact, assume $\lim_{n \rightarrow \infty} d(x_n, F(T)) = k > 0$. Then we can choose $n_0 \in \mathbb{N}$ such that $0 < \frac{k}{2} < d(x_n, F(T))$ for all $n \geq n_0$. By using a mapping f and (3.4), we obtain

$$0 < f\left(\frac{k}{2}\right) \leq f(d(x_n, F(T))) \leq \|Tx_n - x_n\| \rightarrow 0$$

as $n \rightarrow \infty$. This is a contradiction. So, we obtain $k = 0$. For any $\epsilon > 0$ be given, there exists $n_0 \in \mathbb{N}$ such that

$$d(x_n, F(T)) < \frac{\epsilon}{2}, \quad (3.7)$$

for all $n \geq n_0$. Then for all $n, m \geq n_0$ and $v \in F(T)$, we obtain

$$\|x_n - x_m\| \leq \|x_n - v\| + \|x_m - v\| \leq 2\|x_{n_0} - v\|. \quad (3.8)$$

Taking the infimum over all $v \in F(T)$ on both sides and by (3.8), we obtain

$$\|x_n - x_m\| \leq 2[d(x_{n_0}, F(T))] < \epsilon, \quad (3.9)$$

for all $n, m \geq n_0$. This implies that $\{x_n\}$ is a Cauchy sequence. Then $\{x_n\}$ is a convergent sequence, we may assume that $\lim_{n \rightarrow \infty} x_n = w$. Then $d(w, F(T)) = 0$. By Lemma (2.3), $F(T)$ is closed and thus we obtain $w \in F(T)$. Hence $\{x_n\}$ converges strongly to a fixed point of T . \square

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H , and $T : C \rightarrow C$ be a continuous hemicontractive mapping with $F(T) \neq \emptyset$, and T satisfies condition A. Let $\{\alpha_n\}, \{\beta_n\}$ be real sequences with $\alpha < \alpha_n, \beta_n \leq 1$ for some $\alpha \in (0, 1]$ satisfying $\sum_{n=1}^{\infty} \alpha_n < \infty$ and $\beta_n \leq \alpha_n^2$. Then a sequence $\{x_n\}$ is defined by (1.2) converges strongly to fixed point of T .

Proof. Let $p \in F(T)$. By using Lemma 2.2, we obtain

$$\begin{aligned} \|x_n - p\|^2 &= \langle x_n - p, x_n - p \rangle \\ &= \langle (\alpha_n x_{n-1} + (1 - \alpha_n - \beta_n)Tx_n + \beta_n U_n) - p, x_n - p \rangle \end{aligned}$$

SCIENCE AND TECHNOLOGY

UTTARADIT RAJABHAT UNIVERSITY

Academic Journal of Science and Applied Science 2018(1) January – June pp. 101 – 113

$$\begin{aligned}
 &= \alpha_n \langle x_{n-1} - p, x_n - p \rangle + (1 - \alpha_n - \beta_n) \langle Tx_n - p, x_n - p \rangle \\
 &\quad + \beta_n \langle U_n - p, x_n - p \rangle \\
 &= \alpha_n \|x_{n-1} - p\| \|x_n - p\| + (1 - \alpha_n - \beta_n) \|Tx_n - p\| \|x_n - p\| \\
 &\quad + \beta_n \|U_n - p\| \|x_n - p\| \\
 &= \alpha_n \|x_{n-1} - p\| \|x_n - p\| + (1 - \alpha_n - \beta_n) \|x_n - p\|^2 \\
 &\quad + \beta_n \|U_n - p\| \|x_n - p\|.
 \end{aligned}$$

It follows that

$$\begin{aligned}
 \|x_n - p\| &\leq \alpha_n \|x_{n-1} - p\| + (1 - \alpha_n - \beta_n) \|x_n - p\| + \beta_n \|U_n - p\| \\
 &\leq \alpha_n \|x_{n-1} - p\| + (1 - \alpha_n) \|x_n - p\| + \beta_n \|U_n - p\|.
 \end{aligned}$$

Since, $\alpha < \alpha_n, \beta_n \leq 1$ for some $\alpha \in (0, 1]$ and $\beta_n \leq \alpha_n^2$, we obtain that

$$\begin{aligned}
 \alpha_n \|x_n - p\| &\leq \alpha_n \|x_{n-1} - p\| + \beta_n \|U_n - p\| \\
 &\leq \alpha_n \|x_{n-1} - p\| + \alpha_n^2 \|U_n - p\|.
 \end{aligned}$$

Hence

$$\|x_n - p\| \leq \|x_{n-1} - p\| + \alpha_n \|U_n - p\|.$$

Since, $\sum_{n=1}^{\infty} \alpha_n < \infty$ and $\{\|U_n - p\|\}$ is bounded, then $\sum_{n=1}^{\infty} \alpha_n \|U_n - p\| < \infty$. By Lemma 2.4, we have $\lim_{n \rightarrow \infty} \|x_n - p\|$ exists. Since T is hemicontractive, we have

$$\begin{aligned}
 \|x_n - Tx_n\| &= \|\alpha_n x_{n-1} + (1 - \alpha_n - \beta_n)Tx_n + \beta_n U_n - Tx_n\| \\
 &= \|\alpha_n x_{n-1} + Tx_n - \alpha_n Tx_n - \beta_n Tx_n + \beta_n U_n - Tx_n\| \\
 &= \|\alpha_n x_{n-1} - \alpha_n Tx_n + \beta_n U_n - \beta_n Tx_n\| \\
 &= \|\alpha_n(x_{n-1} - Tx_n) + \beta_n(U_n - Tx_n)\| \\
 &\leq \alpha_n \|x_{n-1} - Tx_n\| + \beta_n \|U_n - Tx_n\|.
 \end{aligned}$$

Since, $\alpha < \alpha_n$, $\beta_n \leq 1$ we get $\alpha_n^2 \leq \alpha_n$ then $\beta_n \leq \alpha_n^2 \leq \alpha_n$ we have

$$\|x_n - Tx_n\| \leq \alpha_n \|x_{n-1} - Tx_n\| + \alpha_n \|U_n - Tx_n\|. \quad (3.10)$$

Since $\{x_n\}$ is a bounded, T is continuous and $\sum_{n=1}^{\infty} \alpha_n < \infty$ then

$$\lim_{n \rightarrow \infty} \alpha_n \|x_{n-1} - Tx_n\| = 0 = \lim_{n \rightarrow \infty} \alpha_n \|U_n - Tx_n\|. \quad (3.11)$$

From (3.10) and (3.11), it implies that

$$\lim_{n \rightarrow \infty} \|x_n - Tx_n\| = 0. \quad (3.12)$$

By using Condition A, there exists a nondecreasing mapping $f : [0, \infty) \rightarrow [0, \infty)$ with $f(0) = 0$ and $f(r) > 0$ for all $r \in (0, \infty)$ such that

$$f(d(x_n, F(T))) \leq \|Tx_n - x_n\|. \quad (3.13)$$

for all $n \geq 1$.

We claim that $\lim_{n \rightarrow \infty} d(x_n, F(T)) = 0$. In fact, assume $\lim_{n \rightarrow \infty} d(x_n, F(T)) = k > 0$. Then we can choose $n_0 \in \mathbb{N}$ such that $0 < \frac{k}{2} < d(x_n, F(T))$ for all $n \geq n_0$. By using a mapping f and (3.4), we obtain

$$0 < f\left(\frac{k}{2}\right) \leq f(d(x_n, F(T))) \leq \|Tx_n - x_n\| \rightarrow 0 \text{ as } n \rightarrow \infty.$$

This a contradiction. So, we obtain $k = 0$. For any $\epsilon > 0$ be given, there exists $n_0 \in \mathbb{N}$ such that

$$d(x_n, F(T)) < \frac{\epsilon}{2}, \quad (3.14)$$

for all $n \geq n_0$. Then for all $n, m \geq n_0$ and $v \in F(T)$, we obtain

$$\|x_n - x_m\| \leq \|x_n - v\| + \|x_m - v\| \leq 2\|x_{n_0} - v\|. \quad (3.15)$$

Taking the infimum over all $v \in F(T)$ on both sides and by (3.15), we obtain

$$\|x_n - x_m\| \leq 2[d(x_{n_0}, F(T))] < \epsilon, \quad (3.16)$$

for all $n, m \geq n_0$. This implies that $\{x_n\}$ is a Cauchy sequence. Then $\{x_n\}$ is a convergent sequence, we may assume that $\lim_{n \rightarrow \infty} x_n = w$. Then $d(w, F(T)) = 0$. By Lemma (2.3), $F(T)$ is closed and thus we obtain $w \in F(T)$. Hence $\{x_n\}$ converges strongly to a fixed point of T . \square

Theorem 3.3. *Let C be nonempty closed convex subset of a real Hilbert space, and $T : C \rightarrow C$ be a continuous hemicontractive mapping, and let $T(C)$ be contained in a compact subset of C . Let $\{\alpha_n\}, \{\beta_n\}$ be real sequences in $(0, 1]$ satisfying $\sum_{n=1}^{\infty} \alpha_n < \infty$ and $\beta_n \leq \alpha_n^2$. For any $x_0 \in C$, the sequence $\{x_n\}$ is defined by (1.2). Then $\{x_n\}$ converges strongly to a fixed point of T .*

Proof. By Mazur's theorem [14], $W := \overline{co}(\{x_0\} \cup T(C))$ is a compact subset of C containing $\{x_n\}$ which is invariant under T . So, without loss of generality, we may assume that C is compact and $\{x_n\}$ is well-defined. The existence of a fixed point of T follows from Schauder's fixed theorem [15]. Since C is compact and by (3.12) in the proof of Theorem 3.2, there exists a subsequence $\{x_{n_j}\}$ of the sequence $\{x_n\}$ and a point $z \in C$. By using (3.12) in the proof Theorem 3.2 and the continuity of T , we obtain $z \in F(T)$. Hence, by (??) in the proof of Theorem 3.2, we obtain $\lim_{n \rightarrow \infty} \|x_n - z\| = 0$. \square

If $\beta_n \equiv 0$, then we have the following result :

Corollary 3.4. Let C be nonempty closed convex subset of a real Hilbert space, and $T : C \rightarrow C$ be a continuous hemicontractive mapping, and let $T(C)$ be contained in a compact subset of C . Let $\{\alpha_n\}$ be a real sequence in $(0,1]$ satisfying $\sum_{n=1}^{\infty} \alpha_n < \infty$. For any $x_0 \in C$, the sequence $\{x_n\}$ is defined by (1.1). Then $\{x_n\}$ converges strongly to a fixed point of T .

We give an example of a hemicontractive mapping which is not a pseudocontractive mapping.

Example 3.5. Let $H = \mathbb{R}$ and $C = [-2\pi, 2\pi]$ and let $T : C \rightarrow C$ be defined by

$$Tx = \frac{x}{2} \sin x \quad \text{for each } x \in C.$$

Obviously, $F(T) = \{0\}$ and T is hemicontractive mapping, that is, if $x \in C$ and $p = 0$, then

$$|Tx - p|^2 = |Tx - 0|^2 = |\frac{x}{2} \sin x|^2 \leq |x|^2 = |x - p|^2.$$

Thus $|Tx - p|^2 \leq |x - p|^2 + |x - Tx|^2$.

But it is not a pseudocontractive mapping. In fact, if we take $x = 2\pi$ and $y = \frac{3\pi}{2}$, then

$$|Tx - Ty|^2 = |\pi \sin 2\pi - \frac{3\pi}{4} \sin \frac{3\pi}{2}|^2 = |\frac{3\pi}{4}|^2 = \frac{9\pi^2}{16},$$

where, $|x - y|^2 = \frac{\pi^2}{4}$ and $|(x - Tx) - (y - Ty)|^2 = |\frac{\pi}{2} - \frac{3\pi}{4}|^2 = |\frac{\pi}{4}|^2 = \frac{\pi^2}{16}$. □

Acknowledgement(s) : Authors would like to thank the referee(s) for his comments and suggestions on the manuscript. This work was supported by the university of Phayao, Thailand.

References

- [1] F.E. Browder, Nonlinear operators and nonlinear equations of evolutions in Banach spaces. Proceedings of Symposia in Pure Mathematics, vol, 18-2. American Mathematical Society. Providence, R.I.,1976.
- [2] F.E. Browder, W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, *J. Math. Anal. Appl.* 20(1976) 197-228.
- [3] S.M. Soltuz, The backward Mann iteration, *Octagon Math. Mag.* 9(2) (2001) 797-800.
- [4] H.F. Senter, W.G. Dotson, Approximating fixed points of nonexpensive mapping, *Proc. Amer. Math. Soc.* 44(1974) 375-380.
- [5] S. Ishikawa, Fixed points by a new iteration method, *Proc. Amer. Math. Soc.* 44 (1974) 147-150 .
- [6] W.R. Mann, Mean value methods in iteration. *Proc. Amer. Math. Soc.* 44(1974) 147-150.
- [7] T.L. Hicks, J.R.Kubicek, On the Mann iteration process in Hilbert space. *J. Math. Anal. Appl.* 59(1977)498-504.
- [8] G.E. Kim, Strong convergence of an implicit iteration process in Hilbert spaces. *Applied Mathematics and Computation* 239 (2014) 434-437.
- [9] E. Kreyszig, *Introduction functional analysis with applications*. United States of America (1978).
- [10] V.N. Mishra, L.N. Mishra, Trigonometric approximation of signals (functions) in L_p -norm. *Int. J. Contemp. Math. Sci.* 7(19)(2012) 909-918.

[11] V.N. Mishra, M.L. Mittal, U. Singh, On best approximation in locally convex space, *Varāhmihir J. Math. Sci. India* 6(1)(2006) 43-48.

[12] L. Qihou, The convergence theorems of the sequence of Ishikawa iterates for hemicontractive mappings, *J. Math. Anal. Appl.* 148(1990)m55-62.

[13] A. Rafiq, On Mann iteration in Hilbert spaces, *Nonlinear Anal.* 66(2007) 2230-2236.

[14] N. Dunford, J.T. Schwartz, *Linear Operators. Part 1*, Interscience, New York, 1958.

[15] J. Schauder, Der Fixpunktsatz in Funktionalräumen. *Studia Math.* 2 (1930) 171-180.

